道尔顿分压定律

合集下载

道尔顿分压定律及亨利定律

道尔顿分压定律及亨利定律

道尔顿分压定律(也称道尔顿定律)描述的是理想气体的特性。

这一经验定律是在1 801年由约翰·道尔顿所观察得到的。

在任何容器内的气体混合物中,如果各组分之间不发生化学反应,则每一种气体都均匀地分布在整个容器内,它所产生的压强和它单独占有整个容器时所产生的压强相同[1]。

也就是说,一定量的气体在一定容积的容器中的压强仅与温度有关。

例如,零摄氏度时,1mol 氧气在体积内的压强是。

如果向容器内加入 1mol 氮气并保持容器体积不变,则氧气的压强还是,但容器内的总压强增大一倍。

可见, 1mol 氮气在这种状态下产生的压强也是。

道尔顿[2](Dalton)总结了这些实验事实,得出下列结论:某一气体在气体混合物中产生的分压等于在相同温度下它单独占有整个容器时所产生的压力;而气体混合物的总压强等于其中各气体分压之和,这就是气体分压定律(law of partial pres sure)。

需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。

当压力很高时,分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间距离使得分子间作用力增强,从而会改变各组分的分压力。

这两点在道尔顿定律中并没有体现。

§拉乌尔定律和亨利定律--溶液的蒸气压力我们知道,液体可以蒸发成气体,气体也可以凝结为液体。

在一定的温度下,二者可以达成平衡,即液体的蒸发速度等于蒸气的凝结速度。

达到这种平衡时,蒸气有一定的压力,这个压力就叫做此液体的饱和蒸气压(简称蒸气压)。

蒸气压与温度有关,温度越高,分子具有的动能越大,蒸发速度越快,因而蒸气压越大。

溶液的蒸气压除与温度有关外,还与浓度有关。

拉乌尔定律和亨利定律所描述的就是溶液蒸气压和浓度之间的关系。

拉乌尔定律1887年法国物理学家拉乌尔(Raoult)在溶液蒸气压实验中总结出著名的拉乌尔定律。

拉乌尔定律指出:如果溶质是不挥发性的,即它的蒸气压极小,与溶剂相比可以忽略不计,则在一定的温度下,稀溶液的蒸气压等于纯溶剂的蒸气压与其克分子分数的乘积。

道尔顿分压定律及亨利定律

道尔顿分压定律及亨利定律

道尔顿分压定律(也称道尔顿定律)描述的是理想气体的特性。

这一经验定律是在1801年由约翰·道尔顿所观察得到的。

在任何容器内的气体混合物中,如果各组分之间不发生化学反应,则每一种气体都均匀地分布在整个容器内,它所产生的压强和它单独占有整个容器时所产生的压强相同[1]。

也就是说,一定量的气体在一定容积的容器中的压强仅与温度有关。

例如,零摄氏度时,1mol 氧气在22.4L 体积内的压强是101.3kPa 。

如果向容器内加入1mol 氮气并保持容器体积不变,则氧气的压强还是101.3kPa,但容器内的总压强增大一倍。

可见,1mol 氮气在这种状态下产生的压强也是101.3kPa 。

道尔顿[2](Dalton)总结了这些实验事实,得出下列结论:某一气体在气体混合物中产生的分压等于在相同温度下它单独占有整个容器时所产生的压力;而气体混合物的总压强等于其中各气体分压之和,这就是气体分压定律(law of partial pressure)。

需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。

当压力很高时,分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间距离使得分子间作用力增强,从而会改变各组分的分压力。

这两点在道尔顿定律中并没有体现。

§3.3 拉乌尔定律和亨利定律--溶液的蒸气压力我们知道,液体可以蒸发成气体,气体也可以凝结为液体。

在一定的温度下,二者可以达成平衡,即液体的蒸发速度等于蒸气的凝结速度。

达到这种平衡时,蒸气有一定的压力,这个压力就叫做此液体的饱和蒸气压(简称蒸气压)。

蒸气压与温度有关,温度越高,分子具有的动能越大,蒸发速度越快,因而蒸气压越大。

溶液的蒸气压除与温度有关外,还与浓度有关。

拉乌尔定律和亨利定律所描述的就是溶液蒸气压和浓度之间的关系。

3.3.1 拉乌尔定律1887年法国物理学家拉乌尔(Raoult)在溶液蒸气压实验中总结出著名的拉乌尔定律。

道尔顿分压定律及亨利定律经典.docx

道尔顿分压定律及亨利定律经典.docx

道尔顿分压定律(也称道尔顿定律)描述的是理想气体的特性。

这一经验定律是在1801年由约翰·道尔顿所观察得到的。

在任何容器内的气体混合物中,如果各组分之间不发生化学反应,则每一种气体都均匀地分布在整个容器内,它所产生的压强和它单独占有整个容器时所产生的压强相同[1]。

也就是说,一定量的气体在一定容积的容器中的压强仅与温度有关。

例如,零摄氏度时,1mol 氧气在22.4L 体积内的压强是101.3kPa 。

如果向容器内加入1mol 氮气并保持容器体积不变,则氧气的压强还是101.3kPa,但容器内的总压强增大一倍。

可见,1mol 氮气在这种状态下产生的压强也是101.3kPa 。

道尔顿[2](Dalton)总结了这些实验事实,得出下列结论:某一气体在气体混合物中产生的分压等于在相同温度下它单独占有整个容器时所产生的压力;而气体混合物的总压强等于其中各气体分压之和,这就是气体分压定律(law of partial pressure)。

需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。

当压力很高时,分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间距离使得分子间作用力增强,从而会改变各组分的分压力。

这两点在道尔顿定律中并没有体现。

§3.3 拉乌尔定律和亨利定律--溶液的蒸气压力我们知道,液体可以蒸发成气体,气体也可以凝结为液体。

在一定的温度下,二者可以达成平衡,即液体的蒸发速度等于蒸气的凝结速度。

达到这种平衡时,蒸气有一定的压力,这个压力就叫做此液体的饱和蒸气压(简称蒸气压)。

蒸气压与温度有关,温度越高,分子具有的动能越大,蒸发速度越快,因而蒸气压越大。

溶液的蒸气压除与温度有关外,还与浓度有关。

拉乌尔定律和亨利定律所描述的就是溶液蒸气压和浓度之间的关系。

3.3.1 拉乌尔定律1887年法国物理学家拉乌尔(Raoult)在溶液蒸气压实验中总结出著名的拉乌尔定律。

气体分压原理

气体分压原理

气体分压原理
气体分压原理,也称为道尔顿定律,是描述混合气体中各个气体分子压力之间关系的基本原则。

根据这个原理,在一个封闭的容器中,各个气体分子的压力不受其他气体分子的影响而保持独立。

根据气体分压原理,混合气体中每种气体分子所产生的压力与其在混合气体中所占的分子数成正比。

换句话说,每种气体分子对总压力的贡献与其在混合气体中的摩尔分数成正比。

具体地说,设混合气体中含有n种气体分子,每种气体分子的压力分别为P1,P2,...,Pn,摩尔分数为x1,x2,...,xn。

根据气体分压原理,可以得到如下关系:
P1 = x1 ×总压力
P2 = x2 ×总压力
...
Pn = xn ×总压力
其中,总压力为所有气体分子的压力之和。

根据气体分压原理,可以通过测量混合气体中各个气体成分的压力,以及计算各个气体分子的摩尔分数,来确定混合气体中各个气体成分的含量。

总之,气体分压原理是描述混合气体中各个气体分子压力之间
关系的基本原则,根据这个原理可以计算混合气体中各个气体成分的摩尔分数。

1.2理想气体混合物的分压定律与分体积定律

1.2理想气体混合物的分压定律与分体积定律

气体的pVT pVT性质 第一章 气体的pVT性质 分压力的定义是国际纯粹及应用化学联合会(IUPAC) 推荐的式 从上式中不难得出如下结论:混合气体的总压力等于混合 气体中各组分气体在与混合气体具有相同温度和相同体积条件 下单独存在时所产生的压力之和。这就是道尔顿分压定律。分 压定律只适用于理想气体混合物。理想气体分子之间没有相互 作用力,因而其中的每一种气体都不会由于其他气体的存在而 受到影响。 也就是说,每一种组分气体都是独立起作用的,对总压力 的贡献和它单独存在时的压力相同。对于真实气体,分子之间 有作用力,且在混合气体中的相互作用力与纯气体不同,于是 各组分气体的压力不等于它单独存在时的压力,即分压定律不 能成立。在低压下的真实气体混合物近似服从道尔顿分压定律。 例题解析
气体的pVT pVT性质 第一章 气体的pVT性质 设温度为T、压力为p的容器中,装有理想气体混合物, 混合气体的总体积为V,物质的量为n,则
将此式代入,得 因为 所以 上式右端nBRT/p的物理意义是,物质的量为nB的 理想气体B在温度为T、压力为p时所具有的体积。
气体的pVT pVT性质 第一章 气体的pVT性质 于是上式告诉我们:在理想气体混合物中,某组分气 体的体积等于在相同温度T和相同压力p时该气体单独存在 时所占有的体积。结合式 亦可得出如下结论:混合气体的总体积等于混合气体中各 组分气体在与混合气体具有相同温度和相同压力条件下单 独存在时所占有的体积之和。这就是阿马格分体积定律。 分体积定律同样只适用于理想气体混合物,对于真实气体, 其各组分的体积不等于它单独存在时所占有的体积,当然 分体积定律不能成立。在低压下的真实气体混合物近似服 从阿马格分体积定律。 例题解析
气体的pVT pVT性质 第一章 气体的pVT性质

(完整版)2分压定律和分体积定律

(完整版)2分压定律和分体积定律

2008---2009学年第二学期第1周第1页(共5页)第二节理想气体混合物的两个定律复习回忆:1、理想气体状态方程的数学表达式;2 、理想气体微观模型的特征。

讲授新课:一、分压定律1、基本概念(1)道尔顿分压定律:低压下气体混合物的总压等于组成该气体混合物的各组分的分压力之和,这个定律称为道尔顿分压定律。

(2)分压力:所谓分压力是指气体混合物中任一组分B单独存在于气体混合物所处的温度、体积条件下所产生的压力P B。

2、道尔顿分压定律的数学表达式P(T,V) P A仃,V) P B仃,V) L或p P B(1-4)B对于理想气体混合物,在T、V 一定条件下,压力只与气体物质的量有关,根据理想气体状态方程,有PV ,n 门人n B n c LRTP A V P B V P c V LRT RT RT(P A P B P c L)V / RT故有P (P A P B P c L )或P P BB适用范围:理想气体混合物或接近于理想气体性质的气体混合物。

3、气体物质的量分数与分压力的关系气体混合物中组分B的分压力与总压力之比可用理想气体状态方程得出P B n B RT /V n By BP nRT/V n即P B y B P (1-5)式中yB ――组分B的物质的量分数式(1-5 )表明,混合气体中任一组分的分压等于该组分的物质的量分数与总压的乘积。

例题1-3某烃类混合气体的压力为100kPa,其中水蒸气的分压为20 kPa,求每100mol2008---2009学年第二学期第1周第2页(共5页)该混合气体中所含水蒸气的质量。

解:p=100kPa , p(H2O)=20kPa , n=100mol , M (H2O)=18 x10-3kg/molB2008---2009学年 第二学期 第1周第3页(共5页)y(H 2。

)営而。

2n(H 2。

) y(H 2O)n 0.2 100 20mol100mol 混合气体中水蒸气的质量 m (H 2。

道尔顿分压定律及亨利定律

道尔顿分压定律及亨利定律

道尔顿分压定律(也称道尔顿定律)描述的是理想气体的特性。

这一经验定律是在1 801年由约翰·道尔顿所观察得到的。

在任何容器内的气体混合物中,如果各组分之间不发生化学反应,则每一种气体都均匀地分布在整个容器内,它所产生的压强和它单独占有整个容器时所产生的压强相同[1]。

也就是说,一定量的气体在一定容积的容器中的压强仅与温度有关。

例如,零摄氏度时,1mol 氧气在22.4L 体积内的压强是101.3kPa 。

如果向容器内加入1mol 氮气并保持容器体积不变,则氧气的压强还是101.3kPa,但容器内的总压强增大一倍。

可见,1mol 氮气在这种状态下产生的压强也是101.3kPa 。

道尔顿[2](Dalton)总结了这些实验事实,得出下列结论:某一气体在气体混合物中产生的分压等于在相同温度下它单独占有整个容器时所产生的压力;而气体混合物的总压强等于其中各气体分压之和,这就是气体分压定律(law of partial pressure)。

需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。

当压力很高时,分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间距离使得分子间作用力增强,从而会改变各组分的分压力。

这两点在道尔顿定律中并没有体现。

§3.3 拉乌尔定律和亨利定律--溶液的蒸气压力我们知道,液体可以蒸发成气体,气体也可以凝结为液体。

在一定的温度下,二者可以达成平衡,即液体的蒸发速度等于蒸气的凝结速度。

达到这种平衡时,蒸气有一定的压力,这个压力就叫做此液体的饱和蒸气压(简称蒸气压)。

蒸气压与温度有关,温度越高,分子具有的动能越大,蒸发速度越快,因而蒸气压越大。

溶液的蒸气压除与温度有关外,还与浓度有关。

拉乌尔定律和亨利定律所描述的就是溶液蒸气压和浓度之间的关系。

3.3.1 拉乌尔定律1887年法国物理学家拉乌尔(Raoult)在溶液蒸气压实验中总结出著名的拉乌尔定律。

道尔顿分压定律在热学中的应用

道尔顿分压定律在热学中的应用

道尔顿分压定律在热学中的应用-概述说明以及解释1.引言1.1 概述道尔顿分压定律是指在混合气体系统中,每种气体的分压等于该气体在混合气体中所占的体积比例与总压强的乘积。

它是由英国化学家约翰·道尔顿提出的气体定律之一,被广泛应用于热学领域。

该定律的基本原理是基于理想气体分子运动论的假设,假设气体分子之间无相互作用和体积,且分子速度服从麦克斯韦速度分布定律。

根据这个假设,道尔顿分压定律得出的结果可以近似地描述气体的行为。

在应用场景中,道尔顿分压定律常被用于混合气体的计算和分析。

例如,在化学反应过程中,混合气体的压强和分子的速度对于反应的进行起着重要作用。

通过使用道尔顿分压定律,可以计算出每种气体在混合气体中的分压,从而确定反应的方向和速率。

道尔顿分压定律在热学中也有广泛的应用。

在热力学研究中,研究气体的温度、压力和体积之间的关系非常重要。

通过运用道尔顿分压定律,可以分析和计算不同气体在给定条件下的温度、压力和体积的变化规律,从而推导出热力学方程,并进一步研究热力学系统的特性和行为。

然而,道尔顿分压定律也有其局限性。

它在假设气体分子之间无相互作用和体积的基础上,仅适用于理想气体的近似描述。

在高压或低温的条件下,气体分子之间的相互作用和体积不能忽略,道尔顿分压定律的适用性会受到限制。

总之,道尔顿分压定律是热学领域中一个重要的工具和理论基础。

它为我们理解和研究气体的特性和行为提供了一种简便的方法。

然而,在应用和推广该定律时,需要考虑其假设条件和局限性,以获得准确和可靠的结果。

1.2文章结构文章结构的部分内容可以如下编写:2. 正文2.1 道尔顿分压定律的基本原理2.2 道尔顿分压定律的应用场景2.3 道尔顿分压定律在热学中的应用2.4 道尔顿分压定律的局限性在本文的正文部分,我们将首先介绍道尔顿分压定律的基本原理,包括该定律的主要概念和数学表达方式。

接着,我们将探讨道尔顿分压定律在实际应用中的场景,例如化学反应、气体混合和气体溶解等领域,以展示其广泛的适用性和实用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

道尔顿分压定律
科技名词定义
中文名称:道尔顿分压定律
英文名称:Dalton law of additive pressure
定义:理想气体混合物的总压力为各组元气体分压力之和。

所属学科:电力(一级学科);通论(二级学科)
本内容由全国科学技术名词审定委员会审定公布
描述的是理想气体的特性。

这一经验定律是在1801年由约翰·道尔顿所观察得到的。

在任何容器内的气体混合物中,如果各组分之间不发生化学反应,则每一种气体都均匀地分布在整个容器内,它所产生的压强和它单独占有整个容器时所产生的压强相同。

目录
编辑本段简介
道尔顿分压定律(也称道尔顿定律)描述的是理想气体的特性。

这一经验定律是在1801年由约翰·道尔顿所观察得到的。

在任何容器内的气体混合物中,如果各组分之间不发生化学反应,则每一种气体都均匀地分布在整个容器内,它所产生的压强和它单独占有整个容器时所产生的压强相同[1]。

也就是说,一定量的气体在一定容积的容器中的压强仅与温度有关。

例如,零摄氏度时,1mol 氧气在 22.4L 体积内的压强是 101.3kPa 。

如果向容器内加入 1mol 氮气并保持容器体积不变,则氧气的压强还是101.3kPa,但容器内的总压强增大一倍。

可见, 1mol 氮气在这种状态下产生的压强也是 101.3kPa 。

道尔顿[2](Dalton)总结了这些实验事实,得出下列结论:某一气体在气体混合物中产生的分压等于在相同温度下它单独占有整个容器时所产生的压力;而气体混合物的总压强等于其中各气体分压之和,这就是气体分压定律(law of partial pressure)。

需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。

当压力很高时,分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间距离使得分子间作用力增强,从而会改变各组分的分压力。

这两点在道尔顿定律中并没有体现。

编辑本段人物
英国科学家约翰·道尔顿在19世纪初把原子假说引入了科学主流。

他所提供的关键的学说,使化学领域自那时以来有了巨大的进展。

编辑本段相关学说
确切地说,并不是道尔顿首先提出所有的物质都是由极其微小的、不可毁坏的粒子──人称原子组成的。

这个概念是由古希腊哲学家德漠克利特提出来的,甚至在他以前可能就有人提出过。

另一位希腊哲学家伊壁鸠鲁(公元前342—270年?)采用了这一假说。

罗马作家留克利希阿斯(公元前99?-55年)在他的著名诗歌《论事物的本质》中对这一假说做了生动形象的介绍。

德谟克利特的学说未被亚里士多德接受,在中世纪受到了忽视,对现代科学没有什么影响。

但是17世纪有几个包括艾萨克·牛顿在内的主要科学家支持过类似的学说。

不过早期的原子学说都没有定量表达,也没有用于科学研究,最根本的是谁也没有看到哲学的假想和化学的严酷事实之间存在的联系。

这就是道尔顿的贡献所在。

他提出了一个明了的定量学说,可以用来解释化学实验,并经受住了实验室的精确检验。

虽然道尔顿的术语与我们现在使用的稍有不同,但是却清楚地表述了原子、分子、元素等概念。

他明确指出;虽然世界上原子的总数目相当之大,但是不同原子种类的数目却是非常之小(他的原著中列出20种元素即20种原子,今天所知道的元素有一百多种)。

虽然不同种类的原子有不同的重量,但是道尔顿认为任何两个同类原子的所有性质包括重量都相同。

道尔顿在他的书中列出了一张各种不同类原子的相对重量表──有关这方面的第一张表,是定量原子学说的一个重要特征。

道尔顿还明确地指出,任何相同化合物的两个分子都是由相同原子组成的(例如,每个氧化亚氮都是由两个氮原子和一个氧原子组成的)。


此可推出一种已知的化合物──不管是由什么方法配制或在哪里发现的
──总含有相同的元素,而且这些元素之间的重量比完全一样。

这就是约瑟夫·路易斯·普劳特几年前在实验中发现的“定比定律”。

道尔顿的学说非常具有说服力,不到二十年的时间就为大多数科学家所采纳。

而且化学家按照书中所提出的方案行事:准确地确定出相对原子重量和每种分子的原子数;定量分析化合物。

当然这个方案已取得彻底的成功。

原子假说的重要性是不易被夸大的。

它是我们认识化学的主要学说,而且在很大程度上是现代物理学的一个不可缺少的序幕。

只是因为在道尔顿以前就有人经常讨论原子论,所以他在此册中的名次并不很高。

编辑本段人物历史
道尔顿于1766年出生在英格兰北方鹰田庄。

他只是在11岁以前受过正规教育,几乎完全是靠自学掌握了科学知识。

他才智早熟,12岁就当上了教师。

15岁迁往肯德尔城,26岁又迁到曼彻斯特,在那儿一直居住到1844年去世。

他终生未娶。

道尔顿在1787年26岁时对气象学发生了兴趣,六年后发表了一本有关气象学的书。

对空气和大气的研究又使他对一般气体的特征发生了兴趣。

通过一系列的实验,他发现了有关气体特性的两个重要定律。

第一个定律是道尔顿在1801年提出来的,该定律认为一种气体所占的体积与其温度成正比(一般称为查尔斯定律,是根据法国科学家查尔斯的名字命名的。

他比道尔顿早几年发现了这个定律,但未能把其成果发表出来)。

第二个定律是1801年提出来的,叫做道尔顿气体分压定律。

1804年道尔顿就已系统地提出了他的原子学说,并且编制了一张原子量表。

但是他的主要著作《化学哲学的新体系》直到1808年才问世,那是他的成功之作。

他在晚年获得了许多荣誉。

附带一提的是道尔顿患有色盲症。

这种病的症状引起了他的好奇心。

他开始研究这个课题,最终发表了一篇关于色盲的论文──曾经问世的第一篇有关色盲的论文。

相关文档
最新文档