直线与圆2012中考题型
初三中考总复习 直线与圆的位置关系(二)

E
A C
O2 O1
D
P
B
8.如图,过⊙O外一点A引直线,与⊙O相交于B、C.已知⊙O的半径为1,OA=2 ,∠A=α(α<300).
⑴求AB·AC和AB+AC的值; ⑵写出一个以AB、AC的长为根的一元二次方程;
⑶当BC=1时,求cosα的值.
C
D
B
A
O
3.在△ABC中,∠C=Rt∠,AC=8,BC=15,以C为圆心,
B
CA为半径的圆交AB于D.求AD的长.
E D
A
C
4.如图PC切⊙O于C,割线PAB过圆心O,已知PA=2/3PC.求tan∠PCA 的值.
P
A
O
B
C
5.如图,已知PB切⊙O于B,PA交⊙O于C、A.
求证:
BC2
PC
=
AB2
PA
A
C
P
O B
6.ቤተ መጻሕፍቲ ባይዱ图,已知Rt△ABC中,∠B=900,D为AB上的一点,以BD为直径的半圆O与 AC相切于点E,若BD=BC=6,求斜边AC的长.
C
C
E
A D
O
B
7.如图,已知⊙O1与⊙O2内切于点P, ⊙O2的弦AB经过⊙O1的圆心O1,交⊙O1于C,D两 点,若AC:CD:DB=3:4:2则⊙O1与 ⊙O2的直径之比是多少?
第三讲
直线与圆的位置关系(二 )
1.如图,AB是⊙O的直径,C是⊙O上一点,CD⊥AB于D。已知CD=2cm, AD=1cm,求AB的长.
C
A
O
B
D
2.如图,割线PAB、PCD分别交⊙O于A、B和C、D.已知PA=5,AB=4,PC=6.
初三数学直线和圆的位置关系试题

初三数学直线和圆的位置关系试题1.在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,以点C为圆心,6cm的长为半径的圆与直线AB的位置关系是________.【答案】相交【解析】先根据勾股定理求得AB的长,再求得点C与直线AB的距离,再根据直线与圆的位置关系即可得到结果.∵∠C=90°,AC=12cm,BC=5cm∴∴点C与直线AB的距离为∴点C为圆心,6cm的长为半径的圆与直线AB的位置关系是相交.【考点】勾股定理,直线和圆的位置关系点评:勾股定理是初中数学平面图形中的重点,在中考中极为常见,在各种题型中均有出现,一般难度不大,需多加注意.2.如图,在△ABC中, ,⊙A与BC相切于点D,与AB相交于点E,则∠ADE等于____度.【答案】60【解析】先根据切线的性质可得∠ADB=90°,由AB=AC,∠BAC=120°可得∠B的度数,即可得到∠BAD的度数,再根据AD=AE即可求得结果.∵⊙A与BC相切于点D∴∠ADB=90°∵AB=AC,∠BAC=120°∴∠B=30°∴∠BAD=60°∵AD=AE∴∠ADE=60°.【考点】切线的性质,等腰三角形的性质,圆的基本性质点评:切线的性质是圆中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需多加注意.3.已知⊙O的半径为4cm,直线L与⊙O相交,则圆心O到直线L的距离d 的取值范围是____.【答案】0≤d<4【解析】圆心O到直线L的距离为d,圆的半径为r:当时,直线与圆相离;当时,直线与圆相切;当时,直线与圆相交.∵⊙O的半径为4cm,直线L与⊙O相交∴0≤d<4.【考点】直线和圆的位置关系点评:本题是直线和圆的位置关系的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.4.如图,PA、PB是⊙O的切线,切点分别为A、B,且∠APB=50°,点C是优弧AB上的一点,则∠ACB的度数为________.【答案】65°【解析】连接OA、OB,根据切线的性质可得∠PAO=∠PBO=90°,再根据四边形的内角和定理可得∠AOB的度数,最后根据圆周角定理即可求得结果.连接OA、OB∵PA、PB是⊙O的切线∴∠PAO=∠PBO=90°∵∠APB=50°∴∠AOB=130°∴∠ACB=65°.【考点】切线的性质,圆周角定理点评:切线的性质是圆中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需多加注意.5.如图,⊙O为△ABC的内切圆,D、E、F为切点,∠DOB="73°,∠DOE=120°," 则∠DOF=_______度,∠C=______度,∠A=_______度.【答案】146°,60°,86°【解析】根据切线的性质结合四边形内角和定理即可求得结果.∵⊙O为△ABC的内切圆,∠DOB=73°,∠DOE=120°∴∠DOF=146°,∠C=60°∴∠EOF=94°∴∠A=86°.【考点】切线的性质,四边形内角和定理点评:切线的性质是圆中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需多加注意.6.若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与直线AB 的位置关系是( )A.相交B.相切C.相离D.不能确定【答案】A【解析】圆心O到直线L的距离为d,圆的半径为r:当时,直线与圆相离;当时,直线与圆相切;当时,直线与圆相交.由题意得点O到直线AB的距离为5则以O为圆心,6cm为半径的圆与直线AB 的位置关系是相交故选A.【考点】直线和圆的位置关系,含30°角的直角三角形的性质点评:本题是直线和圆的位置关系的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.7.给出下列命题:①任意三角形一定有一个外接圆,并且只有一个外接圆; ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形, 并且只有一个外切三角形,其中真命题共有( )A.1个B.2个C.3个D.4个【答案】B【解析】根据三角形的外接圆,内接三角形,内切圆,外切三角形的性质依次分析即可.①任意三角形一定有一个外接圆,并且只有一个外接圆,③任意一个三角形一定有一个内切圆,并且只有一个内切圆,正确;②任意一个圆一定有一个内接三角形,而且有无数个内接三角形,④任意一个圆一定有一个外切三角形,而且有无数个外切三角形,故错误;故选B.【考点】三角形的外接圆,内接三角形,内切圆,外切三角形点评:三角形的应用贯穿于整个初中学习,是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.设⊙O的直径为m,直线L与⊙O相离,点O到直线L的距离为d,则d与m的关系是( )A.d=m B.d>m C.d>D.d<【答案】C【解析】圆心O到直线L的距离为d,圆的半径为r:当时,直线与圆相离;当时,直线与圆相切;当时,直线与圆相交.∵⊙O的直径为m,直线L与⊙O相离∴d>故选C.【考点】直线和圆的位置关系点评:本题是直线和圆的位置关系的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.9.如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C.(1)BT是否平分∠OBA?证明你的结论.(2)若已知AT=4,试求AB的长.【答案】(1)平分;(2)2【解析】(1)连接OT,根据切线的性质可得∠OTA=90°,即可得到∠OBT=∠OTB=90°-∠ATB=∠ABT,从而得到结果;(2)过O作OM⊥BC于M,则可得四边形OTAM是矩形,根据矩形的性质可得OM=AT=4,AM=OT=5.在Rt△OBM中,根据勾股定理可得BM的长,从而可以求得结果.(1)连接OT,∵PT切⊙O于T,∴OT⊥PT,故∠OTA="90°,"从而∠OBT=∠OTB=90°-∠ATB=∠ABT.即BT平分∠OBA.(2)过O作OM⊥BC于M则四边形OTAM是矩形,故OM=AT=4,AM=OT=5.在Rt△OBM中, OB=5,OM=4,故BM==3,从而AB=AM-BM=5-3=2.【考点】切线的性质,角平分线的判定,矩形的判定和性质,勾股定理点评:本题综合性强,知识点较多,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.如图,AB为半圆O的直径,在AB的同侧作AC、BD切半圆O于A、B,CD切半圆O于E,请分别写出两个角相等、两条边相等、两个三角形全等、两个三角形相似等四个正确的结论.【答案】①角相等:∠AOC=∠COE=∠BDO=∠EDO,∠ACO=∠ECO=∠DOE=∠DOB,∠A=∠B=∠OEC=∠OED,②边相等:AC=CE,DE=DB,OA=OB=OE;③全等三角形:△OAC≌△OEC,△OBD≌△OED;④相似三角形:△AOC∽△EOC∽△EDO∽△BDO∽△ODC.【解析】根据切线的性质仔细分析图形即可判断.由已知得:OA=OE,∠OAC=∠OEC,又OC公共,故△OAC≌OEC,同理,△OBD ≌△OED,由此可得∠AOC=∠EOC,∠BOD=∠EOD,从而∠COD="90°,∠AOC=∠BDO."根据这些写如下结论:①角相等:∠AOC=∠COE=∠BDO=∠EDO,∠ACO=∠ECO=∠DOE=∠DOB,∠A=∠B=∠OEC=∠OED,②边相等:AC=CE,DE=DB,OA=OB=OE;③全等三角形:△OAC≌△OEC,△OBD≌△OED;④相似三角形:△AOC∽△EOC∽△EDO∽△BDO∽△ODC.【考点】切线的性质点评:切线的性质是圆中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需多加注意.。
最新2012年6月最新整理全国各地中考数学模拟试题分类汇编 2--40.直线跟圆的位置关系文档文档

直线与圆的位置关系一、选择题1、(2012年浙江一模)同学们玩过滚铁环吗?当铁环的半径是30cm ,手柄长40cm .当手柄的一端勾在环上,另一端到铁环的圆心的距离为50cm 时,铁环所在的圆与手柄所在的直线的位置关系为( )A .相离B .相交C .相切D .不能确定 答案:C2、(2012 内蒙古呼伦贝尔一摸)如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为( )A .⎪⎪⎭⎫ ⎝⎛-58,23 B .()1,3-C .⎪⎭⎫⎝⎛-59,54D .()3,1-答案:D3.(2012宁德市一摸)如图,正方形ABCD 的边长AB =4,分别以点A 、B 为圆心,AB 长为半径画弧,两弧交于点E ,则BE ⌒的长是( ) A .π32B .πC .π34 D .π38 答案:C4、(2012江苏江阴青阳九年级下期中检测,9,3分)如图,直线y x 轴、y 分别相交与A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切与点O 。
若将圆P 沿x 轴向左移动,当圆P 与该直线相交时,横坐标为整数的点P ′的个数是 A .3 B .4 C .5 D . 6( )答案:A 5、(2012江苏如东中考网上适应性模拟测试,6,3分)已知线段AB =2cm .现以点A 为圆心,5cm 为半径画⊙A,再以点B 为圆心画⊙B,使⊙B 与⊙A 相内切,则⊙B 的半径为 答案:DA DCBE第9题图6、(2012年浙江一模)如图,在ABC ∆中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 长度的最小值是( ) A . 4.8 B .4.75 C .5 D. 答案:A7、(2012广西合浦县模拟)如图,已知⊙O 是以数轴的原点O圆,45AOB ∠=︒,点P在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设x OP =,则x 的取值范围是A .-1≤x ≤1B .≤x ≤2C .0≤x ≤2D .x >2\答案:B二、填空题1、(保沙中学2012二模)如图,在平面直角坐标系中,点A 1是以原点O 为圆心,半径为2的圆与过点(0,1)且平行于x 轴的直线l 1的一个交点;点A 2是以原点O 为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l 2的一个交点;……按照这样的规律进行下去,点An 的坐标为_________ .答案:(√2n+1,n)2、[2012江苏省无锡市天一实验学校一模]如图,在△ABC 中,AB = 10,AC = 6,BC = 8,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODA = ▲ .答案:23、(2012 内蒙古呼伦贝尔一摸)半径为2的圆与过点(0,1)且平行于x 轴的直线l 1第1题径为3的圆与过点(0,2)且平行于x 轴的直线l 2的一个交点;……按照这样的规律进行下去,点An 的坐标为_________ .答案:(12+n ,n )4、(福建晋江市2012初中学业质检题)如图,点()b a A ,在双曲线()0>=x xky 上,x AB ⊥轴于点B ,若点()34,35P 是双曲线上异于点A 的另一点. (1)______=k ;(2)若22169b a -=,则OAB ∆的内切圆半径_____=r .答案:(1)60 (2)25、(2012江苏扬州中学一模)如图,直线l 的解析式为x y 33=,⊙O 是以坐标原点为圆 心,半径为1的圆,点P 在x 轴上运动,过点P 且与直线l 平 行(或重合)的直线与⊙O 有公共点,则点P 的横坐标为整数 的点的个数有 ▲ 个. 答案:56.(2012浙江温岭三中一模)如图,正方形ABCDBCE 沿CE 折叠至⊿FCE ,若CF ,CE 恰好与以正方形ABCD 的中心为圆心的⊙O 相切,则折痕CE 的长为_______ ; 7、如图,已知直线334y x =-交x 轴、y 轴于点A 、B ,⊙P 的圆心从原点出发以每秒1个单移动,移动时间为t (s),半径为2t,位的速度向x 轴正方向则t = ▲ s 时⊙P 与直线AB 相切.答案:2411或24第7题8、(2012江苏扬州中学一模)如图,直线l 的解析式为x y 33=,⊙O 是以坐标原点为圆心,半径为1的圆,点P 在x 轴上运动,过点Pl 平行(或重合)的直线与⊙O 有公共点,则点P 整数的点的个数有 ▲ 个.答案:59. (2012 年 福 州 市 初 中 毕 业 班 质 量 检 查) 如图,∠AOB =30°,n 个半圆依次外切,它们的圆心都在射线OA 上并与射线OB 相切,设半圆C 1、半圆C 2、半圆C 3、…、半圆C n 的半径分别是r 1、r 2、r 3、、r n ,则r 2012r 2011=___________.答案:310、(2012年河北一模)如图,⊙O 的直径CD ⊥AB ,∠CDB =30°,若3OA =,则弦AB 的长度为 .10题图ABO CD A C 1 C 2C 3 第9题答案:11、(2012南京江宁区九年级调研卷)如图,⊙A 经过原点O ,A 点的坐标为(2,0),点P在x 轴上,⊙P 的半径为1且与⊙A 外切,则点P 的坐标为 ▲ .答案:(5,0)或(-1,0)三、解答题1、(2012年浙江五模)已知:如图,中,,以AB 为直径的⊙O 交BC 于点D ,过点D 作AC DF ⊥于点F ,交BA 的延长线于点E .求证:(1)BD =CD ; (2)DE 是⊙O 的切线.答案:(1) 连结AD ,AB 是直径 ︒=∠∴90ADB (2分) AC AB = CD BD =∴ (5分) (2) 连结OD ,OD OB = ODB B ∠=∠∴ (6分) AC AB = C B ∠=∠∴ C ODB ∠=∠∴ OD ∴∥AC (8分)AC DF ⊥ DF OD ⊥∴ DE ∴是⊙O 的切线 (10分) 2、(保沙中学2012二模)如图,AB 是⊙O 的直径,∠BAC =30°,M 是OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且∠ECF =∠E . (1)证明CF 是⊙O 的切线;ABC ∆AC AB =BAC DEF O∙(第1题图)BAC DEFO∙答案:解:(1)连结OD. ∵OA=OD,∴∠1=∠2,∵AB是⊙O的直径,∴∠ADB=90°∴∠1+∠B=90°,又∠CDA=∠B∴∠2+∠CDA=90°,即DC⊥OD∴CD是⊙O的切线。
2012年部分中考数学试题分类汇编33《与圆有关的解答题》

PA2008 年中考数学“圆”解答题选编1.(08黑龙江大庆)26.(本题7分)如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥.(1)判断直线AC 与DBE △外接圆的位置关系,并说明理由;(2)若6AD AE ==,BC 的长.2.(08吉林长春)22、(6分)为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm ,求铁环的半径.B·o答案:连结OA ,OP ,由切线长定理和勾股定理可得半径OP3.(08吉林长春)25、(8分)已知:如图,在△ABC 中,AB =AC ,以BC 为直径的半圆O 与边AB 相交于点D ,切线DE ⊥AC ,垂足为点E . 求证:(1)△ABC 是等边三角形;(2)CE AE 31=.证明:(1)连结OD 得OD ∥AC ∴∠BDO=∠A 又由OB =OD 得∠OBD =∠ODB ∴∠OBD=∠A ∴BC =AC 又∵AB=AC ∴△ABC 是等边三角形 (2)连结CD ,则CD ⊥AB ∴D 是AB 中点C(第26题)BDAEO∵AE =12AD=14AB ∴EC=3AE ∴CE AE 31=.4.(08辽宁沈阳)21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长.解:(1)OD AB ⊥ , AD DB∴=……3分 11522622DEB AOD ∴∠=∠=⨯= ……5分(2)OD AB ⊥ ,AC BC ∴=,AOC △为直角三角形,3OC = ,5OA =,由勾股定理可得4AC === ···················································· 8分 28AB AC ∴== ··········································································································· 10分5.(08辽宁大连)19.如图9,P A 、PB 是⊙O 的切线,点A 、B 为切点,AC 是⊙O 的直径,∠ACB = 70°.求∠P 的度数.6.(08辽宁十二市)20.如图10,AB 为O 的直径,D 为弦BE 的中点,连接OD 并延长交O 于点F ,与过B 点的切线相交于点C .若点E 为 AF 的中点,连接AE . 求证:ABE OCB △≌△. 解:(1)证明:如图2.AB 是O 的直径.90E ∴∠= ········································································· 1分又BC 是O 的切线,90OBC ∴∠=E OBC ∴∠=∠ ·································································· 3分 OD 过圆心,BD DE =,第21题图图 9图10ODB CF EAEFFB ∴= BOC A ∴∠=∠. ··········································································································· 6分 E 为 AF 中点, EF BF AE ∴==30ABE ∴∠= ················································································································ 8分 90E ∠=12AE AB OB ∴== ········································································································ 9分 ABE OCB ∴△≌△. ·································································································· 10分7.(08北京市卷19题)19.(本小题满分5分)已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.(1)判断直线BD 与O 的位置关系,并证明你的结论; (2)若:8:5AD AO =,2BC =,求BD 的长. 解:(1)直线BD 与O 相切.……1分 证明:如图1,连结OD .OA OD = , A ADO ∴∠=∠.90C ∠=, 90CBD CDB ∴∠+∠=.又CBD A ∠=∠ ,90ADO CDB ∴∠+∠= . 90ODB ∴∠= .∴直线BD 与O 相切. ································································································ 2分 (2)解法一:如图1,连结DE .AE 是O 的直径, 90ADE ∴∠= . :8:5AD AO = ,AA4cos 5AD A AE ∴==. ······································································································ 3分 90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==. ····························································································· 4分 2BC = , 52BD ∴=. ·················································································· 5分 解法二:如图2,过点O 作OH AD ⊥于点H . 12AH DH AD ∴==.:8:5AD AO = ,4cos 5AH A AO ∴==. ··················· 3分 90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==. ··································· 4分 2BC = ,52BD ∴=. ····················································································································· 5分8.(08天津市卷)21.(本小题8分)如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长. 解(Ⅰ)∵AB ∥CD ,∴︒=∠+∠180ADC BAD . ……1分 ∵⊙O 内切于梯形ABCD , ∴AO 平分BAD ∠,有BAD DAO ∠=∠21, DO 平分ADC ∠,有ADC ADO ∠=∠21. ∴︒=∠+∠=∠+∠90)(21ADC BAD ADO DAO . ∴︒=∠+∠-︒=∠90)(180ADO DAO AOD . ··································································· 4分 (Ⅱ)∵在Rt △AOD 中,8=AO cm ,6=DO cm ,∴由勾股定理,得1022=+=DO AO AD cm . ························································· 5分 ∵E 为切点,∴AD OE ⊥.有︒=∠90AEO . ······························································· 6分AABD CEOCA BE FMN 图①CABE MN 图②∴AOD AEO ∠=∠.又OAD ∠为公共角,∴△AEO ∽△AOD . ···························································· 7分 ∴AD AO OD OE =,∴8.4=⋅=ADODAO OE cm . ···································································· 8分9.(08天津市卷)25.(本小题10分)已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=;思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了. 请你完成证明过程:(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.25.本小题满分10分.(Ⅰ)证明 将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM . ··························································································· 1分 有CA CD =,AM DM =,ACM DCM ∠=∠,A CDM ∠=∠. 又由CB CA =,得 CB CD =. ······································ 2分 由DCM DCM ECF DCN ∠-︒=∠-∠=∠45,ACM ECF ACB BCN ∠-∠-∠=∠ ACM ACM ∠-︒=∠-︒-︒=454590,得BCN DCN ∠=∠. ······································································································ 3分CABEFDMN又CN CN =,∴△CDN ≌△CBN . ····························································································· 4分 有BN DN =,B CDN ∠=∠.∴︒=∠+∠=∠+∠=∠90B A CDN CDM MDN . ···························································· 5分 ∴在Rt △MDN 中,由勾股定理,得222DN DM MN +=.即222BN AM MN +=. ······················································· 6分 (Ⅱ)关系式222BN AM MN +=仍然成立. ···························································· 7分 证明 将△ACM 沿直线CE 对折,得△GCM ,连GN , 则△GCM ≌△ACM . ··················································· 8分 有CA CG =,AM GM =,ACM GCM ∠=∠,CAM CGM ∠=∠. 又由CB CA =,得 CB CG =.由︒+∠=∠+∠=∠45GCM ECF GCM GCN ,ACM ACM ECF ACN ACB BCN ∠+︒=∠-∠-︒=∠-∠=∠45)(90.得BCN GCN ∠=∠. ·································································································· 9分 又CN CN =, ∴△CGN ≌△CBN .有BN GN =, 45=∠=∠B CGN ,︒=∠-︒=∠=∠135180CAB CAM CGM , ∴ 9045135=-=∠-∠=∠CGN CGM MGN . ∴在Rt △MGN 中,由勾股定理,得222GN GM MN +=.即222BN AM MN +=. ······················································· 10分10.(08内蒙赤峰)24.(本题满分14分)如图(1),两半径为r 的等圆1O 和2O 相交于M N ,两点,且2O 过点1O .过M 点作直线AB 垂直于MN ,分别交1O 和2O 于A B ,两点,连结NA NB ,. (1)猜想点2O 与1O 有什么位置关系,并给出证明; (2)猜想NAB △的形状,并给出证明;(3)如图(2),若过M 的点所在的直线AB 不垂直于MN ,且点A B ,在点M 的两侧,那么(2)中CABE FMN G的结论是否成立,若成立请给出证明.24.解:(1)2O 在1O 上 ·····································(1分) 证明:2O 过点1O ,12O O r ∴=.又1O 的半径也是r ,∴点2O 在1O 上. ············································· (3分) (2)NAB △是等边三角形 ································ (5分) 证明:MN AB ⊥ ,90NMB NMA ∴∠=∠= .BN ∴是2O 的直径,AN 是1O 的直径,即2BN AN r ==,2O 在BN 上,1O 在AN 上.················································ (7分) 连结12O O ,则12O O 是NAB △的中位线.1222AB O O r ∴==.AB BN AN ∴==,则NAB △是等边三角形. ·················································· (9分) (3)仍然成立. ···································································································· (11分)证明:由(2)得在1O 中 MN所对的圆周角为60. 在2O 中 MN 所对的圆周角为60. ·································································· (12分)∴当点A B ,在点M 的两侧时,在1O 中 MN所对的圆周角60MAN ∠=, 在2O 中 MN所对的圆周角60MBN ∠=,图(1)图(2)图(1)图(2)NAB ∴△是等边三角形. ····················································································· (14分) (2),(3)是中学生猜想为等腰三角形证明正确给一半分.11.(08内蒙乌兰察布)21.(本小题11分)如图所示,AB 是O 的直径,AD 是弦,DBC A ∠=∠,OC BD ⊥于点E . (1)求证:BC 是O 的切线;(2)若1210BD EC ==,,求AD 的长.21.(1)证明:AB 是O 的直径,90D ∴∠= , 90A ABD ∴∠+∠= .DBC A ∠=∠ ,90DBC ABD ∴∠+∠=即90ABC ∠=.AB BC ∴⊥. BC ∴是O 的切线.(2)OC BD ⊥ ,162BE ED BD ∴===. 90BEC D ∠=∠= ,DBC A ∠=∠,BEC ADB ∴△∽△.BE ECAD DB ∴=. 61012AD ∴=.7.2AD ∴=.12.(08山西省卷)23.(本题8分)如图,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点。
2012年中考复习数学(练习版)课件7.3直线与圆、圆与圆的位置关系

∵点G是AD的中点,∴EG= AD=DG
∴∠1+∠3=∠2+∠4.∴∠OEG=∠ODG=90°. 即GE⊥OE于点E,∴ GE是⊙O的切线.
九年级 第七章第三节课中
例3 如图7-3-3,⊙O1 与⊙O2 外切于点P.⊙O1 与⊙O2 的半径 之比r1:r2=3:2,已知AP=6cm.延长AP交⊙ O2 于点B.求AB 的长.
九年级 第七章第三节课中
如图7-3-1,P为正比例函数 y = 3 x 图象上的一个动点,⊙P 2 的半径为3,设点P的坐标为(a,b). 例1 (1)求⊙P与直线x=2相切时点P的坐标; (2)请直接写出⊙P与直位置关系,
只要比较圆心到直线x=2的距离d与半径r
的大小关系.故作PA⊥直线x=2于点A, 然后,由直线与圆不同的位置关系,可
得d与r的大小关系,进而可得点P的坐标.
九年级 第七章第三节课中
解 (1)过点P作直线x=2的垂线,垂足为点A. 当点P在直线x=2的右侧时,a=5,P(5, );
3 ; 当点P在直线x=2的左侧时,a=-1,P (-1, - ) 2 3 ∴当⊙P与直线x=2相切时,点P的坐标为(5, )或 (-1, - ) 2 15 2 15 2
九年级 7.3课后
九年级 7.3课后
B
九年级 7.3课后
解:
B
九年级 7.3课后
九年级 7.3课后
F D
九年级 7.3课后
九年级 7.3课后
A
O
E
C F D
B
九年级 7.3课前
九年级 7.3课前
参考答案:
1 . A
2 . C
3 . D
2012年长沙市中考数学试题及答案

2012年长沙市初中毕业学业水平考试试卷数 学注意事项:1、答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2、必须在答题卡上答题,在草稿纸、试题卷上答题无效;3、答题时,请考生注意各大题题号后面的答题提示;4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5、答题卡上不得使用涂改液、涂改胶和贴纸;6、本学科试卷共26个小题,考试时量120分钟,满分120分。
一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本题共10个小题,每小题3分,共30分) 1.-3的相反数是 A .13B .-3C .13-D .32.下列标志既是轴对称图形又是中心对称图形的是A B C D3.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者方差的大小关系是A .22S S <乙甲B .22S S >乙甲C .22S S =乙甲D .不能确定4.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为 A .⎩⎨⎧-≤>12x x B . ⎩⎨⎧-><12x xC .⎩⎨⎧-≥<12x x D . ⎩⎨⎧-≤<12x x (第4题) 5.下列四边形中,对角线一定不相等的是 A .正方形B .矩形C .等腰梯形D .直角梯形6.下列四个角中,最有可能与70︒角互补的角是ABCD7.小明骑自行车上学,开始时以正常的速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车.车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶.下面是行驶路程()s m 关于时间(min)t 的函数图象,那么符合小明行驶情况的大致图象是ABCD8.如图,菱形 ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 且交BC 于点E ,AD =6cm ,则OE 的长为 A . 6cmB .4cmC .3cmD .2cm(第8题) (第9题)9.某闭合电路中,电源的电压为定值,电流强度()I A 与电阻()R Ω成反比例关系, 其函数图象如图所示,则电流强度()I A 与电阻()R Ω的函数解析式是 A .2I R =B .3I R =C .6I R =D .6I R=- 10.现有3cm, 4cm, 7 cm, 9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是A .1个B .2个C .3个D .4个二、填空题(本题共8个小题,每小题3分,共24分) 11.已知函数关系式:1y x =-,则自变量x 的取值范围是 .12.如图,在△ABC 中,45,60,A B ∠=︒∠=︒则外角ACD ∠= 度 . 13.若实数,a b 满足:2310a b -+=,则ba = . 14.已知一次函数:3y mx =+ 的图象经过第一、二、四象限, 则m 的取值范围是 .15.任意抛掷一枚硬币,则“正面朝上”是 事件.16.在半径为1cm 的圆中,圆心角为120︒的扇形的弧长是 cm . 17.如图,AB ∥CD ∥EF , 那么:BAC ACE CEF ∠+∠+∠= 度.18.如图,等腰梯形ABCD 中,AB ∥CD ,2cm AD AB ==,60D ∠=︒,则边DC = cm.三、解答题(本题共2个小题,每小题6分,共12分) 19. 计算:11()2sin 3092-+︒- .20. 先化简,再求值: 22222a ab b ba b a b-++-+, 其中 2,1a b =-=.四、解答题(本题共2个小题,每小题8分,共16分)(第17题)(第18题)(第12题)21.某班数学科代表小华对本班上期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数、频率统计表和频数分布直方图.请你根据图表提供的信息,解答下列问题: (1)频数、频率统计表中a = ,b = ;(2)补全频数分布直方图;(3)小华在班上任选一名同学,该同学数学成绩不低于80分的概率是多少?分组 49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合计 频数 2 a20 16 450 频率0.040.160.400.32b122.如图,,,,A P B C 是半径为8的⊙O 上的四点,且满足60BAC APC ∠=∠=︒.(1)求证:△ABC 是等边三角形; (2)求圆心O 到边BC 的距离OD .五、解答题(本题共2个小题,每小题9分,共18分)23.以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕.作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目个数多51个.(1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元?CP BAOD(第22题)(第21题)24.如图,已知正方形ABCD 中,BE 平分DBC ∠且交CD 边于点E .将△BCE 绕点C 顺时针旋转到DCF △的位置,并延长BE 交DF 于点G .(1)求证:BDG DEG △∽△;(2)若EG ·4BG =,求BE 的长.六、解答题(本题共2个小题,每小题10分,共20分)25.在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元至35元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为:40(2530),250.5(3035).x x y xx -≤≤=-<≤⎧⎨⎩(年获利=年销售收入一生产成本一投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少? (3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大盈利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.26.如图,半径分别为,(0)m n m n <<的两圆⊙1O ,⊙2O 相交于P ,Q 两点,且点(4,1)P ,两圆同时与两坐标轴相切, ⊙1O 与x 轴,y 轴分别切于点M ,点N ; ⊙2O 与x 轴,y 轴分别切于点R ,点H . (1)求两圆的圆心12,O O 所在直线的解析式; (2)求两圆的圆心12,O O 之间的距离d ; (3)令四边形12PO QO 的面积=1S ,四边形12RMO O 的面积=2S .试探究:是否存在一条经过,P Q 两点、开口向下 且在x 轴上截得的线段长为122S S d-的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.(第24题)(第26题)2012年长沙市初中毕业学业水平考试试卷数学参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案DAACDDCCCB二、填空题(本题共8个小题,每小题3分,共24分) 11.1x ≥ 12.10513.114.0m <15.随机16.23π17.360 18.4三、解答题(本题共2个小题,每小题6分,共12分) 19. 解:原式=2130+-=.…………… 6分20.解:原式=22222a ab b ba b a b -++-+=2()()()a b b a b a b a b -+-++ =a b b aa b a b a b-+=+++ …………… 4分 所以当2,1a b =-=时 原式=2221-=-+.…………… 6分四、解答题(本题共2个小题,每小题8分,共16分)21. (1)a =8 ,b =0.08. …………… 2分 (2)……………5 分(3)因为不低于80分的学生共有20个,本班共有学生50个,故小华在班上任选一名同学,该同学数学成绩不低于80分的概率是202505=. ………… 8 分 22.解:(1)根据同弧所对的圆周角相等可得60ABC APC ∠=∠=︒ …… 2分 又6060BAC CAB ∠=︒∴∠=︒ …… 3分 从而△ABC 是等边三角形. …… 4分 (2)连接OB ,点O 是正△ABC 的外接圆的圆心∴点O 也是正△ABC 的内切圆的圆心 …… 5分∴OB 是ABC ∠角平分线…………… 6分 ∴30OAC ∠=︒ OD BC ⊥ ∴142OD OB ==. …………… 8分五、解答题(本题共2个小题,每小题9分,共18分)23.解:(1)设境外、省外境内投资合作项目的个数分别为x 个,y 个,则由题意可得348251x y x y +=⎧⎨-=⎩…………… 3分解之得 133215x y =⎧⎨=⎩…………… 6分所以,境外、省外境内投资合作项目个数分别为133个,215个. ……… 7分(2) 由题意得:13362157.52410.5⨯+⨯=(亿元)所以在这次中博会中,东道主湖南共引进资金约2410.5亿元. …………… 9分 24.解:(1) 证明:BE 平分DBC ∠DBE EBC ∴∠=∠ ……… 1分 又由旋转可知: △BCE ≅△DCF ……… 2分 所以EBC CDF ∠=∠ 所以 DBE CDF ∠=∠又DGE ∠公共 ……… 3分 故BDG DEG △∽△. ……… 4分(2) BCE DCF ≅△△ 90BCE DCF ∴∠=∠=︒,,B C F ∴三点共线…………… 5分 四边形ABCD 是正方形,45DBC BDC ∴∠=∠=︒BE 平分DBC ∠ 22.5DBE EBC CDF ∴∠=∠=∠=︒∴4522.567.5BDF ∠=︒+︒=︒ 9022.567.5F ∠=︒-︒=︒ ∴BDF F ∠=∠ …………… 6分 又 BE 平分DBC ∠, G ∴为DF 的中点2DF DG BE ∴==…………… 7分 又BDG DEG △∽△EG DG DG BG∴= 2•4DG EG BG ∴== …………… 8分 224DG BE DG ∴=∴==. …………… 9分六、解答题(本题共2个小题,每小题10分,共20分) 25.解:(1)当28x =元时,402812y =-=万件 …………… 3分(2)投资总成本为:25+100=125(万元) 当25≦x ≦30时, y= 40-xw=xy -20y -125= (x -20)( 40-x)-125= -(x -30)2-25 …………… 4分可见第一年在销售单价x 满足:25≦x ≦30时,注定亏损, x=30时亏损最小,为25万元 当30<x ≤35时, y= 25-0.5xw=xy -20y -125= (x -20)( 25-0.5x)-125 = -0.5(x -35)2-12.5 …………… 5分可见第一年在销售单价x 满足:30<x ≤35时,也注定亏损,当x=35时亏损最少,为12.5万元.综上,22(30)25(2530)0.5(35)12.5(3035)x x w x x ⎧---≤≤⎪=⎨---<≤⎪⎩该公司第一年注定亏损,当销售单价x=35时亏损最小,为12.5万元. …………… 6分 (3)由题意可得:捐款Z (万元)与销售单价x (元)之间的函数关系是50(2530)350.5(3035)xx z x x -≤≤⎧=⎨-<≤⎩既然两年一块算,第二年我们就不用算投资成本那125万元了,两年的总盈利不低于67.5万元,第一年最小亏损12.5万元,67.5+12.5=80万元,当25≦x ≦30时,50z x =-第二年盈利必须满足:xy -20y -z =(x -20)( 40-x)-z ≧80 …………… 8分化简得到:261()0.2502x --+≥,根据函数图象以及结合25≦x ≦30 解得30x =当30<x ≤35时,350.5z x =-第二年盈利必须满足:xy -20y -z =(x -20)( 25-0.5x) -z ≧80 …………… 9分化简得到:2710.5()15.12502x --+≥,根据函数图象可得:30<x ≤35 综上可得销售单价的范围为:3035x ≤≤. …………… 10分26.解(1)方法一:由于两圆同时与两坐标轴相切,所以两圆圆心到两坐标轴的距离相等,又两圆圆心均在第一象限,故两圆圆心均在第一、三象限的角平分线上,从而所求的直线的解析式为:y x = …………… 3分方法二:设两圆圆心12,O O 所在的直线的解析式是:y kx b =+由题意可知:12(,),(,)()O m m O n n m n <km b m kn b n +=⎧∴⎨+=⎩ ……………1分 10k b =⎧∴⎨=⎩…………… 2分 故所求的直线方程为:y x =…………… 3分(2) 方法一:12(,)()O O n n m n <(m,m),,两圆⊙1O ,⊙2O 的半径分别为,m n 12,O P m O P n ∴==则由题意结合勾股定理可得:222222(1)(4)(1)(4)m m m n n n⎧-+-=⎨-+-=⎩ ………………4分解之得:55m n =-=+…………… 5分故两圆圆心距:12d OO n ==-=×8= …………… 6分方法二:(构造一元二次方程,根据韦达定理求解)(3) 假设存在这样的抛物线,不妨设其方程为:2(0)y ax bx c a =++<因为点Q 与点(4,1)P 关于直线:y x =对称,根据三角形全等的知识可得点Q (1,4)) …………… 7分由对称性结合勾股定理 可以求出:PQ = 在四边形12PO QO 中,由于两对角线12,PQ O O 互相垂直故11211·22S PQ O O ==×8=21()()2022S m n n m =+-=所以1212S S d-= …………… 8分 又设抛物线与x 轴的两个交点的坐标为:12(,0),(,0),x x 则121x x -= 从而 21212121641(1)4(2)()4(3)a b c a b c x x x x x x ⎧++=⎪⎪++=⎨⎪-=+-⎪⎩由(1),(2)可得1554b a c a =--⎧⎨=+⎩ 又1212b x x ac x x a ⎧+=-⎪⎪⎨⎪=⎪⎩代入第(3)可得2151()4a a --=--·54aa+ 整理可得:281010a a -+=解得:5170a ±=> …………… 9分 这与题设0a <相矛盾.故这样的抛物线不存在.…………… 10分长沙市2012年初中毕业学业水平考试数学学科评价报告长沙市2012年初中毕业学业水平考试数学科试卷按照“体现学业水平考试性质,兼顾选拔”的总体要求,本着有利于引导和促进数学教学全面落实《课程标准》所设立的课程目标,有利于引导老师和学生进一步转变教育教学观念,改善教与学的方式,提高数学教学效率,有利于减轻学生过重的课业负担,培养学生创新精神与实践能力的命题原则,客观、全面、公正、准确地考查了学生在基础知识与基本技能、数学活动过程、解决问题的能力、对数学的基本认识等方面的目标达成情况.下面就我市初中数学毕业考试试卷及评卷情况作简要分析。
(备战中考)2012年中考数学新题分类汇编(中考真题+模拟新题):直线与圆的位置关系

直线与圆的位置关系一、选择题1. (2011宁波市,11,3分)如图,⊙O1的半径为1,正方形ABCD的边长为6,点O2为正方形ABCD的中心,O1O2垂直AB与P点,O1O2=8.若将⊙O1绕点P按顺时针方向旋转360°,在旋转过程中,⊙O1与正方形ABCD的边只有一个公共点的情况一共出现A.3次B.5次C.6次D.7次【答案】B2. (2011浙江台州,10,4分)如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PB切⊙O于点B,则PB的最小值是()A.13B.5C. 3D.2【答案】B3. (2011浙江温州,10,4分)如图,O是正方形ABCD的对角线BD上一点,⊙O边AB,BC都相切,点E,F分别在边AD,DC上.现将△DEF沿着EF对折,折痕EF与⊙O 相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是( )[来源:]D.22A.3 B.4 C.22【答案】C4. (2011浙江丽水,10,3分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()x y110B C AA .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)【答案】C5. (2011浙江金华,10,3分)如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( ) x y110B C AA .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)【答案】C6. (2011山东日照,11,4分)已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O的半径为b a ab 的是( )【答案】C7. (2011湖北鄂州,13,3分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A .30°B .45°C .60°D .67.5°【答案】D[]8. (2011 浙江湖州,9,3)如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CD A O PB第13题图CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是A .12B .1C .2D .3【答案】C9. (2011台湾全区,33)如图(十五),AB 为圆O 的直径,在圆O 上取异于A 、B 的一点C ,并连接BC 、AC .若想在AB 上取一点P ,使得P 与直线BC 的距离等于AP 长,判断下列四个作法何者正确?A .作AC 的中垂线,交AB 于P 点B .作∠ACB 的角平分线,交AB 于P 点C .作∠ABC 的角平分线,交AC 于D 点,过D 作直线BC 的并行线,交AB 于P 点D .过A 作圆O 的切线,交直线BC 于D 点,作∠ADC 的角平分线,交AB 于P 点【答案】D10.(2011甘肃兰州,3,4分)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于A .20°B .30°C .40°D .50°【答案】C 11. (2011四川成都,10,3分)已知⊙O 的面积为29cm π,若点0到直线l 的距离为cm π,则直线l 与⊙O 的位置关系是C(A)相交 (B)相切 (C)相离 (D)无法确定【答案】C AB D O C12. (2011重庆綦江,7,4分) 如图,PA 、PB 是⊙O 的切线,切点是A 、B ,已知∠P =60°,OA =3,那么∠AOB 所对弧的长度为( )A .6лB .5лC .3лD .2л【答案】:D13. (2011湖北黄冈,13,3分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A .30°B .45°C .60°D .67.5°【答案】D 14. (2011山东东营,12,3分)如图,直线333y x =+与x 轴、y 分别相交与A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切与点O 。
(备战2012中考15分钟精华题)考点27直线与圆的位置关系

直线与圆的位置关系一、选择题1.如图,P A 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且∠AEB为( )A .120°B .90°C .60°D .75°2.如图,∠ACB =60○,半径为2的⊙0切BC 于点C ,若将⊙O 在CB 到⊙O 与CA 也相切时,圆心O 移动的水平距离为 ( ) A .2π B .4π C .32 D .43.如图,⊙O 是⊿ABC 的外接圆,已知AD 平分∠BAC 交⊙O 于点D ,AD=5,BD=2,则DE 的长为( ) A .35B .425C .225D .454.已知O 的半径为5cm ,如果圆心O 到直线的距离为5.5cm ,那么直线和O 的位置关系是( ) A.相交 B.相切 C.相离 D.相交或相离5.如图,AB 是O ⊙的直径,弦2c m BC =,F 是弦BC 的中点,60ABC ∠=°.若动点E 以2cm/s 的速度从A 点出发沿着A B A →→方向运动,设运动时间为()(03)t s t <≤,连结EF ,当BEF △是直角三角形时,(s )的值为 A .47 B .1 C .47或1 D .47或1 或496.已知:⊙O 的半径为2cm ,圆心到直线l 的距离为1cm ,将直线l 沿垂直于l 的方向平移,使l 与⊙O 相切,则平移的距离是( ) A .1 cmB .2 cmC .3cmD .1 cm 或3cm7.如图,AB 是⊙O 的直径,AD 是⊙O 的切线,点C 在⊙O 上,BC ∥OD , AB =2,OD =3,则BC 的长为( )PA .23B .32C .32D .22二、填空题1.如图(1),PA 、PB 分别切 O 于点A 、B ,点E 是 O 上一点,用∠AEB = 60℃,则∠P 的度数为 .2.如图所示,AB ,AC 与⊙O 相切于点B ,C ,∠A =50°,点P 是圆上异于B ,C 的一动点,则∠BPC 的度数是______________3.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的1/3,另一根露出水面的长度是它的1/5.两根铁棒长度之和为55 cm , 此时木桶中水的深度是 cm .4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC .若∠A =36°,则∠C = ▲ .5.如图,⊙0内切于△ABC ,切点分别为D 、E 、F . 已知<B =50°,<C =60°,连结OE 、OF 、DE 、DF .则<EDF = 度.6.如图,AB 是半图的直径,C 为BA 延长线上的一点,CD 切半圆于点E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B C
O
直线与圆2012中考题型
基础题
1.(2012山东省荷泽市,11,3)如图,PA 、PB 是⊙o 的切线,A 、B 为切点,AC 是⊙
o 的直径,若∠P=46∘,则∠BAC=______.
O
P
B
A
C
2.(2012连云港,14,3分)如图,圆周角∠BAC=55°,分别过B 、C 两点作⊙O 的切线,两切线相交于点P ,则∠BPC= °。
3. (2012湖南湘潭,14,3分)如图,ABC 的一边AB 是⊙O 的直径,请你添加一个条件,使BC 是⊙O 的切线,你所添加的条件为 .
4. (2012年广西玉林市,9,3)如图,Rt △ABC 的内切圆⊙O 与两直角边AB 、BC 分别相切于点D ,E ,如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D ,E ,过劣弧DE (不包括端点D ,E )上任一点P 作⊙O 的切线MN 与AB ,BC 分别交于点M ,N ,若⊙O 的半径为r ,则Rt △MBN 的周长为( )
A .r
B .2
3r C .2r D .25
r
5、(2012甘肃兰州,19,4分)如图,已知⊙O 是以坐标原点O 为圆心,1为半径的圆,∠A OB =45°,点P 在x 轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设P (x ,0),则x 的取值范围是。
第5题图
6.(2012四川宜宾,16,3分)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连结AD,分别交CF、BC于点P、Q,连结AC。
给出下列结论:①∠BAD=∠ABC;②GP=GD;
③点P是△ACQ的外心;④AP·AD=CQ·CB.其中正确的是(写出所有真确结论的序号)。
解答题
1.(2012浙江丽水8分,20题)(本题8分)如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.
2.(2012福州,20,满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,AD交⊙O于点E。
(1)求证:AC平分∠DAB;
(2)若∠B=60°,CD=23,求AE的长。
3. (2012湖北随州,23,10分) 如图,已知直角梯形ABCD ,∠B =90°,AD ∥BC ,并且
AD +BC =CD ,O 为AB 的中点.
(1)求证:以AB 为直径的⊙O 与斜腰CD 相切; (2)若OC =8cm ,OD =6cm ,求CD 的长
.
4.((2012江苏泰州市,27,本题满分12分)如图,已知直线l 与⊙O 相离,O A ⊥l 于点A ,OA=5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C. (1)试判断线段AB 与AC 的数量关系,并说明理由; (2)若PC=25,求⊙O 的半径和线段PB 的长;
(3)若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,求⊙O 的半径r 的取值范围.
l l
┏
┏
A C P
A O
O
B
(第27题图) (备用图)
5.(2012年四川省德阳市,第23题、.) 如图,已知点C 是以AB 为直径的⊙O 上一点,CH ⊥AB 于点H ,过点B 作⊙O 的切线交直线AC 于点D ,点E 为CH 的中点,连结并延交BD 于点F ,直线CF 交AB 的延长线于G. ⑴求证:AF FD AE ⋅=⋅;
⑵求证:FC =
;
⑶若=
=FE FB ,求⊙O 的半径r 的长.
6.(2012山东德州中考,21,10,)如图,点A ,E 是半圆周上的三等分点,直径BC =2,AD BC ⊥,垂足为D ,连接BE 交AD 于F ,过A 作AG ∥BE 交BC 于G . (1)判断直线AG 与⊙O 的位置关系,并说明理由. (2)求线段AF 的长.
A B
C
E
D F
G O
7. (2012山东省临沂市,23,9分)如图,点A、B、C分别是⊙O上的点,∠B=600,AC=3,
CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长。
8.(2012湖北黄冈,22,8)如图,在△ABC 中,BA=BC,以AB为直径作半圆⊙O,交AC于点
D.连结DB,过点D作DE⊥BC,
垂足为点E.(1)求证:DE 为⊙O 的切线;(2)求证:DB2=AB·BE.
9.(2012山东日照,24,10分)在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.
(Ⅰ)探究新知
如图①⊙O是△ABC的内切圆,与三边分别相切于点E、F、G..
=1;
(1)求证:内切圆的半径r
(2)求OG:AG的值;
(Ⅱ)结论应用
(1)如图②若半径为r 2的两个等圆⊙O 1、⊙O 2外切,且⊙O 1与AC 、AB 相切,⊙O 2与BC 、AB 相切,求r 2的值;
(2)如图③若半径为r n 的n 个等圆⊙O 1、⊙O 2、…、⊙O n 依次外切,且⊙O 1与AC 、AB 相切,⊙O n 与BC 、AB 相切,⊙O 1、⊙O 2、…、⊙O n 均与AB 相切,求r n 的值.
10.(2012湖北咸宁,21,9分)如图,AB 是⊙O 的直径,点E 是AB 上的一点,CD 是过E 点的弦,过点B 的切线交AC 的延长线于点F ,BF ∥CD ,连接BC . (1)已知18=AB ,6=BC ,求弦CD 的长; (2)连接BD ,如果四边形BDCF 为平行四边形,则点E 位于AB 的什么位置?试说明理由.
(第21题)
A
B O
C F
D
E
11.(2012,湖北孝感,22,10分)如图,AB 是⊙O 的直径,AM ,BN 分别切⊙O 于点A ,B ,CD 交AM ,BN 于点D ,C ,DO 平分∠ADC . (1)求证:CD 是⊙O 的切线;(5分) (2)若AD =4,BC =9,求⊙O 的半径R .(5分)
12.(2012广东肇庆,24,10)如图7,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D ,连结BE 、AD 交于点P . 求证:
(1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)AB ⋅ CE=2DP ⋅AD .
13.(2012四川达州,22,7分)(7分)如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC 于点E ,过点A 作⊙O 的切线交OE 的延长线于点F ,连结CF 并延长交BA 的延长线于点P.
(1)求证:PC 是⊙O 的切线.
(2)若AF=1,OA=22,求PC 的长.
A
B
C
E
D
P
O 图7
⋅
14.(本题满分8分)
(2012陕西23,8分)如图,PA PB 、分别与O 相切于点A B 、,点M 在P B 上,且//O M A P ,M N A P ,垂足为N . (1)求证:=OM AN ;
(2)若O 的半径=3R ,=9PA ,求OM 的长.
15. (本题满分9分)(2012山东东营,20,9分)如图,AB 是⊙O 的直径,AM 和BN
是它的两条切线,DE切⊙O于点E,交AM于点D,交BN于点C,
(1)求证:OD∥BE;
(2)如果OD=6cm,OC=8cm,求CD的长.
16.(2012湖南衡阳市,26,8)如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B 作直线BF∥CD交AD的延长线于点F,若AB=10cm.
(1)求证:BF是⊙O的切线.
(2)若AD=8cm,求BE的长.
(3)若四边形CBFD为平行四边形,则四边形ACBD
为何种四边形?并说明理由.
(第20题图)
A D
N
E
B C
O
M。