实验数据与曲线拟合
数据处理与曲线拟合的技巧与方法

数据处理与曲线拟合的技巧与方法在科学研究和工程应用中,数据处理和曲线拟合是非常重要的一环。
正确地处理数据并通过曲线拟合方法得到准确的拟合曲线,对于研究和预测数据的规律具有重要意义。
本文将介绍数据处理和曲线拟合的一些技巧与方法,以帮助读者更好地应用于实践中。
一、数据处理技巧1. 数据的清洗和去噪在进行数据处理之前,首先需要对原始数据进行清洗和去噪操作。
这包括去除异常值、缺失值以及噪声干扰。
可以使用各种统计方法和数据处理算法进行清洗和去噪,如平均值滤波、中值滤波、小波滤波等。
2. 数据的归一化对于不同量纲的数据,为了消除量纲差异对分析结果造成的影响,需要对数据进行归一化处理。
常用的归一化方法包括最小-最大归一化和Z-score归一化。
最小-最大归一化将数据线性映射到[0, 1]的范围内,Z-score归一化则将数据映射到均值为0,标准差为1的正态分布。
3. 数据的平滑和滤波对于采样数据,由于受到采样精度和测量噪声的影响,数据可能会出现抖动或者波动现象。
为了提高数据的光滑性,可以使用数据平滑和滤波技术,如移动平均滤波、加权移动平均滤波、卡尔曼滤波等。
二、曲线拟合方法1. 最小二乘法最小二乘法是一种经典的曲线拟合方法,它通过最小化实际观测值与拟合曲线之间的误差平方和来确定拟合曲线的参数。
最小二乘法适用于线性拟合问题,可以通过求解正规方程或者使用矩阵运算的方法得到拟合曲线的参数。
2. 非线性最小二乘法对于非线性拟合问题,可以使用非线性最小二乘法进行曲线拟合。
非线性最小二乘法通过迭代优化的方式,逐步调整拟合曲线的参数,使得实际观测值与拟合曲线之间的误差平方和最小化。
常用的非线性最小二乘法包括高斯-牛顿法和Levenberg-Marquardt算法。
3. 样条插值样条插值是一种基于分段多项式的曲线拟合方法。
它通过构造分段多项式曲线,使得曲线在各个插值节点处满足一定的条件,如连续性、光滑性等。
样条插值适用于数据点较密集、曲线变化较剧烈的情况。
实验数据与曲线拟合

实验数据与曲线拟合一、引言实验数据与曲线拟合是科学研究和工程应用中常见的任务之一。
通过对实验数据进行曲线拟合,可以找到数据背后的规律和趋势,从而进行预测、优化和决策。
本文将介绍实验数据与曲线拟合的基本概念、方法和应用。
二、实验数据的收集与处理1. 实验数据的收集实验数据的收集是实验研究的基础,可以通过传感器、仪器设备或人工记录等方式进行。
在收集实验数据时,应注意数据的准确性和可靠性,避免误差和干扰的影响。
2. 实验数据的处理在进行曲线拟合之前,需要对实验数据进行处理,以提高数据的可靠性和可用性。
常见的数据处理方法包括数据清洗、异常值处理、数据平滑和数据归一化等。
三、曲线拟合的基本概念1. 曲线拟合的定义曲线拟合是通过数学模型来描述和预测实验数据的一种方法。
通过找到最佳拟合曲线,可以近似地表示实验数据的规律和趋势。
2. 曲线拟合的目标曲线拟合的目标是找到最佳拟合曲线,使得拟合曲线与实验数据之间的误差最小化。
常见的误差度量方法包括最小二乘法、最大似然估计和最小绝对值法等。
3. 曲线拟合的模型曲线拟合的模型可以是线性模型、非线性模型或混合模型等。
选择合适的模型需要根据实验数据的特点和目标需求进行。
四、曲线拟合的方法1. 线性回归线性回归是一种常见的曲线拟合方法,适用于线性关系较为明显的实验数据。
通过最小化实验数据与拟合曲线之间的误差,可以得到最佳拟合直线。
2. 非线性回归非线性回归适用于实验数据存在非线性关系的情况。
常见的非线性回归方法包括多项式回归、指数回归和对数回归等。
通过选择合适的函数形式和参数,可以得到最佳拟合曲线。
3. 插值法插值法是一种通过已知数据点来估计未知数据点的方法。
常见的插值方法包括拉格朗日插值、牛顿插值和样条插值等。
通过插值方法可以得到平滑的曲线拟合结果。
4. 最小二乘法最小二乘法是一种通过最小化实验数据与拟合曲线之间的误差来求解模型参数的方法。
通过最小二乘法可以得到最佳拟合曲线的参数估计值,并评估拟合曲线的拟合程度。
曲线拟合实验报告[优秀范文5篇]
![曲线拟合实验报告[优秀范文5篇]](https://img.taocdn.com/s3/m/ed56c4cd0342a8956bec0975f46527d3240ca6e1.png)
曲线拟合实验报告[优秀范文5篇]第一篇:曲线拟合实验报告数值分析课程设计报告学生姓名学生学号所在班级指导教师一、课程设计名称函数逼近与曲线拟合二、课程设计目的及要求实验目的: ⑴学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。
⑵学会基本的矩阵运算,注意点乘与叉乘的区别。
实验要求: ⑴编写程序用最小二乘法求拟合数据的多项式,并求平方误差,做出离散函数与拟合函数的图形;⑵用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB的内部函数plot作出其图形,并与(1)结果进行比较。
三、课程设计中的算法描述用最小二乘法多项式曲线拟合,根据给定的数据点,并不要求这条曲线精确的经过这些点,而就是拟合曲线无限逼近离散点所形成的数据曲线。
思路分析 : 从整体上考虑近似函数)(x p 同所给数据点)(i iy x , 误差i i iy x p r -=)(的大小,常用的方法有三种:一就是误差i i iy x p r -=)(绝对值的最大值im ir≤≤ 0max ,即误差向量的无穷范数;二就是误差绝对值的与∑=miir0,即误差向量的 1成绩评定范数;三就是误差平方与∑=miir02的算术平方根,即类似于误差向量的 2 范数。
前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2 范数的平方,此次采用第三种误差分析方案。
算法的具体推导过程: 1、设拟合多项式为:2、给点到这条曲线的距离之与,即偏差平方与:3、为了求得到符合条件的 a 的值,对等式右边求偏导数,因而我们得到了:4、将等式左边进行一次简化,然后应该可以得到下面的等式5、把这些等式表示成矩阵的形式,就可以得到下面的矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑=====+==+====niininiiknikinikinikinikiniiniinikiniiyyyaax x xx x xx x11i11012111111211 1an MMΛM O M MΛΛ 6.将这个范德蒙得矩阵化简后得到⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡n kkn nkkyyyaaax xx xx x M MΛM O M MΛΛ21102 21 1111 7、因为 Y A X = * ,那么 X Y A / = ,计算得到系数矩阵,同时就得到了拟合曲线。
物理实验技术使用中如何进行数据拟合与曲线拟合

物理实验技术使用中如何进行数据拟合与曲线拟合在物理实验中,数据拟合与曲线拟合是一项非常重要的技术。
通过对实验数据进行拟合,我们可以得到更准确的实验结果,进一步理解和解释实验现象。
本文将介绍物理实验中如何进行数据拟合与曲线拟合的常用方法和技巧。
一、数据拟合的基本概念与方法数据拟合是指根据一组离散的实验数据点,找到能够最好地描述这些数据点的某种函数形式。
常用的数据拟合方法有最小二乘法和非线性最小二乘法。
1. 最小二乘法最小二乘法是一种最常用的线性数据拟合方法。
它通过寻找最小化残差平方和的参数值,来确定拟合函数的参数。
残差是指实验数据和拟合函数值之间的差异。
在使用最小二乘法进行数据拟合时,首先需要确定拟合函数的形式。
然后,将实验数据代入拟合函数,并计算残差平方和。
通过对残差平方和进行最小化,可以得到最佳的拟合参数。
2. 非线性最小二乘法非线性最小二乘法是适用于非线性拟合问题的方法。
在非线性拟合中,拟合函数的形式一般是已知的,但是函数参数的确定需要通过拟合实验数据来进行。
非线性最小二乘法通过迭代寻找最小化残差平方和的参数值。
首先,假设初始参数值,代入拟合函数,并计算残差。
然后,根据残差的大小,调整参数值,直到残差平方和最小化。
二、曲线拟合的常用方法与技巧曲线拟合是一种在实验中常见的数据处理方法。
例如,在光谱实验中,我们常常需要对谱线进行拟合,来确定峰的位置、宽度等参数。
1. 多项式拟合多项式拟合是一种常用的曲线拟合方法。
多项式可以近似任何函数形式,因此可以适用于不同形状的实验数据曲线。
在多项式拟合中,我们根据实验数据点的分布情况,选择适当的多项式次数。
通过最小二乘法,确定多项式的系数,从而得到拟合曲线。
2. 非线性曲线拟合非线性曲线拟合适用于实验数据具有复杂形状的情况。
拟合函数的形式一般是已知的,但是参数的确定需要通过拟合实验数据来进行。
非线性曲线拟合的方法类似于非线性最小二乘法。
通过寻找最小化残差平方和的参数值,可以得到拟合曲线的形状和特征。
实验数据曲线拟合方法研究

本科毕业设计论文题目实验数据曲线拟合方法研究专业名称学生姓名指导教师毕业时间毕业一、题目实验数据曲线拟合方法研究二、指导思想和目的要求通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的实验数据曲线拟合方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。
要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。
三、主要技术指标设计系统满足以下要求:数据拟合误差要尽量的小的同时保证曲线的线形形状最佳。
四、进度和要求1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内外研究现状及研究意义;(第1、2周)2、撰写开题报告;(第3、4周)3、应用最小二乘法进行曲线拟合;(第5、6周)4、应用Matlab命令曲线拟合;(第7、8周)5、应用Matlab图形用户界面曲线拟合;(第9、10周)6、研究其他曲线拟合方法;(第11周)7、整理资料撰写毕业论文;(1)初稿;(第12、13周)(2)二稿;(第14周)8、准备答辩和答辩。
(第15周)五、主要参考书及参考资料[1]卢京潮,《自动控制原理》,西北工业大学出版社,2010.6[2]胡寿松,《自动控制原理》,科学出版社,2008,6[3]薛定宇,陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4[4]王正林,《Matlab/Simulink与控制系统仿真》,电子工业出版社,2009.7[5]李桂成,《计算方法》,电子工业出版社,2013.8[6]蒋建飞,胡良剑,唐俭.数值分析及其Matlab实验【M】.北京:科学出版社,2008学生指导教师系主任摘要在我们实际的实验和勘探中,都会产生大量的数据。
Origin8.0实验数据处理与曲线拟合详解

1.1 Origin的一些变化
1、新增了“X-Functions”技术 自1991年Origin问世以来,版本从4.0、5.0、
6.0、7.0、7.5到2007年推出的8.0版,软件不断完 善。与7.5版相比,Origin8.0在菜单设计、具体操 作等很多方面都有显著改进,特别是采用了X- Functions技术,更是把“模块化”和“对象化” 发挥到了淋漓尽致的程度。
6、非线性曲线拟合
(1) 导入Gaussian.dat数据文件,选中C(Y)列数据,将 其坐标属性改为C(yEr?)栏,选中B(Y)和C(yEr?)栏,选择 菜单命令[Plot]→[Symbol]→[Scatter],绘制散点图如下:
6、非线性曲线拟合
选择菜单命令[Analysis]→[Fitting]→[Nonlinear Curve Fit],打开[NLFit]对话框如下图
•设定级数为3
3、多项式拟合
点击“OK”后画出的拟合曲线事下图,从图中可以看 出,拟合曲线与数 据点吻合的非常好, 而且它的相关系数 也很好,达到了 0.99767。
3、多项式拟合
因此,这组数据的变化规律可以用一元三次多项式来描述:
3、多项式拟合
如果把拟合多项式的级数进一步增大,比如增大到6, 拟合结果又会是怎样的呢?请同学们自己立刻拟合一次!
5、指数拟合
可以看出,拟 合曲线与散点 变化规律非常 吻合
5、指数拟合
6、非线性曲线拟合
非线性曲线拟合(Nonlinear Curve Fit , NLFit)是Origin 所提供的功能最强大、使用也最复杂的数据拟合工具。有 多达200多个数据表达式,用于曲线拟合函数,这些数学表 达式选自不同的学科领域的数据模型,能满足绝大多数科 技工程中的曲线拟合需求。Origin的非线性曲线拟合是通 过[NLFit]对话框实现的。下面以Samples\Curve Fitting\Gaussian.dat数据进行非线性曲线拟合演示。
曲线拟合数值方法的介绍与其在试验数据分析中的应用

题目:曲线拟合数值方法简介与其在实验数据分析中的应用学院化工学院专业工业催化年级2014级博姓名赵娜2015年6月9日曲线拟合数值方法的简介与其在实验数据分析中的应用一.简介我的专业研究方向为工业催化,听上去和数学毫不沾边,但在大量的数据处理中,我们必须应用到各种数据处理方法,数据拟合分析就是其中之一。
曲线拟合有多种方法,下面我们来简单介绍一下。
首先介绍下曲线拟合的定义:曲线拟合是用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之问的函数关系的一种数据处理方法。
即在一定意义下“最佳”地逼近或拟合已知数据。
二.拟合方法简述曲线拟合的方法有很多种,各有各的优势。
再此我将简单介绍最小二乘法、移动最小二乘法、NURBS三次曲线拟合和基于RBF曲线拟合四种曲线拟合方法。
1.最小二乘法最小二乘法是一种早期的曲线拟合方法,主要利用最小化误差的平方和来寻找数据的最佳函数匹配。
该方法求出数据点到拟合函数的距离和最小,且最小二乘法的拟合函数可以是一元二次,也可一元多次,多元多次。
2.移动最小二乘法移动最小二乘法是对最小二乘法进行的改进优化得到的,通过引入紧支概念,选取适合的权函数,算出拟合函数来替代最小二乘法中的拟合函数,以得到更高的拟合精度及更好的拟合光滑度。
3.NURBS三次曲线拟合NURBS作为定义工业产品几何形状的唯一数学方法,是现代图形学的基础,因此NURBS曲线拟合有着重要的实际意义,利用OpenGL 的NURBS曲线拟合函数,即可得到NURBS曲线。
4.基于RBF的曲线拟合径向神经网络是以径向基函数(RBF)作为隐单元的“基”,构成隐含层空间,隐含层对输入矢量进行变换将低维的模式输入数据变换到高维空间内,使得在低维空间内的线性不可分问题在高维空间内线性可分。
这是一种数学分析方法,具有较快的收敛速度、强大的抗噪和修复能力。
三.数据处理中的应用如上图所示,此为催化剂活性的动力学示意图,在实验中记录不同条件下的各个点,最后采用曲线拟合的方法得到动力学曲线,并且使得实验误差最小。
物理实验技术中的实验数据处理与曲线拟合方法

物理实验技术中的实验数据处理与曲线拟合方法实验数据处理和曲线拟合方法在物理实验中起着至关重要的作用。
通过对实验数据的处理和曲线拟合,我们可以更好地理解实验现象、验证理论模型以及得出精确的实验结果。
本文将探讨物理实验技术中的实验数据处理与曲线拟合方法。
在物理实验中,实验数据处理的第一步是数据整理和转化。
在实验过程中,我们通常会使用各种仪器和设备来测量和记录数据,如示波器、电压表、温度计等。
这些仪器所得到的数据通常需要进行数据清洗和整理,去除噪声和异常值,以提高数据的准确性和可靠性。
同时,为了方便后续的处理和分析,我们还需要对数据进行转化和标准化,如将温度数据转化为摄氏度、将时间数据转化为秒等。
一种常用的实验数据处理方法是统计分析。
统计分析可以帮助我们更好地理解数据的分布特征和规律性,并从中得到有意义的结论。
常见的统计分析方法包括均值、标准差、相关系数等。
通过这些统计指标,我们可以了解数据的集中趋势、离散程度以及变量之间的关系。
如果实验数据符合正态分布,我们还可以应用概率论和数理统计的方法,推导出更精确的物理模型或结论。
除了统计分析外,曲线拟合也是实验数据处理的一种重要方法。
曲线拟合是将已知的实验数据与已知的函数形式进行比较,并通过拟合求取最佳的拟合参数。
常见的曲线拟合方法包括最小二乘法、最大似然估计等。
在物理实验中,我们经常遇到需要将实验数据拟合为直线、二次曲线、指数曲线等情况。
通过曲线拟合,我们可以得到实验数据的数学表达式,进而对实验结果做出更深入的分析和解释。
实验数据处理和曲线拟合尤其在物理实验的结果分析中扮演重要角色。
通过对实验数据的处理和分析,我们可以验证理论模型的准确性,并从中得出实验结果的科学解释。
例如,在电学实验中,通过对电压和电流数据的处理和曲线拟合,我们可以推导出电阻的数值以及电路中其他元器件的特性。
在力学实验中,通过对质点运动轨迹数据的处理和曲线拟合,我们可以得到质点的加速度和力的大小等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验数据与曲线拟合1. 曲线拟合1. 曲线拟合的定义2. 简单线性数据拟合的例子2. 最小二乘法曲线拟合1. 最小二乘法原理2. 高斯消元法求解方程组3. 最小二乘法解决速度与加速度实验3. 三次样条曲线拟合1. 插值函数2. 样条函数的定义3. 边界条件4. 推导三次样条函数5. 追赶法求解方程组6. 三次样条曲线拟合算法实现7. 三次样条曲线拟合的效果4. 12.1 曲线拟合5. 12.1.1 曲线拟合的定义6. 曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐标之间的函数关系,是一种用解析表达式逼近离散数据的方法。
曲线拟合通俗的说法就是“拉曲线”,也就是将现有数据透过数学方法来代入一条数学方程式的表示方法。
科学和工程遇到的很多问题,往往只能通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,如果能够找到一个连续的函数(也就是曲线)或者更加密集的离散方程,使得实验数据与方程的曲线能够在最大程度上近似吻合,就可以根据曲线方程对数据进行数学计算,对实验结果进行理论分析,甚至对某些不具备测量条件的位置的结果进行估算。
7. 12.1.2 简单线性数据拟合的例子8. 回想一下中学物理课的“速度与加速度”实验:假设某物体正在做加速运动,加速度未知,某实验人员从时间t0 = 3秒时刻开始,以1秒时间间隔对这个物体连续进行了12次测速,得到一组速度和时间的离散数据,请根据实验结果推算该物体的加速度。
9. 表 12 – 1 物体速度和时间的测量关系表10. 在选择了合适的坐标刻度之后,我们就可以在坐标纸上画出这些点。
如图12–1所示,排除偏差明显偏大的测量值后,可以看出测量结果呈现典型的线性特征。
沿着该线性特征画一条直线,使尽量多的测量点能够位于直线上,或与直线的偏差尽量小,这条直线就是我们根据测量结果拟合的速度与时间的函数关系。
最后在坐标纸上测量出直线的斜率K,K就是被测物体的加速度,经过测量,我们实验测到的物体加速度值是1.48米/秒2。
11.12. 图 12 – 1 实验法测量加速度的过程13.14. 12.2 最小二乘法曲线拟合15. 使用数学分析进行曲线拟合有很多常用的方法,这一节我们先介绍一下最简单的最小二乘法,并给出使用最小二乘法解决上一节给出的速度与加速度实验问题。
16.17. 12.2.1 最小二乘法原理18. 最小二乘法(又称最小平方法)通过最小化误差的平方和寻找数据的最佳函数匹配,利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,当然,做为一种插值方法使用时,最小二乘法也可以用于曲线拟合。
使用最小二乘法进行曲线拟合是曲线拟合种早期的一种常用方法,不过,最小二乘法理论简单,计算量小,即便是在使用三次样条曲线或RBF(Radial Basis Function)进行曲线拟合大行其道的今天,最小二乘法在多项式曲线或直线的拟合问题上,仍然得到广泛地应用。
使用最小二乘法,选取的匹配函数的模式非常重要,如果离散数据呈现的是指数变化规律,则应该选择指数形式的匹配函数模式,如果是多项式变化规律,则应该选择多项式匹配模式,如果选择的模式不对,拟合的效果就会很差,这也是使用最小二乘法进行曲线拟合时需要特别注意的一个地方。
19. 下面以多项式模式为例,介绍一下使用最小二乘法进行曲线拟合的完整步骤。
假设选择的拟合多项式模式是:20.21. 这m个等式相当于m个方程,a0,a1,…a m是m个未知量,因此这m个方程组成的方程组是可解的,最小二乘法的第二步处理就是将其整理为针对a0,a1,…a m的正规方程组。
最终整理的方程组如下:22.23. 最小二乘法的第三步处理就是求解这个多元一次方程组,得到多项式的系数a0,a1,…a m,,就可以得到曲线的拟合多项式函数。
求解多元一次方程组的方法很多,高斯消元法是最常用的一种方法,下一节就简单介绍一下最小二乘算法实现所用的高斯消元法算法。
24. 12.2.2 高斯消元法求解方程组25. 在数学上,高斯消元法是线性代数中的一个算法,可用来求解多元一次线性方程组,也可以用来求矩阵的秩,以及求可逆方阵的逆矩阵。
高斯消元法虽然以数学家高斯的名字命名,但是最早出现在文献资料中应该是中国的《九章算术》。
26. 高斯消元法的主要思想是通过对系数矩阵进行行变换,将方程组的系数矩阵由对称矩阵变为三角矩阵,从而达到消元的目的,最后通过回代逐个获得方程组的解。
在消元的过程中,如果某一行的对角线元素的值太小,在计算过程中就会出现很大的数除以很小的数的情况,有除法溢出的可能,因此在消元的过程中,通常都会增加一个主元选择的步骤,通过行交换操作,将当前列绝对值最大的行交换到当前行位置,避免了除法溢出问题,增加了算法的稳定性。
27. 高斯消元法算法实现简单,主要有两个步骤组成,第一个步骤就是通过选择主元,逐行消元,最终行程方程组系数矩阵的三角矩阵形式,第二个步骤就是逐步回代的过程,最终矩阵的对角线上的元素就是方程组的解。
下面就给出高斯消元法的一个算法实现:76/*带列主元的高斯消去法解方程组,最后的解在matrixA的对角线上*/77bool GuassEquation::Resolve(std::vector<double>& xValue)78{79 assert(xValue.size()== m_DIM);8081/*消元,得到上三角阵*/82for(int i =0; i < m_DIM -1; i++)83{84/*按列选主元*/85int pivotRow = SelectPivotalElement(i);86if(pivotRow != i)/*如果有必要,交换行*/87{88 SwapRow(i, pivotRow);89}90if(IsPrecisionZero(m_matrixA[i * m_DIM + i]))/*主元是0? 不存在唯一解*/91{92return false;93}94/*对系数归一化处理,使行第一个系数是1.0*/95 SimplePivotalRow(i, i);96/*逐行进行消元*/97for(int j = i +1; j < m_DIM; j++)98{99 RowElimination(i, j, i);100}101}102/*回代求解*/103 m_matrixA[(m_DIM -1)* m_DIM + m_DIM -1]= m_bVal[m_DIM -1]/m_matrixA[(m_D IM -1)* m_DIM + m_DIM -1];104for(int i = m_DIM -2; i >=0; i--)105{106double totalCof =0.0;107for(int j = i +1; j < m_DIM; j++)108{109 totalCof += m_matrixA[i * m_DIM + j]* m_matrixA[j * m_DIM + j];110}111 m_matrixA[i * m_DIM + i]=(m_bVal[i]- totalCof)/ m_matrixA[i * m_DIM+ i ];112}113114/*将对角线元素的解逐个存入解向量*/115for(int i =0; i < m_DIM; i++)116{117 xValue[i]= m_matrixA[i * m_DIM + i];118}119120return true;121}28.29. GuassEquation::Resolve()函数中m_matrixA是以一维数组形式存放的系数矩阵,m_DIM是矩阵的维数,SelectPivotalElement()函数从系数矩阵的第i列中选择绝对值最大的那个值所在的行,并返回行号,SwapRow()函数负责交换系数矩阵两个行的所有值,SimplePivotalRow()函数是归一化处理函数,通过除法操作将指定的行的对角线元素变换为1.0,以便简化随后的消元操作。
30. 12.2.3 最小二乘法解决“速度与加速度”实验31. 根据12.2.1节对最小二乘法原理的分析,用程序实现最小二乘法曲线拟合的算法主要由两个步骤组成,第一个步骤就是根据给出的测量值生成关于拟合多项式系数的方程组,第二个步骤就是解这个方程组,求出拟合多项式的各个系数。
根据对上文最终整理的正规方程组的分析,可以看出其系数有一定的关系,就是每一个方程式都比前一个方程式多乘了一个x i。
因此,只需要完整计算出第一个方程式的系数,其他方程式的系数只是将前一个方程式的系数依次左移一位,然后单独计算出最后一个系数就可以了,此方法可以减少很多无谓的计算。
求解多元一次方程组的方法就使用12.2.2节介绍的高斯消元法,其算法上一节已经给出。
32. 这里给出一个最小二乘算法的完整实现,以12.1.2节的数据为例,因为数据结果明显呈现线性方程的特征,因此选择拟合多项式为v = v0 + at,v0和a就是要求解的拟合多项式系数。
99bool LeastSquare(const std::vector<double>& x_value,const std::vector<double>&y_v alue,100int M, std::vector<double>& a_value)101{102 assert(x_value.size()== y_value.size());103 assert(a_value.size()== M);104105double*matrix =new double[M * M];106double*b=new double[M];107108 std::vector<double> x_m(x_value.size(),1.0);109 std::vector<double> y_i(y_value.size(),0.0);110for(int i =0; i < M; i++)111{112 matrix[ARR_INDEX(0, i, M)]= std::accumulate(x_m.begin(), x_m.end(),0.0); 113for(int j =0; j <static_cast<int>(y_value.size()); j++)114{115 y_i[j]= x_m[j]* y_value[j];116}117 b[i]= std::accumulate(y_i.begin(), y_i.end(),0.0);118for(int k =0; k <static_cast<int>(x_m.size()); k++)119{120 x_m[k]*= x_value[k];121}122}123for(int row =1; row < M; row++)124{125for(int i =0; i < M -1; i++)126{127 matrix[ARR_INDEX(row, i, M)]= matrix[ARR_INDEX(row -1, i +1,M)]; 128}129 matrix[ARR_INDEX(row, M -1, M)]= std::accumulate(x_m.begin(),x_m.end(), 0.0);130for(int k =0; k <static_cast<int>(x_m.size()); k++)131{132 x_m[k]*= x_value[k];133}134}135136 GuassEquation equation(M, matrix, b);137delete[] matrix;138delete[] b;139140return equation.Resolve(a_value);141}33. 将表12-1的数据带入算法,计算得到v0 = 4.05545455,a = 1.48818182,比作图法得到的结果更精确。