山东省济南市2020届高三6月份模拟考试数学试题(图片版无答案)

合集下载

山东省济南市2020年6月高三模拟考试数学试题含答案

山东省济南市2020年6月高三模拟考试数学试题含答案

山东省济南市2020届高三6月份模拟考试数学试题本试卷共4页,22题,全卷满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名,考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 参考公式:锥体的体积公式:13V Sh =(其中S 为锥体的底面积,h 为锥体的高) ―、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}=12|M x x -<<,{|N x y ==,则=M N ⋂A .{}1|x x >-B .2|}0{x x ≤<C .{}2|0x x <<D .{12}x x |≤<2.函数()34=f x x x +-的零点所在的区间为A .()1,0-B .()0,1C .()1,2D .()2,33.已知命题1:,e 2exx p x ∀∈+≥R ,则p ⌝为 A .1,e 2e xxx ∃∈+≥R B .1,e 2e xx x ∃∈+<R C .1,e 2exx x ∃∈+≤R D .1,e 2exx x ∀∈+≤R 4.如图,在圆柱12O O 内有一个球O ,该球与圆柱的上,下底面及母线均相切.若12=2O O ,则圆柱12O O 的表面积为A .4πB .5πC .6πD .7π5.“平均增长量”是指一段时间内某一数据指标增长量的平均值,其计算方法是将每一期增长量相加后,除以期数,即()121nii i a a n -=--∑.国内生产总值(GDP )被公认为是衡量国家经济状况的最佳指标,下表是我国2015─2019年GDP 数据.根据表中数据,2015-2019年我国GDP 的平均增长量为 A .5.03万亿B .6.04万亿C .7.55万亿D .10.07万亿6.已知双曲线C 的方程为221169x y -=则下列说法错误的是 A .双曲线C 的实轴长为8 B .双曲线C 的渐近线方程为34y x =±C .双曲线C 的焦点到渐近线的距离为3D .双曲线C 上的点到焦点距离的最小值为947.已知水平直线上的某质点,每次等可能的向左或向右移动一个单位,则在第6次移动后,该质点恰好回到初始位置的概率是 A .14B .516C .38D .128.在ABC 中,cos c os A B +=AB =.当sin sin A B +取最大值时,ABC 内切圆的半径为A .3B .2C .13D .2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.已知复数1cos2sin 2()22z i ππθθθ=++-<<(其中i 为虚数单位),下列说法正确的是A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .||2cos z θ=D .1z 的实部为1210.台球运动已有五六百年的历史,参与者用球杆在台上击球.若和光线一样,台球在球台上碰到障碍物后也遵从反射定律.如图,有一张长方形球台ABCD ,2AB AD =,现从角落A 沿角α的方向把球打出去,球经2次碰撞球台内沿后进入角落C 的球袋中,则tan α的值为 A .16B .12C .1D .3211.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为线段1BC 上的动点,下列说法正确的是A .对任意点P ,//DP 平面11AB D B .三棱锥11P A DD -的体积为16C .线段DPD 存在点P ,使得DP 与平面11ADD A 所成角的大小为3π12.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>a .,则称{}n a 是间隔递增数列,k 是{}n a 的间隔数.下列说法正确的是 A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列 C .已知2(1)nn a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D .已知22020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<三、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,1)a =,(1,)b k =-,若()a b a +⊥,则k 的值为___________. 14.若5250125(2)(1)(1)(1)x a a x a x a x +=+++++++,则4a 的值为__________.15.已知1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,A ,B 是椭圆上关于x 轴对称的两点,2AF 的中点P 恰好落在y 轴上,若20BP AF ⋅=,则椭圆C 的离心率的值为________.16.已知函数()2ln f x x =,21()(0)2g x ax x a =-->.若直线2y x b =-与函数()y f x =,()y g x = 的图象均相切,则a 的值为________;若总存在直线与函数()y f x =,()y g x =的图象均相切,则a 的取值范围是________.(本小题第一空2分,第二空3分)四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,12AB AD BC ==,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90︒,形成如图所示的几何体,其中M 为CE 的中点.(1)求证:BMDF ⊥;(2)求异面直线BM 与EF 所成角的大小. 18.(12分)已知数列{}n a 的前n 项和为n S ,且21122n S n n =+. (1)求{}n a 的通项公式;(2)设2,,n n a n a n n b ⎧=⎨⎩奇数为偶数为,求数列{}n b 的前2n 项和2n T .19.(12分)已知函数()sin()(0,0)6f x A A πωω=+>>能同时满足下列三个条件中的两个:①函数()f x 的最大值为2; ②函数()f x的图象可由)4y x π=-的图象平移得到;③函数()f x 图象的相邻两条对称轴之间的距离为2π (1)请写出这两个条件序号,并求出()f x 的解析式; (2)求方程()10f x +=在区间[]π,π-上所有解的和. 20.(12分)法国数学家庞加莱是个喜欢吃面包的人,他每天都会购买一个面包.面包师声称自己出售的每个面包的平均质量是1000g ,上下浮动不超过50g .这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布.(1)假设面包师的说法是真实的,从面包师出售的面包中任取两个,记取出的两个面包中质量大于1000g 的个数为ξ,求ξ的分布列和数学期望;(2)作为一个善于思考的数学家,庞加莱每天都会将买来的面包称重并记录,25天后,得到数据如下表,经计算25个面包总质量为24468g .庞加莱购买的25个面包质量的统计数据(单位:g )尽管上述数据都落在()950,1050上,但庞加菜还是认为面包师撤谎,根据所附信息,从概率角度说明理由.附: ①若()2~,X Nμσ,从X 的取值中随机抽取25个数据,记这25个数据的平均值为Y ,则由统计学知识可知;随机变量2~(,)25Y N σμ;②若()2~,Nημσ,则0.68()26P μσημσ-<<+=,220.9()544P μσημσ-≤<+=, 330.9()974P p σημσ-<<+=;③通常把发生概率在0.05以下的事件称为小概率事件. 21.(12分)已知函数()ln()f x a x b =+-(1)若1a =,0b =,求()f x 的最大值; (2)当0b >时,讨论()f x 极值点的个数. 22.(12分)已知平面上一动点A 的坐标为2(2,2)t t -. (1)求点A 的轨迹E 的方程; (2)点B 在轨迹E 上,且纵坐标为2t. (i )证明直线AB 过定点,并求出定点坐标;(ii )分别以A ,B 为圆心作与直线2x =-相切的圆两圆公共弦的中点为H .在平面内是否存在定点P ,使得PH 为定值?若存在,求出点P 坐标;若不存在,请说明理由.数学参考答案及评分标准一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.三、填空题:本题共4小题,每小题5分,共20分.13.–1;14.4.5;15.3; 16.32,32a ≥(本小题第一空2分,第二空3分). 四、解答题:共70分解答应写出文字说明、证明过程或演算步骤. 17.【解析】(1)证明:【方法一】连接CE ,与BM 交于点N ,根据题意,该几何体为圆台的一部分,且CD 与EF 相交, 故C ,D ,F ,E 四点共面, 因为平面//ADF 平面BCE , 所以//CE DF , 因为M 为CE 的中点, 所以CBM EBM ∠=∠,所以N 为CE 中点,又BC BE =, 所以BN CE ⊥,即BM CE ⊥, 所以BMDF ⊥.【方法二】如图,以B 为坐标原点,BE ,BC ,BA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设1AB =,则1AD AF ==,2BC BE ==,所以()0,0,0B ,M ,()0,1,1D ,()1,0,1F ,所以(2,BM =,(1,1,0)DF =-,所以20BM DF ⋅==,所以BMDF ⊥.(2)【方法一】连接DB ,DN ,由(1)知,//DF EN 且DFEN =,所以四边形ENDF 为平行四边形, 所以//EF DN ,所以BND ∠为异面直线BM 与EF 所成的角,因为BD DN BN ===所以BND 为等边三角形,所以60BND ∠=,所以异面直线BM 与EF 所成角的大小是60︒. 【方法二】如图,以B 为坐标原点,BE ,BC ,BA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 设1AB =,则1AD AF ==,2BE =,所以()0,0,0B ,M ,()2,0,0E ,()1,0,1F ,所以(2,BM =,(1,0,1)EF =-所以1cos ,2||||BM EF BM EF BM EF ⋅<>===-.所以异面直线BM 与EF 所成角的大小是60︒.18.【解析】 (1)因为21122n S n n =+ 所以当1n =时,111a S ==. 当2n ≥时,2211111(1)(1)2222n n n a S S n n n n n -⎡⎤=-=+--+-=⎢⎥⎣⎦, 又1n =时符合上式, 所以n a n =.(2)因为,2,n n n n b n ⎧=⎨⎩为奇数为偶数,所以对任意的+k ∈N ,2121(21)(21)2k k b b k k +--=+--=,则{}21k b -是以1为首项,2为公差的等差数列;222222242k k k k b b ++==, 则{}2k b 是以4为首项,4为公比的等比数列. 所以()()2135212462n n n T b b b b b b b b -=+++++++++()2462(12321)2222n n =++++-+++++()414(121)214nn n -+-=+- 124433n n +=+-19.【解析】(1)函数()sin(6x f x A πω=+)满足的条件为①③;理由如下:由题意可知条件①②互相矛盾,故③为函数()sin()6f x A x πω=+满足的条件之一,由③可知,Tπ=,所以2ω=,故②不合题意,所以函数()sin()6f x A x πω=+满足的条件为①③;由①可知2A =, 所以()2sin(2)6f x x π=+(2)因为()10f x +=,所以1sin(2)62x π+=-, 所以22()66x k Z k πππ+=-+∈或722()66x k Z k πππ+=+∈, 即()6x k k ππ-+∈=Z 或()2x k k ππ+∈=Z又因为],[x ππ∈-,所以x 的取值为6π-,56π,2π-,2π, 所以方程()10f x +=在区间[],ππ-上所有解的和为23π. 20.【解析】(1)由题意知,ξ的所有可能取值为0,1,2.0022111(0)()()224P C ξ===;12111(1)222P C ξ==⨯⨯=;2202111(2)()()224P C ξ===.所以ξ的分布列为:所以1110121424E ξ=⨯+⨯+⨯=.(个) (2)记面包师制作的每个面包的质量为随机变量X .假设面包师没有撒谎,则2~(1000,50)X N . 根据附①,从X 的取值中随机抽取25个数据,记这25个数据的平均值为Y , 则2~(1000,10)Y N . 庞加莱记录的25个面包质量,相当于从X 的取值中随机抽取了25个数据, 这25个数据的平均值为24468978.72100021098025Y ==<-⨯=, 由附②数据知,10.9544(980)0.02280.052P Y -<==<, 由附③知,事件“980Y <”为小概率事件,所以“假设面包师没有撒谎”有误,所以庞加莱认为面包师撒谎.21.【解析】(1)当1a =,0b =时,l (n )f x x =-此时,函数()f x 定义域为(0,)+∞,1()f x x '=-=,. 由()0f x '>得:04x <<;由()0f x '<得:4x >,所以()f x 在()0,4上单调递增,在(4,)+∞上单调递减.所以max ()(4)2ln 22f x f ==-.(2)当0b >时,函数()f x 定义域为[0,)+∞,()a f x xb '==+, ①当0a ≤时,()0f x '<对任意的,()0x ∈+∞恒成立, 所以此时()f x 极值点的个数为0个;②当0a >时,设()2h x x b =-+,(i )当2440a b -≤,即0a <≤()0f x '≤对任意的,()0x ∈+∞恒成立,即()f x '在(0,)+∞上无变号零点,所以此时()f x 极值点的个数为0个;(ⅱ)当3440a b ->,即a >记方程()0h x =的两根分别为1x ,2x ,则120x x a +=>,120x x b =>,所以1x ,2x 都大于0,即()f x '在(0,)+∞上有2个变号零点,所以此时()f x 极值点的个数为2个.综上所述a ≤()f x 极值点的个数为0个;a >()f x 极值点的个数为2个.22.【解析】(1)设动点A 的坐标为(),x y ,因为A 的坐标为2(2,2)t t -, 所以222x t y t⎧=⎨=-⎩,消去参数t 得:22y x =;(2)(i )因为点B 在轨迹E 上,且纵坐标为2t,所以点B 的坐标为222(,)t t当1t =±时,直线AB 的方程为2x =;当1t ≠±时,直线AB 的斜率为21B AAB B A y y t k x x t-==--所以直线AB 的方程为222(2)1t y t x t t +=--, 整理得2(2)1ty x t =--所以直线AB 过定点()2,0;(ⅱ)【方法一】因为A 的坐标为2(2,2)t t -,且圆A 与直线2x =-相切, 所以圆A 的方程为222()()(2)A A A x x y y x -+-=+,同理圆B 的方程为()()()2222B B B x x y y x -+-=+,两圆方程相减得()()222244B A B A A B A Bx x x y y y y y x x -+-+-=- 将2(2,2)A t t -,222(,)B t t 带入并整理得1()(1)y t x t =-+①, 由(i )可知直线AB 的方程为2(2)1ty x t =--②, 因为H 是两条直线的交点,所以两个方程相乘得2(2)(1)y x x =--+, 整理得2219()24x y -+=,即点H 的轨迹是以1(,0)2为圆心,32为半径的圆, 所以存在点1(,0)2P ,满足3||2HP =.【方法二】由题意知直线2x =-为圆A 与圆B 的公切线,设切点分别为E ,F ,设两圆的公共弦交公切线2x =-于点G ,则G 为E ,F 的中点, 所以G 点横坐标为2G x =-,G 点的纵坐标为122E F A B G y y y y y t t++===-, 即1(2,)G t t--,因为公共弦必与两圆的连心线垂直, 所以公共弦所在直线的斜率为211AB t k t--=, 故公共弦所在的直线方程为211()(2)t y t x t t---=+ 整理得1()(1)y t x t =-+,所以公共弦恒过()1,0S -;由平面几何的知识可知,公共弦的中点就是公共弦与两圆连心线的交点,记直线AB 所过的定点为R ,则R ,S ,公共弦的中点H ,构成以日为直角顶点的直角三角形, 即点H 在以RS 为直径的圆上: 所以存在点1(,0)2P ,满足3||2HP =.。

山东省济南市2020届高三二模考试数学试题及其答案

山东省济南市2020届高三二模考试数学试题及其答案

初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店
初高中数学学习资料的店 初高中数学学习资料的店

山东省济宁市2020届高三6月高考模拟考试(三模)数学试题(详解)

山东省济宁市2020届高三6月高考模拟考试(三模)数学试题(详解)

山东省济宁市2020届高三6月高考模拟考试(三模)数学试题、选择题1 .已知集合 A xx 25 ,B 3, 2,1,2,4 ,则 A 。

B () B. 2, 1,2D, 底近2 . i 为虚数单位,复数z -2—^ 1 i ,复数z 的共轲复数为Z ,则Z 的虚部为()1 2iA. iB. 2i【答案】CC.2 D, 1为2.故选:C.b 是非零向量,“ a b °”是“a b”的()A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件【答案】Cii【解析】设非零向量a 、b 的夹角为,若a b 0,则cos 0,又061.. ........ ..4.在x ' x 3的展开式中,常数项为()2x【解析】原式x (x —)6 3(x 工)6①,而(x 2)6的通项为:(工)七袅62;当6 2k 1时,k 7Z 2x2x 2x 22故①式中的前一项不会出常数项,当6 2k 0,即k 3时,可得①式中的后一项的常数项乘以 3即为所【解析】由题得z 2-^- 1 i1 2i(2 i)(1 2i) 1 i5i 1 (1 2i)(1 2i)51 2i ,所以W 1 2i .所以N 的虚部”的充要条件.故选:C.0” 是“ aJr aA.2,2 C.21,3,2【解析】由题意A {x| 、,5 x眄,.一 ApB { 2,1,2}.故选:B.TbJr a以所15 A. 一215C.D.【答案】D求,此时原式常数项为 3(1)3C 3215工故选:A-5. 函数 f x cosx sin 的图象大致为A. C. 【解析】f x cos( x) sinB.D.1 1 cosx sin cosx sin1e e xee 1f (x),所以x 为奇函数, 由此排除 AB 选项,। 1 = 18057.3 , cos10, si ne 1八——,6. C. f (1) cos1 sin 110g 21,b 43 ab ab a 110g b (2)0.30.3 则有( D. a abab 1 . c_皿3,又4 log 2 31 1 , 八 log23 24 /1、I 1 (二)二,, a 2 2 7.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一, 所得开立方除之,即立圆径。

2020届山东省济南市高三第一模数学试题(word版含答案)

2020届山东省济南市高三第一模数学试题(word版含答案)

2020年山东省济南市高三一模数学试题一、单项选择题:本题共8小题,每小题5分,共40分。

1.已知全集U R =,集合A =2{}x x x |>,则UA =A . []0,1B . (0,1)C . (],1-∞D . 1-∞(,) 2.设复数21iz i+=(其中i 为虚数单位),则复数z 在复平面内对应的点所在的象限为 A . 第一象限 B . 第二象限 C . 第三象限 D .第四象限3.加强体育锻炼是青少年生活学习中非常重要的组成部分。

某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60︒,每只胳膊的拉力大小均为400N ,则该学生的体重(单位:kg )约为(参考数据:取重力加速度大小为210/3 1.732g m s ≈=,) A . 63 B . 69 C . 75 D .814.已知函数y f x =()的部分图象如图,则f x ()的解析式可能是 A . f x x tanx ()=+ B . 2f x x sin x ()=+ C .1 22f x x sin x -()= D. 1cos 2f x x x -()= 5.方舱医院的创设,在抗击新冠肺炎疫情中发挥了不可替代的重要作用。

某方舱医院医疗小组有七名护士,每名护士从周一到周日轮流安排一个夜班。

若甲的夜班比丙晚一天,丁的夜班比戊晚两天,乙的夜班比庚早三天,己的夜班在周四,且恰好在乙和丙的正中间,则周五值夜班的护士为 A . 甲 B . 丙 C . 戊 D .庚6.已知抛物线24y x =的焦点为F ,直线l 过F 且与抛物线交于A ,B 两点,过A 作抛物线准线的垂线,垂足为M ,MAF ∠的角平分线与抛物线的准线交于点P ,线段AB 的中点为Q 。

若8AB PQ =,则= A . 2 B . 4 C . 6 D . 87.洛书,古称龟书,是阴阳五行术数之源,被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一。

2020届山东省济南市高三6月份模拟考试数学试题(解析版)

2020届山东省济南市高三6月份模拟考试数学试题(解析版)
,解得 .
故选:A
【点睛】
本题考查了两角差的余弦公式,同角三角函数的基本关系式,解三角形,内切圆的特点,考查了学分分析观察能力,属于中档题.
二、多选题
9.已知复数 (其中i为虚数单位)下列说法正确的是()
A.复数z在复平面上对应的点可能落在第二象限
B.z可能为实数
C.
D. 的实部为
【答案】BCD
【解析】由 ,得 ,得 ,可判断A选项;当虚部 时,可判断B选项;由复数的模的计算和余弦的二倍角公式可判断C选项;由复数的除法运算得 的实部是 ,可判断D选项;
【答案】(1)证明见解析;(2)60°
【解析】
(1)根据平面 //平面 ,得到 // ,再结合垂径定理即可证明;
(2)连接DN,先证明四边形ENDF为平行四边形,再求 即可.
【详解】
(1)证明:连接CE,与BM交于点N,
根据题意,该几何体为圆台的一部分,且CD与EF相交,
故C,D,F,E四点共面,因为平面 平面BCE,
故选: .
【点睛】
本题考查双曲线的标准方程及其性质、点到直线的距离公式应用,属于基础题.
7.已知水平直线上的某质点,每次等可能的向左或向右移动一个单位,则在第6次移动后,该质点恰好回到初始位置的概率是()
A. B. C. D.
【答案】B
【解析】将问题转化为一个数为零,每次加 或者减 ,经过6次后,结果还是零的问题.用古典概型的概率计算公式即可求得结果.
先求 导数,设切点坐标,根据导数几何意义确定切线斜率,利用点斜式得切线方程,再与 联立,利用判别式为零得方程,利用分离法转化为求对应函数值域,结合导数求函数值域即得a的取值范围.
【详解】
,设切点为 ,则 切点为 ,直线 代入 得 ,

2020届山东省济南市高三第一模数学试题(word版含答案)

2020届山东省济南市高三第一模数学试题(word版含答案)

2020年山东省济南市高三一模数学试题、单项选择题:本题共8小题,每小题5分,共40分。

3.加强体育锻炼是青少年生活学习中非常重要的组成部分。

某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60 ,每只胳膊的拉力大小均为 400N,则该学生的体重(单位:kg )约为(参考数据:取重力加速度大小为 g = 10m/s ;J3 1.732 )5 .方舱医院的创设,在抗击新冠肺炎疫情中发挥了不可替代的重要作用。

每名护士从周一到周日轮流安排一个夜班。

若甲的夜班比丙晚一天,丁的夜班比戊晚两天,乙的夜班比庚 早三天,己的夜班在周四,且恰好在乙和丙的正中间,则周五值夜班的护士为6 .已知抛物线y 2=4x 的焦点为F,直线l 过F 且与抛物线交于 A, B 两点,过A 作抛物线准线的垂线,垂足为M,MAF 的角平分线与抛物线的准线交于点P,线段AB 的中点为Q 。

若7 .洛书,古称龟书,是阴阳五行术数之源,被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一。

在古代传说中有神龟出于洛水, 其甲壳上有图1: “以五居中,五方白圈皆阳数,四隅黑点为阴数这就是最早的三阶幻方,按照上述说法,将1到9这九个数字,填在如图 2所示的九宫格里,九宫格的中1.已知全集U = R,集合2A={X x>x},则 0A = 0,1B. (0,1)C.,1D.2.设复数z=二1 i(其中 i 为虚数单位),则复数 z 在复平面内对应的点所在的象限为B. C. D.第四象限A. f( x) =x+ tanxB. f(x) = x+ sin2x1 .八 C. f (x) = x —sin 2x21D. f(x) = x -cosx 2某方舱医院医疗小组有七名护士,B.C. 戊D.庚B.4C. 6D. 8AB =8,则 PQ”,y= f (x )的部分图象如图,则D. 8175 f (x )的解析式可能是4.已知函数的概率是3 .8 .已知直线y= ax+ b b>0)与曲线y= x 有且只有两个公共点 2x 1+ x 2 =A.1B. 0C. 1D. a二、多项选择题:本题共4小题,每小题5分,共20分。

2020届山东省实验中学高三6月模拟考试数学试题(解析版)

2020届山东省实验中学高三6月模拟考试数学试题(解析版)

2020届山东省实验中学高三6月模拟考试数学试题一、单选题1.已知集合{}|2,kA x x k Z ==∈,{4}B x Nx =∈<∣,那么集合A B =( )A .{}1,4B .{}2C .{}1,2D .{}1,2,4【答案】C【解析】根据交集的概念和运算,求得两个集合的交集. 【详解】依题意{}0,1,2,3B =,其中1,2A A ∈∈,所以{}1,2A B =.故选:C 【点睛】本小题主要考查集合交集的概念和运算,属于基础题.2.若()22z i i -=-(i 是虚数单位),则复数z 的模为( ) A .12B .13C .14D .15【答案】D【解析】利用复数的乘法、除法法则将复数表示为一般形式,然后利用复数的求模公式计算出复数z 的模. 【详解】因为()22z i i -=-,所以()()()()2234434434343425252i i ii i z i i i i i i i -+---=====--+--+-,所以15z ==,故选D. 【点睛】本题考查复数的乘法、除法法则以及复数模的计算,对于复数相关问题,常利用复数的四则运算法则将复数表示为一般形式进行求解,考查计算能力,属于基础题. 3.已知sin cos 33ππαα⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,则cos2=α( )A .0B .1C .2D .2【答案】A【解析】利用和差角公式可求得tan α的值,再利用二倍角的余弦公式结合弦化切的思想可求得cos2α的值. 【详解】sin cos 33ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,11sin cos 22αααα+=+,可得tan 1α=,22222222cos sin 1tan cos 2cos sin 0cos sin 1tan ααααααααα--∴=-===++. 故选:A. 【点睛】本题考查三角求值,考查和差角公式、二倍角公式以及弦化切思想的应用,考查计算能力,属于中等题.4.已知平面向量a ,b 满足()2a b b +⋅=,且1a =,2b =,则a b +=( )A BC .1D .【答案】C【解析】由()2a b b +⋅=及2b =可得2a b ⋅=-,代入向量模的计算公式可得a b +的值. 【详解】解:由()2a b b +⋅=及2b =,可得22a b b ⋅+=,可得2a b ⋅=-,2222()211a b a b a a b b +=+=+⋅+=+=,故选:C. 【点睛】本题主要考查向量的数量积,向量模的性质,考查学生的运算求解能力,属于基础题型. 5.己知()f x 是定义域为R 的奇函数,若()5f x +为偶函数,()11f =,则()()20192020f f +=( )A .2-B .1-C .0D .1【答案】B【解析】由()5f x +奇偶性和函数平移的知识可得()f x 对称轴,由()f x 奇偶性可确定()0f ,结合对称轴可得周期,由此可将所求式子变为()()10f f -+,进而求得结果. 【详解】()5f x +为偶函数,且()5f x +可由()f x 向左平移5个单位得到,()f x ∴关于5x =轴对称,即()()55f x f x +=-,又()f x 为R 上的奇函数,()()55f x f x ∴+=--,且()00f =,()()()()2010f x f x f x f x ∴+=-+=--=⎡⎤⎣⎦,()f x ∴是一个周期为20的周期函数,()()()()2019201011111f f f f ∴=⨯-=-=-=-,()()()20202010100f f f =⨯==,()()201920201f f ∴+=-.故选:B . 【点睛】本题考查利用函数的奇偶性、周期性和对称性求解函数值的问题;解题关键是能够灵活应用函数的对称性和周期性之间的关系,通过对称轴和对称中心确定函数的周期.6.已知点()13,0F -,()23,0F 分别是双曲线C :22221x y a b-= (0a >,0b >)的左、右焦点,M 是C 右支上的一点,1MF 与y 轴交于点P , 2MPF 的内切圆在边2PF 上的切点为Q ,若2PQ =,则C 的离心率为( )A .53B .3C .32D .52【答案】C 【解析】由双曲线的定义、对称性和内切圆的切线性质,结合离心率公式即可得到所求值. 【详解】设2MPF ∆的内切圆在边2MF 上的切点为K ,在MP 上的切点为N , 如图所示:则12PF PF = ,222,PQ PN QFKF ===, 由双曲线的对称性可得12222PF PF PQ QF QF ==+=+, 由双曲线的定义可得1212MF MF PM PF MK KF -=+--222242QF MP MK KF MP MN a =++--=+-==,解得2a =,又126F F =,即有3c =, 离心率32c e a ==. 故选:C . 【点睛】本题考查双曲线的离心率的求法,考查内切圆的切线性质,注意运用双曲线的定义是解题的关键,属于中档题. 7.在二项式(nx x+的展开式中,各项系数的和为128,把展开式中各项重新排列,则有理项都互不相邻的概率为( ) A .435B .34C .314D .114【答案】D【解析】由系数和为128可得2128n =即可求出7n =,由二项式定理写出展开式的通项,即可求出有理项、无理项数,结合排列中的插空法可求出有理项都互不相邻的的概率. 【详解】解:二项式(n x x +的展开式中第1k +项为321kn kk n k kk n n T C x C x x --+==,则01...2128n nn n n C C C +++==,则7n =,则展开式中有8项, 当0,2,4,6k k k k ====时,372k N ⎛⎫-∈ ⎪⎝⎭,即有理项有4项,无理项有4项, 8项重新排列共88A 种排列数,先排列无理项共44A 种排列数,要使得有理项不相邻,则4项有理项的排列数为45A ,所以有理项都互不相邻的概率为445488114A A A =, 故选: D. 【点睛】本题考查了二项式定理,考查了排列数的计算,考查了插空法.本题的关键是求出n 的值. 8.已知函数2()ln f x ax x x =--有两个零点,则实数a 的取值范围是( ) A .1,1e ⎛⎫⎪⎝⎭B .()0,1C .21,e e +⎛⎫-∞ ⎪⎝⎭D .210,e e +⎛⎫⎪⎝⎭【答案】B【解析】函数()2()ln 0f x ax x x x =-->有两个零点,即方程2ln x xa x +=有两个根,设()2ln x xg x x+=,求出()g x ',研究出函数()g x 的单调性,由()g x 的图象与y a =有两个交点,得出a 参数的范围,得到答案.【详解】函数()2()ln 0f x ax x x x =-->有两个零点由题意得方程2ln x xa x +=有两个根. 设()2ln x x g x x+=,则()2431(1)(ln (2)12ln )x x x x x x x g x x x +-+--'== 设()12ln h x x x =--,则()210h x x'=--<所以()12ln h x x x =--在()0,∞+上单调递减,又(1)0h = 当()()(0,1),0,0x h x g x '∈>>,所以()g x 在(0,1)上单调递增, 当()()(1,),0,0x h x g x '∈+∞<<,所以()g x 在(1,)+∞上单调递减,又(1)1g =,22111()01e g e e e e -==-<⎛⎫⎪⎝⎭,当(1,)x ∈+∞时,ln 0x x +>,则()0g x > 所以存在0(0,1)x ∈,0()0g x =,即在()00,x 上()0g x <,又当x →+∞时,幂函数、对数函数的增加速度的快慢,可知x →+∞时,()0g x → 作出函数()g x 的大致图象如下.所以方程2ln x xa x+=有两个根,即()g x 的图象与y a =有两个交点, 所以实数a 的取值范围是()0,1, 故选:B 【点睛】本题考查已知函数的零点个数求参数取值范围的问题,考查分离参数的方法,考查利用导数研究函数的单调性,属于难题题.二、多选题9.CPI 是居民消费价格指数的简称,是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.同比一般情况下是今年第n 月与去年第n 月比;环比,表示连续2个统计周期(比如连续两月)内的量的变化比.如图是根据国家统计局发布的2019年4月—2020年4月我国CPI 涨跌幅数据绘制的折线图,根据该折线图,则下列说法正确的是( )A.2020年1月CPI同比涨幅最大B.2019年4月与同年12月相比较,4月CPI环比更大C.2019年7月至12月,CPI一直增长D.2020年1月至4月CPI只跌不涨【答案】AB【解析】根据折线图数形结合,逐一分析即可;【详解】解:对于A,由同比折线可发现2020年1月CPI同比涨幅最大,故A正确;对于B,由图可知2019年4月环比涨幅为0.1%,2019年12月为0%,故B正确;对于C,由环比定义可知,2019年10月至12月间,下跌,故C错误;对于D,由环比定义可知,2020年1月至4月间,3月到4月增涨,故D错误;故选:AB.【点睛】本题考查折线统计图的识别,考查学生合情推理的能力以及阅读理解能力,属于中档题.<,10.记数列{}n a的前n项和为n S,若存在实数H,使得对任意的n∈+N,都有n S H 则称数列{}n a为“和有界数列”.下列说法正确的是()d=,则{}n a是“和有界数列”A.若{}n a是等差数列,且公差0d=B.若{}n a是等差数列,且{}n a是“和有界数列”,则公差0q<,则{}n a是“和有界数列”C.若{}n a是等比数列,且公比1q<D.若{}n a是等比数列,且{}n a是“和有界数列”,则{}n a的公比1【答案】BC【解析】根据等差数列前n项和公式以及“和有界数列”的定义,判断AB选项的正确性;根据等比数列前n项和公式以及“和有界数列”的定义,判断CD选项的正确性.【详解】对于AB 选项分析如下:若{}n a 是等差数列,则()2111222n n n d d d S na n a n -⎛⎫=+=+- ⎪⎝⎭. 对于A 选项,当0d =时,1n S na =,若10a ≠,根据一次函数的性质可知,此时不存在符合题意的H .所以A 选项错误.对于B 选项,{}n a 是“和有界数列”,而2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,若0d ≠,根据二次函数的性质可知,此时不存在符合题意的H ,故0d =.所以B 选项正确. 对于CD 选项分析如下:若{}n a 是等比数列,则()1111111n nn a q a aq S qq q-==-⋅+---. 对于C 选项,若1q <,则当n →+∞时,11n a S q→-,故存在实数H ,使得对任意的n ∈+N ,都有n S H <,即{}n a 是“和有界数列”.所以C 选项正确.对于D 选项,若{}n a 是等比数列,且{}n a 是“和有界数列”,q 的取值可能为1-,此时1n S a ≤,所以存在实数H ,使得对任意的n ∈+N ,都有n S H <.所以D 选项错误. 故选:BC 【点睛】本小题主要考查新定义数列的理解,考查等差数列、等比数列前n 项和公式的运用,属于中档题.11.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵ABC -A 1B 1C 1中,AC ⊥BC ,且AA 1=AB=2.下列说法正确的是( )A .四棱锥B -A 1ACC 1为“阳马”B .四面体A 1C 1CB 为“鳖膈” C .四棱锥B -A 1ACC 1体积最大为23D .过A 点分别作AE ⊥A 1B 于点E ,AF ⊥A 1C 于点F ,则EF ⊥A 1B 【答案】ABD【解析】根据新定义结合线面垂直的证明,对选项进行逐一判断,可得出答案. 【详解】底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”. 所以在堑堵ABC -A 1B 1C 1中,AC ⊥BC ,侧棱1AA ⊥平面ABC . 在选项A 中. 所以1AA BC ⊥,又AC ⊥BC ,且1AA AC A =,则BC ⊥平面11AAC C .所以四棱锥B -A 1ACC 1为“阳马”,故A 正确.在选项B 中. 由AC ⊥BC ,即11AC BC ⊥,又111AC C C ⊥且1C C BC C =,所以11A C ⊥平面11BB C C .所以111AC BC ⊥,则11A BC 为直角三角形. 又由BC ⊥平面11AAC C ,得1A BC 为直角三角形.由“堑堵”的定义可得11AC C 为直角三角形,1CC B 为直角三角形. 所以四面体A 1C 1CB 为“鳖膈”,故B 正确.在选项C 中. 在底面有2242AC BC AC BC =+≥⋅,即2AC BC ⋅≤当且仅当AC BC =时取等号.1111111243333B A ACC A ACC V S BC AA AC BC AC BC -=⨯=⨯⨯=⨯≤,所以C 不正确.在选项D 中.由上面有BC ⊥平面11AAC C ,则BC AF ⊥,AF ⊥A 1C 且1AC BC C =,则AF ⊥平面1A BC所以1AF A B ⊥,AE ⊥A 1B 且AF AE A ⋂=,则1A B ⊥平面AEF ,则1A B EF ⊥,所以D 正确. 故选:ABD. 【点睛】本题考查立体几何中的新定义问题,考查线线垂直,线面垂直的证明,考查四棱锥的体积的最值,属于中档题.12.已知2()12cos ()(0)3f x x πωω=-+>,下面结论正确的是( )A .若()11f x =,()21f x =-,且12x x -的最小值为π,则ω=2B .存在ω∈(1,3),使得f (x )的图象向右平移6π个单位长度后得到的图象关于y 轴对称 C .若f (x )在[]0,2π上恰有7个零点,则ω的取值范围是4147[,)2424D .若f (x )在[,]64ππ-上单调递增,则ω的取值范围是(0,23]【答案】BCD【解析】化简()f x 解析式.结合周期判断A 选项的正确性,结合图象变换判断B 选项的正确性,结合()f x 的零点判断C 选项的正确性,结合()f x 的单调性判断D 选项的正确性. 【详解】依题意()2cos 23f x x πω⎛⎫=-+⎪⎝⎭,0>ω,()11f x -≤≤. 对于A 选项,若()11f x =,()21f x =-, 且12x x -的最小值为π,则12222T ππππωωω=⇒==⇒=, 故A 选项错误.对于B 选项,当2ω=时,()2cos 43f x x π⎛⎫=-+⎪⎝⎭, 向右平移6π个单位长度后得到2cos 4cos 463y x x ππ⎡⎤⎛⎫=--+=- ⎪⎢⎥⎝⎭⎣⎦, 其为偶函数,图象关于y 轴对称.故B 选项正确.对于C 选项,02x π≤≤,则22224333x πππωωπ≤+≤+, 若()f x 在[]0,2π上有恰有7个零点,则152174232πππωπ≤+<, 解得41472424ω≤<,故C 选项正确. 对于D 选项,64x ππ-≤≤,则222233323x ωπππωππω-+≤+≤+,若()f x 在,64ππ⎡⎤-⎢⎥⎣⎦上递增,则22332223k k ωπππωππππ⎧-+≥⎪⎪⎨⎪+≤+⎪⎩,即62243k k ωω≤-+⎧⎪⎨≤+⎪⎩,由于,0k Z ω∈>,故20,03k ω=<≤.所以D 选项正确. 故选:BCD 【点睛】本小题主要考查三角恒等变换,考查三角函数的图象与性质,属于中档题.三、填空题13.以抛物线22y x =的焦点为圆心,且与抛物线的准线相切的圆的方程为______________.【答案】22112x y ⎛⎫-+= ⎪⎝⎭ 【解析】求得抛物线焦点坐标和准线方程,得到圆的圆心和半径,由此求得圆的方程. 【详解】抛物线22y x =的焦点为1,02⎛⎫ ⎪⎝⎭,准线为12x =-,焦点到准线的距离为1,所以圆的圆心为1,02⎛⎫ ⎪⎝⎭,半径为1,故圆的标准方程为22112x y ⎛⎫-+= ⎪⎝⎭.故答案为:22112x y ⎛⎫-+= ⎪⎝⎭ 【点睛】本小题主要考查抛物线性质,考查圆的方程的求法,属于中档题.14.我国有“三山五岳”之说,其中五岳是指:东岳泰山,南岳衡山,西岳华山,北岳恒山,中岳嵩山.某位老师在课堂中拿出这五岳的图片,打乱顺序后在图片上标出数字1—5,他让甲、乙、丙、丁、戊这五位学生来辨别,每人说出两个,学生回答如下: 甲:2是泰山,3是华山; 乙:4是衡山,2是嵩山; 丙:1是衡山,5是恒山;丁:4是恒山,3是嵩山; 戊:2是华山,5是泰山.老师提示这五个学生都只说对了一半,那么五岳之尊泰山图片上标的数字是__________. 【答案】5【解析】先分析甲、戊两个学生,可知甲回答的3是华山是正确的,然后依次判断丙、丁、乙即可. 【详解】若甲:2是泰山是正确的,则戊:2是华山,5是泰山都是错的,故甲:3是华山是正确的;戊:5是泰山是正确的;丙:1是衡山是正确的;丁:4是恒山是正确的;乙: 2是嵩山是正确的,故五岳之尊泰山图片上标的数字是5. 故答案为:5 【点睛】本题主要考查逻辑推理能力,属于能力提升题.15.己知函数f (x )= ln x ,若0<a<b ,且f (a )=f (b ),则a+4b 的取值范围是____________. 【答案】()5,+∞【解析】结合函数f (x )= ln x 的图象可判断,a b 的位置,即可得到,a b 的关系,将双变量a+4b 转化为单变量,结合函数单调性即可求解. 【详解】如图,作出函数f (x )= ln x 的图象,由f (a )=f (b )得,()ln ()ln ,ln ln ln 0,1,01,1,f a a f b b a b ab ab a b =-==∴+===<<>所以44a b a a+=+,由对勾函数的单调性可知,函数4y x x =+ 在()0,1上单调递减,故445a b a a +=+>,即a+4b 的取值范围是()5,+∞.故答案为:()5,+∞ 【点睛】本题主要考查对数函数的图象翻折、对数运算及利用函数单调性求值域,属于基础题.四、双空题16.已知水平地面上有一半径为4的球,球心为O ',在平行光线的照射下,其投影的边缘轨迹为椭圆C .如图椭圆中心为O ,球与地面的接触点为E ,OE=3.若光线与地面所成角为θ,则sin θ=______________,椭圆的离心率e=___________.【答案】45 35【解析】连接OO ',由锐角三角函数可得4sin 5O E OO θ'==',在平行光线照射过程中,椭圆的短半轴长是圆的半径,如图,椭圆的长半轴长是AC ,过A 向BC 做垂线,垂足是B ,得到一个直角三角形,得到AC 的长,从而得出要求的结果. 【详解】解:连接OO ',则O OE θ'∠=,因为4O E '=,3OE =,所以2222345OO O E OE ''+=+=所以4sin 5O E OO θ'==' 在照射过程中,椭圆的短半轴长b 是圆的半径R ,4b ∴=,如图.椭圆的长轴长2a 是AC ,过A 向BC 做垂线,垂足是B , 由题意得:28AB R ==,4sin sin 5ACB θ∠==, 又4sin 5AB θAC == 所以10AC = 即210a =,5a =,∴椭圆的离心率为22255316c a b e a --===故答案为:45;35.【点睛】本题考查圆锥曲线的实际背景及作用,解决本题的关键是看清楚在平行光线的照射下,投影时球的有关量中,变与不变的量,属于中档题.五、解答题17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2a =.设F 为线段AC 上一点,2CF BF =,有下列条件: ①2c =;②3b =2223a b ab c +=.请从以上三个条件中任选两个,求CBF ∠的大小和ABF 的面积. 【答案】4CBF π∠=;ABF 的面积为1【解析】若选①②,则2a c ==,23b =23ABC π∠=,结合等腰三角形的性质和三角形的内角和得出6A C π==,再根据正弦定理求出4CBF π∠=,通过三角形内角和关系求得ABF AFB ∠=∠,则2AF AB ==,最后利用三角形面积公式即可求出ABF 的面积;若选②③,2a =,23b =2223a b ab c +=,可求得2c =,根据余弦定理即可求出6C π=,三角形的内角和得出6A C π==,再根据正弦定理求出4CBF π∠=,通过三角形内角和关系求得ABF AFB ∠=∠,则2AF AB ==,最后利用三角形面积公式即可求出ABF 的面积;若选①③,则2a c ==,222a b c +-=,由余弦定理可求出6C π=,由a c =,结合等腰三角形的性质和三角形的内角和得出6A C π==,由三角形内角和关系得出23ABC A C ππ∠=--=,再根据正弦定理求出4CBF π∠=,通过三角形内角和关系求得ABF AFB ∠=∠,则2AF AB ==,最后利用三角形面积公式即可求出ABF 的面积. 【详解】(解法一)选①②,则2a c ==,b =由余弦定理可得:2221cos 22a cb ABC ac +-∠==-,又()0,ABC π∠∈,∴23ABC π∠=, ∴6A C π==,在BCF 中,由正弦定理可得sin sin CF BFCBF C =∠,∵CF =,∴sin 2CBF ∠=, 又23CBF ABC π∠<∠=,∴4CBF π∠=,∴253412ABF πππ∠=-=,5512612AFB ππππ∠=--=, 则在ABF 中,ABF AFB ∠=∠, ∴2AF AB ==, ∴122sin 126ABF S π=⨯⨯⨯=△.(解法二)选②③,∵2a =,b =222a b c +-=, ∴2c =,由余弦定理可得:222cos 22a b c C ab +-==,又()0,C π∈,∴6C π=,∴6A C π==,∴23ABC A C ππ∠=--=, 在BCF 中,由正弦定理可得sin sin CF BFCBF C=∠,∵CF =,∴sin CBF ∠=. 又23CBF CBA π∠<∠=,∴4CBF π∠=, ∴253412ABF πππ∠=-=,5512612AFB ππππ∠=--=, 则在ABF 中,ABF AFB ∠=∠, ∴2AF AB ==, ∴122sin 126ABF S π=⨯⨯⨯=△.(解法三)选①③,则2a c ==,222a b c +=,则:222a b c +-=,由余弦定理可得:222cos 22a b c C ab +-==, 又()0,C π∈,∴6C π=, ∵a c =,∴6A C π==,∴23ABC A C ππ∠=--=, 在BCF 中,由正弦定理可得sin sin CF BFCBF C =∠,∵CF =,∴sin 2CBF ∠=, 又23CBF CBA π∠<∠=,∴4CBF π∠=, ∴253412ABF πππ∠=-=,5512612AFB ππππ∠=--=, 则在ABF 中,ABF AFB ∠=∠, ∴2AF AB ==, ∴122sin 126ABF S π=⨯⨯⨯=△. 【点睛】本题考查利用正弦定理、余弦定理解三角形和三角形的面积公式,还涉及三角形的内角和以及等腰三角形的性质,考查运算能力.18.已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且4118S a -=-. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得2020n S ≥?若存在,求出符合条件的n 的最小值;若不存在,说明理由. 【答案】(1)()132n n a -=⨯-.(2)存在,最小值为11【解析】(1)根据条件列关于首项与公比的方程组,解得首项与公比,代入等比数列通项公式即可;(2)先求和项,再根据奇偶讨论化简不等式,即得结果. 【详解】(1)设等比数列{}n a 的公比为q ,则10,0a q ≠≠.由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩即2321112311118a q a q a q a q a q a q ⎧--=⎨++=-⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为()132n n a -=⨯-.(2)由(1)有()()()3121212nn nS ⎡⎤--⎣⎦==----. 假设存在n ,使得2020n S ≥,则()122020n--≥ 即()22019n-≤-当n 为偶数时,()20n->,上式不成立;当n 为奇数时,()22019nn -=-2≤-,即22019n ≥ 解得11n ≥综上,存在符合条件的正整数n ,最小值为11. 【点睛】本题考查等比数列通项公式、等比数列求和公式、解数列不等式,考查基本分析求解能力,属基础题.19.四棱锥P ABCD -中,PC ⊥面ABCD ,直角梯形ABCD 中,∠B=∠C=90°,AB=4,CD=1,PC=2,点M 在PB 上且PB=4PM ,PB 与平面PCD 所成角为60°.(1)求证://CM 面PAD : (2)求二面角B MC A --的余弦值. 【答案】(1)证明见解析.(2)35【解析】(1)在线段AB 上取一点N ,使1AN CD ==,可证//CN 平面PAD ,由14MP AN PB AB ==,可得//MN AP ,得到//MN 平面PAD ,从而可证面面平行,再根据面面平行得结果;(2)以C 为原点,CB ,CD ,CP 所在直线为x 轴,y 轴,z 轴,建立空间坐标系,用向量法求解二面角. 【详解】(1)在线段AB 上取一点N ,使1AN CD ==,因为//CD AB ,所以//CD AN 且CD AN =, 所以ANCD 为平行四边形,所以//CN AD , CN ⊄平面PAD ,AD ⊂平面PAD ,则//CN 平面PAD 在三角形ABP 中,14MP AN PB AB ==,所以//MN AP , MN ⊄平面PAD ,AP ⊂平面PAD ,则//MN 平面PAD MN CN N ⋂=所以平面MNC //平面P AD ,又CM ⊂平面MNC ,所以CM //平面P AD(2)以C 为原点,CB ,CD ,CP 所在直线为x 轴,y 轴,z 轴,建立空间坐标系.PC ⊥面ABCD ,所以PC CB ⊥,又因为BC CD ⊥,所以BC ⊥面PCD , 所以PB 在面PCD 的射影为PC , 所以BPC PB ∠为与平面PCD 所成角, 所以60,3BPC BC ∠==所以()()()()3323,0,0,0,0,2,,23,4,0,0,1,02B P M A D ⎫⎪⎪⎝⎭,33333,0,,4,22CM AM ⎛⎫⎛⎫==-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 面BMC 法向量()10,1,0n =, 面AMC 法向量()2,,n x y z =220n AM n CM ⎧⋅=⎪⎨⋅=⎪⎩,所以()223,3,2n =--, 所以123cos ,5n n =-, 所以二面角B MC A --所成角的余弦值为35【点睛】本题考查证明面面平行和求二面角,求二面角可用定义法和向量法,一般在较复杂的二面角选择向量法求解,属于中档题.20.某公司为研究某种图书每册的成本费y (单位:元)与印刷数量x (单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.xyu821()ii x x =-∑81()()i i i x x y y =-⋅-∑ 821()i i u u =-∑ 81()()ii i uu y y =-⋅-∑15.253.630.2692085.5 230.3- 0.787 7.049表中1i i u x =,8118i i u u ==∑(1)根据散点图判断:y a bx =+与dy c x=+哪一个模型更适合作为该图书每册的成本费y 与印刷数量x 的回归方程?(只要求给出判断,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程(结果精确到0.01); (3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)附:对于一组数据(ω1,v 1),(ω2,v 2),…,(ωn ,v n ),其回归直线v αβω=+的斜率和截距的最小二乘估计分别为121()()()niii nii v v ωωβωω==--=-∑∑,v αβω=-.【答案】(1)dy c x=+更适合.(2)8.961.22y x =+.(3)至少印刷11120册. 【解析】(1)由散点图判断,dy c x=+更适合.(2)令1u x=,先建立y 关于u 的线性回归方程,根据公式可得 1.228.96y u =+,再得到答案.(3)假设印刷x 千册,依题意得8.969.22 1.2280x x x ⎛⎫-+≥ ⎪⎝⎭,解出不等式得到答案.【详解】(1)由散点图判断,dy c x=+更适合作为该图书每册的成本费y (单位:元)与印刷数量x (单位:千册)的回归方程.(2)令1u x =,先建立y 关于u 的线性回归方程, 由于7.0498.9578.960.787d =≈≈, 所以 3.638.9570.269 1.22c y d u =-⋅=-⨯≈, 所以y 关于u 的线性回归方程为 1.228.96y u =+, 所以y 关于x 的回归方程为8.961.22y x=+(3)假设印刷x 千册,依题意得8.969.22 1.2280x x x ⎛⎫-+≥ ⎪⎝⎭, 解得11.12x ≥,所以至少印刷11120册才能使销售利润不低于80000元. 【点睛】本题考查非线性回归方程及其应用,考查将非线性回归问题转化为线性回归问题求解,考查运算能力,属于中档题.21.已知椭圆C :22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2点.M 为椭圆上的一动点,△MF 1F 2面积的最大值为4.过点F 2的直线l 被椭圆截得的线段为PQ ,当l ⊥x 轴时,PQ =.(1)求椭圆C 的方程;(2)过点F 1作与x 轴不重合的直线l ,l 与椭圆交于A ,B 两点,点A 在直线4x =-上的投影N 与点B 的连线交x 轴于D 点,D 点的横坐标x 0是否为定值?若是,求出定值;若不是,请说明理由.【答案】(1)22184x y +=.(2)是定值,定值为:3-【解析】(1)由题意得224,b S bc PQ a====,可求得,a b ,得到椭圆的方程;(2)已知直线斜率不为零,设直线的方程为:2AB x my =-,代入22184x y +=得()222440my my +--=,设()()112212,,,,A x y B x y y y ,均不为零,得12242m y y m +=+,12242y y m -=+, 可得BN 的方程()211244y y y y x x --=++,令0y =,可得D 点的横坐标为定值.【详解】(1)由题意:12MF F ∆的最大面积224,b S bc PQ a====又222a b c =+,联立方程可解得2a b ==,所以椭圆的方程为22184x y +=;(2)D 的横坐标为定值3-,理由如下:已知直线斜率不为零,:2AB x my =-,代入22184x y +=得()222280my y -+-=,整理得()222440m y my +--=,设()()1122,,,A x y B x y ,12,y y 均不为零, 12242m y y m +=+①,12242y y m -=+②, 两式相除得1212y y m y y +=-③ ()14,N y BN -∴,的方程()211244y y y y x x --=++,令0y =, ()12212112212120212121212444244y my y y x y y x y my y y y x y y y y y y y y --------+-∴=-===----④,将③代入④1212120212124333y y y y y y x D y y y y ++--===-∴--点的横坐标为定值3-.【点睛】本题考查椭圆的标准方程求解,直线与椭圆的位置关系的综合定值问题,关键在于将所求的量转化到直线与椭圆的交点的坐标上去,属于难度题. 22.已知函数()ln 1f x x x =-+. (1)求f (x )的最大值;(2)设函数()()()21g x f x a x =+-,若对任意实数()2,3b ∈,当(]0,x b ∈时,函数()g x 的最大值为()g b ,求a 的取值范围;(3)若数列{}n a 的各项均为正数,11a =,()()121n n n a f a a n N ++=++∈.求证:12n n a -≤.【答案】(1)0.(2)[)1ln 2,-+∞.(3)证明见解析【解析】(1)首先求函数的导数,并判断函数在定义域内的单调性,求得函数的最大值; (2)()()()()221ln 11g x f x a x x x a x =+-=-++-,先求函数的导数()()()()1210x ax g x x x--'=>,当0a ≤时,函数的最大值是()1g ,不满足条件,当0a >时,令()0g x '=有1211,2x x a==,比较极值点大小,讨论单调性,求a 的取值范围;(3)111,ln 2n n n a a a a +==++,由(1)知:()()ln 110f x x x f =-+≤=,即有不等式()ln 10x x x ≤->,由已知条件知0n a >,则()1ln 21221n n n n n n a a a a a a +=++≤-++=+,根据不等式的传递性得到证明.【详解】(1)()f x 的定义域为()()110,,1x f x x x-'+∞=-=, 当()0,1x ∈时,()()0,f x f x '>单调递增; 当()1,x ∈+∞时,()()0,f x f x '<单调递减, 所以()()max 10f x f ==(2)由题意()()()()221ln 11g x f x a x x x a x =+-=-++-()()()()()()2221112111210ax a x x ax g x a x x x x x-++--'=-+-==>①当0a ≤时,函数()g x 在()01,上单调递增,在()1+∞,上单调递减,此时,不存在实数()2,3b ∈,使得当(]0,x b ∈时,函数()g x 的最大值为()g b . ②当0a >时,令()0g x '=有1211,2x x a==,(i )当12a =时,函数()g x 在()0,∞+上单调递增,显然符合题意. (ii )当112a >,即102a <<时,函数()g x 再()0,1和1,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减,()g x 在1x =处取得极大值,且()1=0g ,要使对任意实数()2,3b ∈,当(]0,x b ∈时,函数()g x 的最大值为()g b ,只需()20g ≥,解得1ln 2,a ≥-又102a <<所以此时实数a 的取值范围是11ln 22a -≤<. (iii )当112a <,即12a >时,函数()g x 在10,2a ⎛⎫⎪⎝⎭和()1+∞,上单调递增,在1,12a ⎛⎫ ⎪⎝⎭上单调递减,要对任意实数()2,3b ∈,当(]0,x b ∈时,函数()g x 的最大值为()g b ,需()122g g a ⎛⎫≤ ⎪⎝⎭代入化简得1ln 2ln 2104a a ++-≥,① 令()11ln 2ln 2142h a a a a ⎛⎫=++-> ⎪⎝⎭, 因为()11104h a a a ⎛⎫'=-> ⎪⎝⎭恒成立, 故恒有()11ln 2022h a h ⎛⎫>=->⎪⎝⎭,所以12a >时,①式恒成立, 综上,实数a 的取值范围是[)1ln 2,-+∞.(3)由题意,正项数列{}n a 满足:111,ln 2n n n a a a a +==++由(1)知:()()ln 110f x x x f =-+≤=,即有不等式()ln 10x x x ≤-> 由已知条件知()10,ln 21221n n n n n n n a a a a a a a +>=++≤-++=+ 故()1121n n a a ++≤+从而当2n ≥时,()()()2112112121212n n n n n a a a a ---+≤+≤+≤⋅⋅⋅≤+=所以有21nn a ≤-,对1n =也成立,所以有()21nn a n N *≤-∈【点睛】本题考查导数研究函数的单调性,极值,最值的综合问题,以及利用导数的结论证明数列不等式,重点考查了转化与化归是思想,逻辑推理证明,属于难题,本题的难点是第三问,需结合第一问的结论证明.。

山东省实验中学2020届高三6月模拟考试数学试题 Word版含答案

山东省实验中学2020届高三6月模拟考试数学试题 Word版含答案

绝密★启用并使用完毕前山东省实验中学2020届高三模拟考试数 学 试 题2020.06注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形码.2.本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷为第1页至第3页,第Ⅱ卷为第4页至第6页.3.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.5mm 黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.第Ⅰ卷(共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x |x =2k ,k ∈Z),B={x ∈N |x <4),那么集合A ∩B= A .(1,4) B .{2} C .{1,2}D .{1,2,4}2.若z (2-i )2=-i (i 是虚数单位),则复数z 的模为 A .12B .13C .14D .153.已知sin()cos()33ππαα+=-,则cos2α==A .0B .1C D 4.已知平面向量a ,b 满足(a +b )·b =2,且1a =,2b =,则a b +=ABC .1D .5.己知()f x 是定义域为R 的奇函数,若(5)f x +为偶函数,f (1)=1,则f (2019)+f (2020)= A .-2B .-1C .0D .16.已知点F 1(-3,0),F 2(3,0)分别是双曲线C :22221x y a b-= (a >0,b >0)的左、右焦点,M 是C 右支上的一点,MF 1与y 轴交于点P ,△MPF 2的内切圆在边PF 2上的切点为Q ,若2PQ =,则C 的离心率为 A .53B .3C .32D .527.在二项式()nx x+的展开式中,各项系数的和为128,把展开式中各项重新排列,则有理项都互不相邻的概率为 A .435B .34C .314D .1148.已知函数f (x )=ax 2-x -ln x 有两个零点,则实数a 的取值范围是 A .(1e,1) B .(0,1) C .(-∞,21ee+) D .(0,21ee+) 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.CPI 是居民消费价格指数的简称,是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.同比一般情况下是今年第n 月与去年第n 月比;环比,表示连续2个统计周期(比如连续两月)内的量的变化比.如图是根据国家统计局发布的2019年4月—2020年4月我国CPI 涨跌幅数据绘制的折线图,根据该折线图,则下列说法正确的是A .2020年1月CPI 同比涨幅最大B .2019年4月与同年12月相比较,4月CPI 环比更大C .2019年7月至12月,CPI 一直增长D .2020年1月至4月CPI 只跌不涨10.记数列{a n }的前n 项和为S n ,若存在实数H ,使得对任意的n ∈N +,都有n S <H ,则称数列{a n }为“和有界数列”.下列说法正确的是A .若{a n }是等差数列,且公差d =0,则{a n }是“和有界数列”B .若{a n }是等差数列,且{a n }是“和有界数列”,则公差d =0C .若{a n }是等比数列,且公比q <l ,则{a n }是“和有界数列”D .若{a n }是等比数列,且{a n }是“和有界数列”,则{a n }的公比q <l 11.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵ABC-A 1B 1C 1中,AC ⊥BC ,且AA 1=AB=2.下列说法正确的是 A .四棱锥B -A 1ACC 1为“阳马” B .四面体A 1C 1CB 为“鳖膈” C .四棱锥B -A 1ACC 1体积最大为23D .过A 点分别作AE ⊥A 1B 于点E ,AF ⊥A 1C 于点F ,则EF ⊥A 1B 12.已知2()12cos ()(0)3f x x πωω=-+>,下面结论正确的是A .若f (x 1)=1,f (x 2)=-1,且12x x -的最小值为π,则ω=2B .存在ω∈(1,3),使得f (x )的图象向右平移6π个单位长度后得到的图象关于y 轴对称 C .若f (x )在[0,2π]上恰有7个零点,则ω的取值范围是4147[,)2424D .若f (x )在[,]64ππ-上单调递增,则ω的取值范围是(0,23]第Ⅱ卷(非选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.13.以抛物线y 2=2x 的焦点为圆心,且与抛物线的准线相切的圆的方程为______________. 14.我国有“三山五岳”之说,其中五岳是指:东岳泰山,南岳衡山,西岳华山,北岳恒山,中岳嵩山.某位老师在课堂中拿出这五岳的图片,打乱顺序后在图片上标出数字1—5,他让甲、乙、丙、丁、戊这五位学生来辨别,每人说出两个,学生回答如下: 甲:2是泰山,3是华山; 乙:4是衡山,2是嵩山; 丙:1是衡山,5是恒山; 丁:4是恒山,3是嵩山;戊:2是华山,5是泰山.老师提示这五个学生都只说对了一半,那么五岳之尊泰山图片上标的数字是__________. 15.己知函数f (x )= ln x ,若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是____________. 16.已知水平地面上有一半径为4的球,球心为O ',在平行光线的照射下,其投影的边缘轨迹为椭圆C .如图椭圆中心为O ,球与地面的接触点为E ,OE=3.若光线与地面所成角为θ,则sin θ=__________________,椭圆的离心率e =_____________________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,a =2.设F 为线段AC 上一点,CF=2BF .有 下列条件:①c =2;②b =23;③2223a b ab c +-=. 请从这三个条件中任选两个,求∠CBF 的大小和△ABF 的面积.18.(12分)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且S 4-a 1=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2020?若存在,求出符合条件的n 的最小值;若不存在,说明理由.19.(12分)四棱锥P -ABCD 中,PC ⊥面ABCD ,直角梯形ABCD 中,∠B=∠C=90°,AB=4,CD=1,PC=2,点M 在PB 上且PB=4PM .PB 与平面PCD 所成角为60°. (1)求证:CM ∥面PAD :(2)求二面角B -MC -A 的余弦值.20.(12分)某公司为研究某种图书每册的成本费y (单位:元)与印刷数量x (单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.xyu821()ii x x =-∑81()()iii x x y y =-⋅-∑821()i i u u =-∑ 81()()ii i uu y y =-⋅-∑15.25 3.63 0.269 2085.5-230.30.7877.049表中1i iu x =,8118i i u u ==∑(1)根据散点图判断:y =a +bx 与y =c +dx哪一个模型更适合作为该图书每册的成本费y 与印刷数量x 的回归方程?(只要求给出判断,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程(结果精确到0.01); (3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)附:对于一组数据(ω1,v 1),(ω2,v 2),…,(ωn ,v n ),其回归直线v αβω=+的斜率和截距的最小二乘估计分别为121()()()niii nii v v ωωβωω==--=-∑∑,v αβω=-.21.(12分)已知椭圆C :22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2点.M 为椭圆上的一动点,△MF 1F 2面积的最大值为4.过点F 2的直线l 被椭圆截得的线段为PQ ,当l ⊥x 轴时,PQ =.(1)求椭圆C 的方程;(2)过点F 1作与x 轴不重合的直线l ,l 与椭圆交于A ,B 两点,点A 在直线x =-4上的投影N 与点B 的连线交x 轴于D 点,D 点的横坐标x 0是否为定值?若是,求出定值;若不是,请说明理由.22.(12分)已知函数f (x )=ln x -x +1. (1)求f (x )的最大值;(2)设函数g (x )=f (x )+a (x -1)2,若对任意实数b ∈(2,3),当x ∈(0,b ]时,函数g (x )的最大值为g (b ),求a 的取值范围;(3)若数列{a n }的各项均为正数,a 1=1,a n +1=f (a n )+2a n +1(n ∈N +).求证:a n ≤2n -1.山东省实验中学2020届高三模拟考试数学试题答案2020.06一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档