数学建模插值法与曲线拟合讲课

合集下载

(数学建模课件)第八部分插值与拟合

(数学建模课件)第八部分插值与拟合
2020/7/8
例9 多项式函数拟合 x=[34 36 37 38 39 39 39 40 40 41 42 43 43 45 47 48]; y=[1.30 1.00 0.73 0.90 0.81 0.70 0.60 0.50 0.44 0.56 0.30 0.42 0.35 0.40 0.41 0.60]; close; plot(x,y) p=polyfit(x,y,2) xi=linspace(34,48,1000); %绘图的X轴数据 z=polyval(p,xi); %得到多项式在数据点处 的值 close; plot(x,y,’ko’,xi,z,’r-’)
xi=0:2*pi*300; yi=interp1(x,y,xi,’cubic’); plot(xi,yi);
2020/7/8
例3 三次样条插值 x=1:12; y=[5 6 9 15 25 29 31 30 22 25 27 24]; close; plot(x,y,x,y,’+’) pp=spline(x,y); [b,c]=unmkpp(pp)
例5 下表给出某企业从1968—2008年间,工龄为 10年、20年、30年的职工的月均工资数据。试 用线性插值求出1973—2003年每隔10年,工龄 为15年、25年职工的月均工资。
工龄 10 年份
1968
507
1978
793
1988
1032
1998
1265
2008
2020/7/8
2496
20
2020/7/8
2、二维插值
Z1=interp2 (X,Y,Z,X1,Y1,’method’) 其中X和Y为两个向量,分别描述原始数据点的 自变量取值,Z是对应于X和Y的函数值;X1和 Y1是两个向量,描述欲插值的点。Method的含 义同一维插值。Z1是根据相应的插值方法得到 的插值结果。

数学建模~插值与拟合(课件ppt)

数学建模~插值与拟合(课件ppt)

• 代数多项式插值是最常用的插值方式,其内容也 是最丰富的,它又可分为以下几种插值方式: (1)非等距节点插值,包括拉格朗日插值、利用 均差的牛顿插值和埃特金插值; (2)非等距节点插值,包括利用差分的牛顿插值 和高斯插值等; (3)在插值中增加了导数的Hermite(埃尔米特) 插值; (4)分段插值,包括分段线性插值、分段Hermite (埃尔米特)插值和样条函数插值; (5)反插值。 • 按被插值函数的变量个数还可把插值法分为一元 插值和多元插值。
引言2---插值和拟合的联系与区别
联系:二者都是函数逼近的主要方法
• 区别: •运算过程上的区别:
– 拟合:是将数据点用最恰当的曲线描述出来,以反映问题的规律, 是特殊到一般的过程。 – 插值:是在知道曲线的形状后得出某些具体点的性质的过程,是 从一般到特殊。
•求解误差上的区别:
– 拟合:考虑观察值的误差(误差不可避免时)。以偏差的某种最 小为拟合标准
n n ik
0 i k 而: lk xi 1 i k
22
例1
x1 1, x2 2, x3 4, f ( x1 ) 8, f ( x2 ) 1, f ( x3 ) 5
求二次插值多项式。
解:
按拉格朗日方法,有:
L( x) y1l1 x y2l2 x y3l3 x ( x 2)( x 4) ( x 1)( x 4) ( x 1)( x 2) 8 1 5 (1 2)(1 4) (2 1)(2 4) (4 1)(4 2) 3x 2 16 x 21
4.2 插值方法 选用不同类型的插值函数,逼近的效 果就不同,一般有: (1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值。

常用数值分析方法3插值法与曲线拟合

常用数值分析方法3插值法与曲线拟合
8/37
p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值

《插值与拟合》课件

《插值与拟合》课件

拟合的方法
1
最小二乘法
通过最小化残差平方和,找到与数据最匹配的函数。
2
局部加权回归
给予附近数据点更高的权重,拟合接近局部数据点的函数。
3
多项式拟合
用多项式函数逼近数据,通过选择合适的次数实现拟合。
插值与拟合的误差分析
插值和拟合都会引入近似误差,需要评估误差范围和影响因素。
插值与拟合在数据处理与分析中的应用
数据分析
通过插值和拟合方法对数据进 行探索和分析。
数据处理
在数据处理过程中使用插值和 拟合技术来填充缺失值和平滑 数据。
数据建模
利用插值和拟合模型对数据特 征进行捕捉和预测分析。
插值与拟合的推广和发展前景
随着数据科学和人工智能的不断发展,插值和拟合在各个领域的应用前景越 来越广阔。
插值与拟合的应用范围
科学研究
用于数据分析、信号优化设计、近似计算和 效能提升。
经济金融
用于市场分析、预测模型和 风险评估。
插值的方法
1
拉格朗日插值
基于多项式插值公式,用拉格朗日多项式逼近函数。
2
牛顿插值
基于差商的概念,用多项式逼近函数的值。
3
分段插值
将插值区间划分为多个子区间,并在每个子区间上进行插值。
《插值与拟合》PPT课件
插值与拟合是数值计算和数据分析中重要的概念。
插值与拟合的概念
插值
通过已知值的推算,计算在未知点的近似值。
拟合
通过曲线或曲面拟合已知数据,以描述和预 测未知数据。
插值与拟合的区别与联系
1 区别
2 联系
插值重点关注已知点的准确性,而拟合则 着重于整体形状的拟合。
插值和拟合都通过数学模型逼近离散数据, 以实现数据的补全和预测。

计算方法教学配套课件刘师少第五章插值与曲线拟合

计算方法教学配套课件刘师少第五章插值与曲线拟合

Tel:86613747E-mail:*************授课: 68学分:45.1 问题的提出– 函数解析式未知,通过实验观测得到的一组数据, 即在某个区间[a, b]上给出一系列点的函数值y i = f(x i )– 或者给出函数表x x 0x 1x 2……x n yy 0y 1y 2……y n第五章插值与曲线拟合5.2 插值法的基本原理设函数y=f (x )定义在区间[a, b ]上,是[a, b ]上取定的n+1个互异节点,且在这些点处的函数值 为已知 ,即若存在一个f(x)的近似函数 ,满足则称为f (x )的一个插值函数, f (x )为被插函数, 点x i 为插值节点, 称(5.1)式为插值条件, 而误差函数R(x)= 称为插值余项, 区间[a, b ]称为插值区间, 插值点在插值区间内的称为内插, 否则称外插n x x x ,,,10 )(,),(),(10n x f x f x f )(i i x f y =)(x ϕ),,2,1()()(n i x f x i i ==ϕ)(x ϕ(5.1))()(x x f ϕ-插值函数 在n+1个互异插值节点(i=0,1,…,n )处与 相等,在其它点x 就用的值作为f (x )的近似值。

这一过程称为插值,点x 称为插值点。

换句话说, 插值就是根据被插函数给出的函数表“插出”所 要点的函数值。

用的值作为f (x )的近似值,不仅希望能较好地逼近f (x ),而且还希望它计算简单。

由于代数多项式具有数值计算和理论分析方便的优点。

所 以本章主要介绍代数插值。

即求一个次数不超过n 次的多项式。

)(x ϕi x )(i x f )(x ϕ)(x ϕ)(x ϕ0111)(a x a xa x a x P n n n n ++++=--111)(a x a xa x a x P n n n n ++++=-- 满足),,2,1,0()()(n i x f x P i i ==则称P(x)为f(x)的n次插值多项式。

数学建模插值与拟合课件

数学建模插值与拟合课件
2. Lagrange插值公式
设函数 y f (x) 在 n 1个相异点 x0 , x1, x2 , , xn 上的值为 y 0 , y1, y2 , , yn ,要求一个次数≤n 的代数多
项式
Pn (x) a0 a1x a2 x 2 an x n
使在节点 xi 上成立 Pn (xi ) yi (i 0,1,2, , n) ,称此为 n 次代数插值问题,Pn (x) 称为插值多项式。可以证明 n
如果不要求近似函数通过所有数据点, 而是要求它能较好地反映数据变化规律的近 似函数的方法称为数据拟合。(必须有函数 表达式)
近似函数不一定(曲线或曲面)通过所 有的数据点。
三、插值与拟合的区别和联系
1、联系 都是根据实际中一组已知数据来构造一个能够 反映数据变化规律的近似函数的方法。 2、区别 插值问题不一定得到近似函数的表达形式,仅 通过插值方法找到未知点对应的值。数据拟合 要求得到一个具体的近似函数的表达式。
图所示,当n 增大时,pn x在两端会发出激烈
的振荡,这就是所谓龙格现象。
龙格现象
2
y=1/(1+x2) y=p4(x) y=p10(x) 1.5
1
0.5
0
-0.5
-5 -4 -3 -2 -1
0
1
2
3
4
5
x
To MATLAB lch(larg1)
分段插值的概念
所谓分段插值,就是将被插值函数逐段 多项式化。一般来说,分段插值方法的处理 过程分两步,先将所考察的区间作一分划
y1
lj(x)
当n =2 时,有三点二次(抛物线)插值多项式:
P2
(x)
(x (x0
x1)(x x2 ) x1)(x0 x2 )

数学建模精选经典课件之插值与拟合

数学建模精选经典课件之插值与拟合

可以看出这些点大致分 布在一条直线附近。
我们不妨用插值法,和拟合法两种方法对比 的看看他们的图像,找出他们的差别。
对这样的数据采用上一节介绍的插值方法近 似求描述物理规律的解析函数,必然存在下 列缺点:
在一个包含有很多数据点的区间内构 造插值函数,必然使用高次多项式。而 高次插值多项式是不稳定的。
700 850 950 1010 1070 1550 980
通过此例对最近邻点插值、双线性插值方法和双三次插值 方法的插值效果进行比较。
散乱节点定义
已知n个节点
其中
互不相同,
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
Matlab中网格节点插值的函数
cz=griddata(x0,y0,z0,cx,cy,’method’)
插值&拟合
一.插值法(内插,外插)
内插:是数学领域数值分析中的通过已知的离散数据 求未知数据的过程或方法。
在这里我们所讲的插值法指的就是内插法!
二.拟合法
科学和工程问题可以通过诸如采样、实验等方法获 得若干离散的数据,根据这些数据,我们往往希望得到 一个连续的函数(也就是曲线)或者更加密集的离散方 程与已知数据相吻合,这过程就叫做拟合 (fitting)。
数据的插值与拟合问题在很多赛题中都有应用。
与图形有关的问题很多和插值与拟合有关系,例如98 年美国赛的A题,生物组织切片的三位插值处理,94 年的A题逢山开路,山体海拔高度的插值计算。2001 年的公交调度拟合问题,2003年的饮酒驾车拟合问题, 2005年的雨量预报的评价的插值计算。甚至是上次的 东北三省赛的A题人口预测问题也涉及到了拟合计算。
互不相xj
xn

曲线插值和曲线拟合

曲线插值和曲线拟合

y
(x , y )
0 0
y L2 x
(x , y )
1 1
(x , y )
2 2
y f x
0
Байду номын сангаас
x
0
14 图2-3
x
1
x
例:(1,2), (0,0), (2,1), (3,3)
( x 0)(x 2)(x 3) l0 ( x ) (1 0)(1 2)(1 3) ( x 1)(x 0)(x 3) l2 ( x) (2 1)(2 0)(2 3) ( x 1)(x 2)(x 3) l1 ( x) (0 1)(0 2)(0 3) ( x 1)(x 0)(x 2) l3 ( x) (3 1)(3 0)(3 2)


g ( x) a00 ( x) ann ( x)

g ( xi ) f ( xi ) a00 ( xi ) ann ( xi ) a00 ( x0 ) a11 ( x0 ) an n ( x0 ) f ( x0 ) a (x ) a (x ) a (x ) f (x ) 0 0 1 1 1 1 n n 1 1 a00 ( xn ) a11 ( xn ) an n ( xn ) f ( xn ) 所以 a }n 有解,当且仅当系数行列式不为0 { i i 0
1 ai ( xi x0 ) ( xi xi 1 )(xi xi 1 ) ( xi xn ) ( x x0 ) ( x xi 1 )( x xi 1 ) ( x xn ) li ( xi x0 ) ( xi xi 1 )( xi xi 1 ) ( xi xn )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试做出该山区的地貌图.
船在该海域会搁浅吗?---作业
在某海域测得一些点(x,y)处的水深z由下表给出,船的吃水深度为 5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进 入.
x y z x y z 129 140 103.5 88 185.5 195 7.5 141.5 23 147 22.5 137.5 4 8 6 8 6 8 157.5 -6.5 9 107.5 -81 9 105 85.5 8
1.根据上表数据分别给出土豆产量与氮、磷肥的关系式。 2.施肥问题优化策略
配药方案---作业
一种新药用于临床之前, 必须设计给药方案. 在快速静脉注射的给 药方式下, 所谓给药方案是指, 每次注射剂量多大, 间隔时间多长. 药物进入机体后随血液输送到全身, 在这个过程中不断地被吸收, 分布, 代谢, 最终排出体外. 药物在血液中的浓度, 即单位体积血液中 的药物含量, 称血药浓度. 在最简单的一室模型中, 将整个机体看作一 个房室, 称中心室, 室内的血药浓度是均匀的. 快速静脉注射后, 浓度 立即上升; 然后逐渐下降. 当浓度太低时, 达不到预期的治疗效果; 血 药浓度太高, 又可能导致药物中毒或副作用太强. 临床上, 每种药物有 一个最小有效浓度 c1 和一个最大治疗浓度 c2. 设计给药方案时, 要使 血药浓度保持在 c1-c2 之间. 设本题所研究药物的最小有效浓度c1=10, 最大治疗浓度 c2=25( g / ml).
农作物施肥效果分析1992年A题
在农业生产试验研究中,对某地区土豆的产量与化肥的 关系做了一实验,得到了氮肥、磷肥的施肥量与土豆产 量的对应关系如下表:
氮肥量(公斤/公顷) 土豆产量(公斤) 磷肥量(公斤/公顷) 土豆产量(公斤) 0 15.18 0 33.46 34 21.36 24 32.47 67 25.72 49 36.06 101 32.29 73 37.96 135 34 98 41 202 39.45 147 40.1 259 43.15 196 41。3 336 43.46 245 42.2 404 40.83 294 40.4 471 30.75 342 42.7
( x x0 ) ( x xk 1 )(x xk 1 ) ( x xn ) ( xk x0 )( xk xk 1 )(xk xk 1 ) ( xk xn )
插值基函 数
lk ( x)
拉格朗日插值的matlab实现
function y=lagrange(x0,y0,x) % x0插值节点, y0插值节点处 的函数值,x要计算函数值的 点; n=length(x0); %计算x0的长度 m=length(x); %计算x的长度 for i=1:m s=0;
试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。
X 1200 Y 1200 1600 2000 2400 2800 3200 3600 1130 1320 1390 1500 1500 1500 1480 1600 1250 1450 1500 1200 1200 1550 1500 2000 1280 1420 1500 1100 1100 1600 1550 2400 1230 1400 1400 1350 1550 1550 1510 2800 1040 1300 900 1450 1600 1600 1430 3200 900 700 1100 1200 1550 1600 1300 3600 500 900 1060 1150 1380 1600 1200 4000 700 850 950 1010 1070 1550 980
构造插值函数的方法为插值法。
曲线拟合
定义: 当精确函数 y = f(x) 非常复杂或未知时,在一系列节点x0 … xn 处,测得函数值 y0 , … ,yn ,由此构造一个简单易 算的近似函 数 p(x) f( x), 但是不要求使 p(xi) = yi ,而只要 p(xi) yi 总体上尽可能小。这种构 造近似函数p(x) 的方法称为曲线拟合法, p(x) 称为拟合函数。
龙格现象
Runge在上个世纪初发现:
在[-5,5]上用n+1个等距节点作n次插值多项式Pn(x), 当在n→∞时,插值多项式Pn(但对于3.63≤∣x∣≤1的x,Pn(x)严重发散。 用图形分析问题。
for n=10:2:20 %从10等份到20等份 x0=[-5:10/n:5]; %插值节点 y0=1./(1+x0.^2); %插值节点处的精确函数值 x=[-5:0.1:5]; %要进行计算函数值的点 y=lagrange(x0,y0,x); %调用函数计算x点的函数值 plot(x0,y0,„*‟,x,1./(1+x.^2),„r‟,x,y) %绘制图形 pause %等待,按任意键 end
插值与拟合的相同点

都需要根据已知数据构造函数。 可使用得到函数计算未知点的函数值。 x y x1 y1 x2 y2 … … xm ym
求一个简单易算的近似函数 p(x) f (x) 。
插值与拟合的不同点

插值: 过节点; ; 拟合: 不过点, 整体近似;
插值法

14 2.0 1.0
15 1.6 1.6
山体地貌

例 山区地貌: 要在某山区方圆大约 27平方公里范围内修建一条公路,从山脚出发经 在某山区测得一些地点的高程如下表。平面区域为 过一个居民区,再到达一个矿区。横向纵向分别每隔 400米测量一次, 1200<=x<=4000,1200<=y<=3600) 得到一些地点的高程:
插值法的matlab实现—一维插值
命令:interp1(x0,y0,x,’method‟) 其中:x0:插值节点; y0:插值节点处的函数值; x:要计算函数值的点;
method:
l i n e a r :分段线性插值; c u b i c :分段三次埃尔米特插值; s p l i n e :三次样条插值。
1、问题的抽象 在实验中经常给出一组离散点,
x y
x1 y1
x2 y2
… …
xm ym
构造一个简单易于计算的近似函数 p(x) f (x) (精确函数)。 2、构造近似函数, p(x) 的方法有两种: (1)插值法; (2)曲线拟合法.
插值法
定义:当精确函数 y = f(x) 非常复杂或未知时,在一系列节点 x0 … xn 处测得函数值 y0 = f(x0), … ,yn = f(xn), 由此构造一个简单易算的近似函数 p(x) f(x),满足条件 p(xi) = f(xi) (i = 0, … n),(插值条件) 这里的 p(x) 称为f(x) 的插值函数;
插值与曲线拟合
2 1.5
1
0.5
0
-0.5 -5
-4
-3
-2
-1
0
1
2
3
4
5
一、问题的提出
在生产和实验中,关于函数f(x),经常存在两种情况: (1)其表达式不便于计算; (2)无表达式. 而只有函数在给定点的函数值,
x y
x0 y0
x1 y1
x2 y2
… …
xn yn
怎样预测其它点的函数值?
飞机机翼制造
2
3
4
6
8
c
19.21
18.15
15.36
14.10
12.89
9.32
7.45
5.24
3.01
问题 : 1. 在快速静脉注射的给药方式下,研究血药浓度(单位体积血液中的药物含 量)的变化规律; 2. 给定药物的最小有效浓度和最大治疗浓度,设计给药方案:每次注射剂量 多大;间隔时间多长?
二、问题的解决
拉格朗日插值 牛顿插值 三次埃尔米特插值法 分段线性插值 分段三次埃尔米特插值法 三次样条插值
1、 拉格朗日插值公式
(1)定义
对给定的n+1个节点x0 , x1,x2,…,xn及对应的函数值y0 , y1,y2,…,yn, 构造一个n次插值多项式:
y y k lk ( x )
k 0
n
即为拉格朗日插值公式,其中
z=x(i);




for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); %计算插值基函数 end end s=p*y0(k)+s; end y(i)=s; %计算在x(i)处的函数值(拉格 朗日) end
3、分段低次插值法
(1)分段线性插值
定义: 已知n+1个不同节点x0,x1,…,xn ,构造分段多项式I(x),使之满 足 l I(x)在[a,b]上连续; l I(xk)=yk; l I(x)在[xi,xi+1]上是一次多项式;
x xk 1 x xk y y , x [ xk , xk 1 ] k 1 I(x)= k x x xk 1 xk k k 1
配药方案
显然, 要设计给药方案, 必须知道给药后血药浓度随时间变化的 规律. 为此, 从实验和理论两方面着手. 在实验方面, 对某人用 快速静脉注射方式一次注入该药物300mg后, 在一定时刻 t (小时) 采集血样, 测得血药浓度c. 如表: 血药浓度c(t) 的测试数据
t
0.25
0.5
1
1.5
下表给出的x、y数据位于机翼端面的轮廓线上,Y1和Y2分 别对应轮廓的上下线。假设需要得到x坐标每改变0.1时的 y坐标,试完成加工所需数据,画出曲线.
x Y1 Y2
0 0 0
3 1.8 1.2
5 2.2 1.7
7 2.7 2.0
9 3.0 2.0
相关文档
最新文档