2018届高考数学二轮复习技法篇学案含答案(全国通用)

合集下载

2018年高考数学二轮复习第2部分技法篇必考补充专题学案文

2018年高考数学二轮复习第2部分技法篇必考补充专题学案文

第2部分技法篇必考补充专题必考补充专题中的5个突破点在高考考查中较为简单,题型为选择、填空题及选修“2选1”,属送分题型,通过一轮复习,大多数考生已能熟练掌握,为节省宝贵的二轮复习时间,迎合教师与考生的需求,本部分只简单提炼核心知识,构建知识体系,讲解客观题解法,其余以练为主.建知识网络明内在联系[高考点拨]必考补充专题涉及的知识点比较集中,多为新增内容,在高考中常以“五小一大”的形式呈现,选考内容是解答题“2选1”.本专题的考查也是高考中当仁不让的高频考点,考查考生应用新知识解决问题的能力和转化与化归能力等.综合近年高考命题规律,本专题主要从“集合与常用逻辑用语”“不等式与线性规划”“算法初步、复数、推理与证明”“选修系列4”四大角度进行精练,引领考生明确考情,高效备考.技法篇:5招巧解客观题,省时、省力得高分[技法概述] 选择题、填空题是高考必考的题型,共占有80分,因此,探讨选择题、填空题的特点及解法是非常重要和必要的.选择题的特点是灵活多变、覆盖面广,突出的特点是答案就在给出的选项中.而填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,不设中间分,所以要求所填的是最简最完整的结果.解答选择题、填空题时,对正确性的要求比解答题更高、更严格.它们自身的特点决定选择题及填空题会有一些独到的解法.解法1 直接法直接法是直接从题设出发,抓住命题的特征,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得出结果.直接法是求解填空题的常用方法.在用直接法求解选择题时,可利用选项的暗示性作出判断,同时应注意:在计算和论证时尽量简化步骤,合理跳步,还要尽可能地利用一些常用的性质、典型的结论,以提高解题速度.【例1】(1)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3(2)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.【导学号:04024144】[解题指导] (1)先求点P 坐标,再求点P ′的坐标,最后将点P ′的坐标代入y =sin 2x 求s 的最小值.(2)先求出等比数列的首项和公比,再利用等比数列的通项公式求a 8即可. (1)A (2)32 [(1)因为点P ⎝⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,所以t =sin ⎝ ⎛⎭⎪⎫2×π4-π3=sin π6=12.所以P ⎝ ⎛⎭⎪⎫π4,12.将点P 向左平移s (s >0)个单位长度得P ′⎝ ⎛⎭⎪⎫π4-s ,12.因为P ′在函数y =sin 2x 的图象上,所以sin 2⎝ ⎛⎭⎪⎫π4-s =12,即cos 2s =12,所以2s=2k π+π3或2s =2k π+53π,即s =k π+π6或s =k π+5π6(k ∈Z ),所以s 的最小值为π6.(2)设{a n}的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧a 1-q31-q =74,a1-q 61-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32.][变式训练1] 为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元D .12.2万元B [由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元).]解法2 特例法在解决选择题和填空题时,可以取一个(或一些)特殊情况(包括特殊数值、特殊位置、特殊函数、特殊点、特殊方程、特殊数列、特殊图形等)来确定其结果,这种方法称为特值法.特值法由于只需对特殊数值、特殊情形进行检验,省去了推理论证、繁琐演算的过程,提高了解题的速度.特值法是考试中解答选择题和填空题时经常用到的一种方法,应用得当可以起到“四两拨千斤”的功效. 【例2】(1)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q(2)如图1,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )【导学号:04024145】图1A .3∶1B .2∶1C .4∶1D.3∶1[解题指导] (1)从条件看这应是涉及利用基本不等式比较函数值大小的问题,若不等式在常规条件下成立,则在特殊情况下更能成立,所以不妨对a ,b 取特殊值处理,如a =1,b =e.(2)点P ,Q 在非特殊情况下体积较难计算.可将P ,Q 置于特殊位置,令P 与A 1重合,Q 与B 重合,再计算体积.(1)C (2)B [(1)根据条件,不妨取a =1,b =e ,则p =f (e)=ln e =12,q =f ⎝ ⎛⎭⎪⎫1+e 2>f (e)=12,r =12(f (1)+f (e))=12,在这种特例情况下满足p =r <q ,所以选C.(2)令P 与A 1重合,Q 与B 重合,此时A 1P =BQ =0,则VC ­AA 1B =VA 1­ABC =13V 三棱柱ABC ­A 1B 1C 1,故过P ,Q ,C 三点的截面把棱柱分成的两部分体积之比为2∶1.][变式训练2] (1)如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,那么( )A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C=________.(1)B (2)45[(1)取特殊数列1,2,3,4,5,6,7,8,显然只有1×8<4×5成立.(2)令a =b =c ,则A =C =60°,cos A =cos C =12.从而cos A +cos C 1+cos A cos C =45.]解法3 数形结合法数形结合法是指在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思考,促使抽象思维和形象思维有机结合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决的方法.【例3】(1)(2016·合肥模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x +y的最大值是( )【导学号:04024146】A .-1B .-2C .-5D .1(2)(2017·武汉模拟)函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π2-x 2的零点个数为________.[解题指导] (1)要确定目标函数的最大值,需知道相应的x ,y 的值,从约束条件中不可能解出对应的x ,y 的值,所以只有通过图解法作出约束条件的可行域,据可行域数形结合得出目标函数的最大值.(2)函数的零点即对应方程的根,但求对应方程的根也比较困难,所以进一步转化为求两函数的图象的交点,所以作出两函数的图象确定交点个数即可.(1)A (2)2 [(1)二元一次不等式组表示的平面区域为如图所示的△ABC 内部及其边界,当直线y =2x +z 过A 点时z 最大,又A (1,1),因此z 的最大值为-1.(2)f (x )=2sin x cos x -x 2=sin 2x -x 2,函数f (x )的零点个数可转化为函数y 1=sin 2x 与y 2=x 2图象的交点个数,在同一坐标系中画出y 1=sin 2x 与y 2=x 2的图象如图所示:由图可知两函数图象有2个交点,则f (x )的零点个数为2.][变式训练3] (1)(2017·郑州模拟)方程x lg(x +2)=1的实数根的个数为( )A .1B .2C .0D .不确定(2)已知偶函数y =f (x )(x ∈R )在区间[0,2]上单调递增,在区间(2,+∞)上单调递减,且满足f (-3)=f (1)=0,则不等式x 3f (x )<0的解集为________.(1)B (2)(-3,-1)∪(0,1)∪(3,+∞) [(1)方程x lg(x +2)=1⇔lg(x +2)=1x,在同一坐标系中画出函数y =lg(x +2)与y =1x的图象,可得两函数图象有两个交点,故所求方程有两个不同的实数根.(2)由题意可画出y =f (x )的草图,如图.①x >0,f (x )<0时,x ∈(0,1)∪(3,+∞); ②x <0,f (x )>0时,x ∈(-3,-1).故不等式x 3f (x )<0的解集为(-3,-1)∪(0,1)∪(3,+∞).]解法4 排除法排除法就是充分运用选择题中单选题的特征,即有且只有一个正确选项这一信息,从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一排除,从而获得正确结论的方法.使用该法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.排除法适用于定性型或不宜直接求解的选择题,当题目中的条件多于一个时,先根据某些条件,在选项中找到明显与之矛盾的予以否定,再根据另一些条件,在剩余的选项内找出矛盾,这样逐步筛选,直至得出正确的答案.【例4】(1)(2016·北师大附中模拟)函数y =cos 6x 2x -2-x 的图象大致为( )【导学号:04024147】A BC D(2)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x[解题指导] (1)根据函数的奇偶性和x →+∞时函数值的正负,以及x →0且x >0时函数值的正负,排除可得答案. (2)可验证当x <0时,等式成立的情况.(1)D (2)D [(1)函数y =cos 6x 为偶函数,函数y =2x -2-x为奇函数,故原函数为奇函数,排除A.又函数y =2x-2-x为增函数,当x →+∞时,2x -2-x→+∞且|cos 6x |≤1,∴y =cos 6x2x -2-x →0(x →+∞),排除C.∵y =cos 6x 2x -2-x =2x·cos 6x4x-1为奇函数,不妨考虑x >0时函数值的情况,当x →0时,4x→1,4x-1→0,2x →1,cos 6x →1, ∴y →+∞,故排除B ,综上知选D.(2)当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.][变式训练4] (1)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )(2)设{a n }是等差数列,下列结论中正确的是( ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0(1)D (2)C [(1)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝ ⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D. (2)设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,∴a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,∴a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.]解法5 构造法用构造法解客观题的关键是利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到解决,它需要对基础知识和基本方法进行积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到的类似问题中寻找灵感,构造出相应的具体的数学模型,使问题简化. 【例5】(1)(2017·福州一模)已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ⎝ ⎛⎭⎪⎫1x-f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)(2)如图2,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.图2[解题指导] (1)构造函数g (x )=f xx,可证明函数g (x )在(0,+∞)上是减函数,再利用 x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x )求解.(2)以DA ,AB ,BC 为棱长构造正方体,则球O 是此正方体的外接球,从而球O 的直径是正方体的体对角线长. (1)C (2)6π [(1)设g (x )=f x x ,则g ′(x )=xfx -f xx 2,又因为f (x )>xf ′(x ),所以g ′(x )=xfx -f xx 2<0在(0,+∞)上恒成立,所以函数g (x )=f x x 为(0,+∞)上的减函数,又因为x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x ),则有1x<x ,解得x >1,故选C.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR 33=6π.][变式训练5] (1)(2016·兰州高三诊断)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )【导学号:04024148】A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)(2)已知a ,b 为不垂直的异面直线,α是一个平面,则a ,b 在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点. 在上面的结论中,正确结论的序号是________(写出所有正确结论的序号). (1)B (2)①②④ [(1)因为f (x +2)为偶函数, 所以f (x +2)的图象关于x =0对称, 所以f (x )的图象关于x =2对称, 所以f (4)=f (0)=1, 设g (x )=f xex(x ∈R ),则g ′(x )=f xx-f xxx2=f x -f xex,又因为f ′(x )<f (x ), 所以g ′(x )<0(x ∈R ),所以函数g (x )在定义域上单调递减, 因为f (x )<e x⇔g (x )=f xex<1,而g (0)=fe=1,所以f (x )<e x⇔g (x )<g (0),所以x >0,故选B.(2)用正方体ABCD ­A 1B 1C 1D 1实例说明A 1D 与BC 1在平面ABCD 上的射影互相平行,AB 1与BC 1在平面ABCD 上的射影互相垂直,BC 1与DD 1在平面ABCD 上的射影是一条直线及其外一点.故正确的结论为①②④.]客观题常用的5种解法已初步掌握,在突破点17~19的训练中一展身手吧!。

【通用版】2018年高考理科数学二轮复习:教学案全集(含答案)

【通用版】2018年高考理科数学二轮复习:教学案全集(含答案)

[全国卷3年考情分析][题点·考法·全练]1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.2.(2018届高三·安徽名校阶段测试)设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32B.⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪32<x ≤3 解析:选B A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32. 3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C .130D .117解析:选B 由题意得,y 的取值一共有3种情况,当y =2时,xy 是偶数,与y =3,y =5时,没有相同的元素,当y =3,x =5,15,25,…,95时,与y =5,x =3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140.5.已知集合A =⎩⎨⎧⎭⎬⎫-1,12,B ={x |mx -1=0,m ∈R},若A ∩B =B ,则所有符合条件的实数m 组成的集合是( )A .{-1,0,2} B.⎩⎨⎧⎭⎬⎫-12,0,1 C .{-1,2}D.⎩⎨⎧⎭⎬⎫-1,0,12解析:选A 因为A ∩B =B ,所以B ⊆A .若B 为∅,则m =0;若B ≠∅,则-m -1=0或12m -1=0,解得m =-1或2.综上,m ∈{-1,0,2}. [准解·快解·悟通][题点·考法·全练] 1.(2017·天津高考)设x∈R,则“2-x≥0”是“|x-1|≤1”的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2.∵0≤x≤2⇒x≤2,x≤2⇒/ 0≤x≤2,故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.2.(2017·惠州三调)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C 设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C.3.(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.4.已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞)D .(-∞,-1]解析:选A 由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2. 5.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈p ⇒/綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件.[准解·快解·悟通][题点·考法·全练]1.下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若tan x =3,则x =π3”的逆否命题解析:选B 对于选项A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故选项A 为假命题;对于选项B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知选项B 为真命题;对于选项C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故选项C 为假命题;对于选项D ,命题“若tan x =3,则x =π3”为假命题,故其逆否命题为假命题,综上可知,选B.2.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:选C 因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.3.(2017·山东高考)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q解析:选B 当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.由复合命题的真假性,知B 为真命题.[准解·快解·悟通][专题过关检测]一、选择题1.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=() A.{1}B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2017·成都一诊)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”.3.(2017·广西三市第一次联考)设集合A={x|8+2x-x2>0},集合B={x|x=2n-1,n ∈N*},则A∩B等于()A.{-1,1} B.{-1,3}C.{1,3} D.{3,1,-1}解析:选C∵A={x|-2<x<4},B={1,3,5,…},∴A ∩B ={1,3}.4.(2017·郑州第二次质量预测)已知集合A ={x |log 2x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪1x>1,则A ∩(∁R B )=( )A .(-∞,2]B .(0,1]C .[1,2]D .(2,+∞)解析:选C 因为A ={x |0<x ≤2},B ={x |0<x <1},所以A ∩(∁R B )={x |0<x ≤2}∩{x |x ≤0或x ≥1}={x |1≤x ≤2}.5.(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线. 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.6.(2018届高三·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( )A .{2}B .{2,8}C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.7.(2017·石家庄调研)设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅,A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.8.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15. 9.(2017·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 是命题q 的充分不必要条件. 10.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )>0 解析:选C 因为f ′(x )=3cos x -π,所以当x ∈⎝⎛⎭⎫0,π2 时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝⎛⎭⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.而p 的否定为∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0,故选C. 11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的范围是(-∞,2].因为p 且綈q 为真命题,所以实数a 的取值范围是(1,2].12.在下列结论中,正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定形式为綈p :“∀x ∈R ,x 2-2<0”;②O 是△ABC 所在平面上一点,若OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→,则O 是△ABC 的垂心;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N”的充分不必要条件;④命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”. A .1 B .2 C .3D .4解析:选C 由特称(存在性)命题与全称命题的关系可知①正确. ∵OA ―→·OB ―→=OB ―→·OC ―→,∴OB ―→·(OA ―→-OC ―→)=0,即OB ―→·CA ―→=0, ∴OB ―→⊥CA ―→.同理可知OA ―→⊥BC ―→,OC ―→⊥BA ―→,故点O 是△ABC 的垂心,∴②正确. ∵y =⎝⎛⎭⎫23x是减函数,∴当M >N 时,⎝⎛⎭⎫23M <⎝⎛⎭⎫23N ,当⎝⎛⎭⎫23M >⎝⎛⎭⎫23N 时,M <N . ∴“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的既不充分也不必要条件,∴③错误. 由逆否命题的写法可知,④正确. ∴正确的结论有3个. 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________________________.解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x-a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R},集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案:{(2,3)}15.已知命题p :不等式xx -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真,其中正确结论的序号是________.解析:解不等式知,命题p是真命题,在△ABC中,“A>B”是“sin A>sin B”的充要条件,所以命题q是假命题,所以①③正确.答案:①③16.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到大依次是________.解析:显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,c最小.答案:c,a,b送分专题(二)函数的图象与性质[全国卷3年考情分析][题点·考法·全练]1.(2017·广州综合测试)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (-3))=( ) A.43B .23C .-43D .3解析:选D 因为f (-3)=2-2=14,所以f (f (-3))=f ⎝⎛⎭⎫14=1-log 214=3. 2.函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 要使函数y =1-x 22x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以该函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1. 3.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞.答案:⎝⎛⎭⎫-14,+∞ 4.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R)是偶函数,且它的值域为(-∞,2],则该函数的解析式为________.解析:由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:f (x )=-2x 2+25.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.解析:当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,y =(1-2a )x +3a 必须取遍(-∞,1]内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.答案:⎣⎡⎭⎫0,12 [准解·快解·悟通][题点·考法·全练]1.(2018届高三·安徽名校阶段性测试)函数y =x 2ln|x ||x |的图象大致是( )解析:选D 易知函数y =x 2ln|x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x+1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D正确,故选D.2.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象,因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A 、C 、D ,选B.3.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的图象(如图所示),由于函数g (x )是二次函数,值域不会是选项A 、B ,易知,当g (x )的值域是[0,+∞)时,f (g (x ))的值域是[0,+∞).[准解·快解·悟通][题点·考法·全练]1.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是()A.f(x)=1x-x B.f(x)=x3C.f(x)=ln x D.f(x)=2x解析:选A“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)·[f(x1)-f(x2)]<0”等价于f(x)在(0,+∞)上为减函数,易判断f(x)=1x-x满足条件.2.(2017·广西三市第一次联考)已知f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,若实数a满足f(2log3a)>f(-2),则a的取值范围是()A.(-∞,3) B.(0,3)C.(3,+∞) D.(1,3)解析:选B∵f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,∴f(x)在区间[0,+∞)上单调递减.根据函数的对称性,可得f(-2)=f(2),∴f(2log3a)>f(2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减,∴0<2log 3a <2⇒log 3a <12⇒0<a < 3.3.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1). 又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:64.(2017·福建普通高中质量检测)已知函数f (x )=x 2(2x -2-x ),则不等式f (2x +1)+f (1)≥0的解集是________.解析:因为f (-x )=(-x )2(2-x -2x )=-x 2(2x -2-x )=-f (x ),所以函数f (x )是奇函数.不等式f (2x +1)+f (1)≥0等价于f (2x +1)≥f (-1).易知,当x >0时,函数f (x )为增函数,所以函数f (x )在R 上为增函数,所以f (2x +1)≥f (-1)等价于2x +1≥-1,解得x ≥-1.答案:{x |x ≥-1}[准解·快解·悟通][专题过关检测]一、选择题 1.函数f (x )=1x -1+x 的定义域为( ) A .[0,+∞) B .(1,+∞) C .[0,1)∪(1,+∞)D .[0,1)解析:选C 由题意知⎩⎪⎨⎪⎧x -1≠0,x ≥0,∴f (x )的定义域为[0,1)∪(1,+∞).2.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x |解析:选B A 中函数y =1x 不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故选B.3.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b =( )A .1B .-1C .-12D .14解析:选B 由题意得f (0)=0,∴a =2. ∵g (1)=g (-1),∴ln(e +1)-b =ln ⎝⎛⎭⎫1e +1+b , ∴b =12,∴log 212=-1.4.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得a (-1)+b =3,ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1, 故f (-3)=2×(-3)+5=-1.5.已知函数f (x )的定义域为(-∞,+∞),若f (x +2 017)=⎩⎨⎧2sin x ,x ≥0,lg (-x ),x <0,则f ⎝⎛⎭⎫2 017+π4·f (-7 983)=( ) A .2 016 B.14C .4 D.12 016解析:选C 由题意得,f ⎝⎛⎭⎫2 017+π4=2sin π4=1, f (-7 983)=f (2 017-10 000)=lg 10 000=4, ∴f ⎝⎛⎭⎫2 017+π4·f (-7 983)=4. 6.函数y =sin xx ,x ∈(-π,0)∪(0,π)的图象大致是( )解析:选A 函数y =sin xx ,x ∈(-π,0)∪(0,π)为偶函数,所以图象关于y 轴对称,排除B 、C ,又当x 趋近于π时,y =sin xx 趋近于0,故选A.7.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知,当x >12时,f ⎝⎛⎭⎫x +12=fx -12,则f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1).又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.8.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选B 设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点E 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BE 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D.故选B.9.(2017·贵阳模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 10.函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0 解析:选C ∵f (x )=ax +b(x +c )2的图象与x 轴,y 轴分别交于N ,M ,且点M 的纵坐标与点N 的横坐标均为正,∴x =-b a >0,y =bc 2>0,故a <0,b >0,又函数图象间断点的横坐标为正,∴-c >0,c <0,故选C.11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,若f (2)=2,则不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞)解析:选C (转化法)由f (x 1)-f (x 2)x 1-x 2<1,可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,且是奇函数,F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x -1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.二、填空题13.函数f (x )=ln 1|x |+1的值域是________.解析:因为|x |≥0,所以|x |+1≥1. 所以0<1|x |+1≤1.所以ln 1|x |+1≤0, 即f (x )=ln1|x |+1的值域为(-∞,0]. 答案:(-∞,0]14.(2018届高三·安徽名校阶段性测试)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1315.若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象,由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则⎩⎪⎨⎪⎧a >1,log a 2≥1,解得1<a ≤2.答案:(1,2]16.(2017·惠州三调)已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,给出以下四个命题: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为____________.解析:f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝⎛⎭⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎫-34,0对称,-34=-x +⎝⎛⎭⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎫-32+x , 又f ⎝⎛⎭⎫-32+x =-f ⎝⎛⎭⎫-32+x +32=-f (x ), 所以f (-x )=f (x ),③正确;f (x )是周期函数在R 上不可能是单调函数,④错误. 故真命题的序号为①②③. 答案:①②③送分专题(三) 平面向量[全国卷3年考情分析][题点·考法·全练]1.(2017·贵州适应性考试)已知向量e 1与e 2不共线,且向量AB ―→=e 1+me 2,AC ―→=ne 1+e 2,若A ,B ,C 三点共线,则实数m ,n 满足的条件是( )A .mn =1B .mn =-1C .m +n =1D .m +n =-1解析:选A 法一:因为A ,B ,C 三点共线,所以一定存在一个确定的实数λ,使得AB―→=λAC ―→,所以有e 1+me 2=nλe 1+λe 2,由此可得⎩⎪⎨⎪⎧1=nλ,m =λ,所以mn =1.法二:因为A ,B ,C 三点共线,所以必有1n =m1,所以mn =1.2.如图所示,下列结论正确的是( )①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误.故正确命题的结论为①③.3.已知平面内不共线的四点O ,A ,B ,C ,若OA ―→-3OB ―→+2OC ―→=0,则|AB ―→||BC ―→|=________.解析:由已知得OA ―→-OB ―→=2(OB ―→-OC ―→),即BA ―→=2CB ―→, ∴|BA ―→|=2|CB ―→|,∴|AB ―→||BC ―→|=2.答案:24.已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则mn 等于________.解析:∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n =-2.答案:-2[准解·快解·悟通][题点·考法·全练]1.已知向量m =(t +1,1),n =(t +2,2),若(m +n )⊥(m -n ),则t =( ) A .0 B .-3 C .3D .-1解析:选B 法一:由(m +n )⊥(m -n )可得(m +n )·(m -n )=0,即m 2=n 2,故(t +1)2+1=(t +2)2+4,解得t =-3.法二:m +n =(2t +3,3),m -n =(-1,-1),∵(m +n )⊥(m -n ),∴-(2t +3)-3=0,解得t =-3.2.(2017·洛阳统考)已知向量a =(1,0),|b |=2,a 与b 的夹角为45°,若c =a +b ,d =a -b ,则c 在d 方向上的投影为( )A.55B .-55C .1D .-1解析:选D 依题意得|a |=1,a ·b =1×2×cos 45°=1,|d |=(a -b )2=a 2+b 2-2a ·b =1,c ·d =a 2-b 2=-1,因此c 在d 方向上的投影等于c ·d|d |=-1. 3.已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( ) A.⎝⎛⎭⎫-2,12 B.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ C .(-2,+∞)D .[-2,+∞)解析:选B 当a ,b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0,所以要使a 与b 的夹角为锐角,则有a·b >0且a ,b 不共线.由a·b =2+k >0得k >-2,又k ≠12,即实数k 的取值范围是⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞,选B. 4.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 解析:法一:易知|a +2b |=|a |2+4a ·b +4|b |2=4+4×2×1×12+4=2 3.法二:(数形结合法)由|a |=|2b |=2,知以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC ―→|.又∠AOB =60°,所以|a +2b |=2 3.答案:2 35.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12,解得λ=33.答案:33[准解·快解·悟通][题点·考法·全练]1.在△ABC 中,∠ABC =90°,AB =6,点D 在边AC 上,且2AD ―→=DC ―→,则BA ―→·BD ―→的值是( )A .48B .24C .12D .6解析:选B 法一:由题意得,BA ―→·BC ―→=0,BA ―→·CA ―→=BA ―→·(BA ―→-BC ―→)=|BA ―→|2=36,∴BA ―→·BD ―→=BA ―→·(BC ―→+CD ―→)=BA ―→·⎝⎛⎭⎫BC ―→+23 CA ―→ =0+23×36=24. 法二:(特例法)若△ABC 为等腰直角三角形,建立如图所示的平面直角坐标系,则A (6,0),C (0,6).由2AD ―→=DC ―→,得D (4,2).∴BA ―→·BD ―→=(6,0)·(4,2)=24.2.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则x +2y 的最小值为( )A .2 B.13 C.3+223D.34解析:选C 由已知可得AG ―→=23×12(AB ―→+AC ―→)=13AB ―→+13AC ―→=13x AM ―→+13y AN ―→,又M ,G ,N 三点共线,故13x +13y=1,∴1x +1y =3,则x +2y =(x +2y )·⎝⎛⎭⎫1x +1y ·13=13⎝⎛⎭⎫3+2y x +x y ≥3+223(当且仅当x =2y 时取等号).3.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-1解析:选B 如图,以等边三角形ABC 的底边BC 所在直线为x轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以PA ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,PA ―→·(PB ―→+PC ―→)取得最小值,为-32.4.如图,已知△ABC 中,∠BAC =90°,∠B =30°,点P 在线段BC 上运动,且满足CP ―→=λCB ―→,当PA ―→·PC ―→取到最小值时,λ的值为( )A.14 B.15 C.16D.18解析:选D 如图所示,建立平面直角坐标系.不妨设BC =4,P (x,0)(0≤x ≤4),则A (3,3),C (4,0),∴PA ―→·PC ―→=(3-x ,3)·(4-x,0)=(3-x )(4-x )=x 2-7x +12=⎝⎛⎭⎫x -722-14.当x =72时,PA ―→·PC ―→取得最小值-14.∵CP ―→=λCB ―→,∴⎝⎛⎭⎫-12,0=λ(-4,0), ∴-4λ=-12,解得λ=18.故选D.5.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP ―→=3PD ―→,AP ―→·BP ―→=2,则AB ―→·AD ―→的值是________.解析:因为AP ―→=AD ―→+DP ―→=AD ―→+14AB ―→,BP ―→=BC ―→+CP ―→=AD ―→-34AB ―→,所以AP ―→·BP ―→=⎝⎛⎭⎫AD ―→+14AB ―→·⎝⎛⎭⎫AD ―→-34AB ―→= |AD ―→|2-316|AB ―→|2-12AD ―→·AB ―→=2,将AB =8,AD =5代入解得AB ―→·AD ―→=22. 答案:22[准解·快解·悟通][专题过关检测]一、选择题1.设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D .32解析:选A 因为c =a +kb =(1+k,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.2.(2017·贵州适应性考试)已知向量a =(2,4),b =(-1,1),c =(2,3),若a +λb 与c 共线,则实数λ=( )A.25 B .-25C.35D .-35解析:选B 法一:a +λb =(2-λ,4+λ),c =(2,3),因为a +λb 与c 共线,所以必定存在唯一实数μ,使得a +λb =μc ,所以⎩⎪⎨⎪⎧2-λ=2μ,4+λ=3μ,解得⎩⎨⎧μ=65,λ=-25.法二:a +λb =(2-λ,4+λ),c =(2,3),由a +λb 与c 共线可知2-λ2=4+λ3,解得λ=-25. 3.(2018届高三·云南11校跨区调研)已知平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( )A .13+6 2B .2 5 C.30D .34解析:选D 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.4.在等腰梯形ABCD 中,AB ―→=-2CD ―→CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→ C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.5.(2017·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6 B.5π6 C.π4D.3π4解析:选A 法一:因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |=3,又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b|a +2b ||b |=343×12=32, 所以a +2b 与b 的夹角为π6.法二:(特例法)设a =(1,0),b =⎝⎛⎭⎫12cos π3,12sin π3=⎝⎛⎭⎫14,34,则(a +2b )·b =⎝⎛⎭⎫32,32·⎝⎛⎭⎫14,34=34,|a +2b |=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6. 6.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ―→在CD ―→方向上的投影为( ) A.322B .3152C .-322D .-3152解析:选A 由题意知AB ―→=(2,1),CD ―→=(5,5),则AB ―→在CD ―→方向上的投影为|AB ―→|·cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→|CD ―→|=322.7.(2017·安徽二校联考)在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD ―→·AE ―→等于( )A.16B.29C.1318D.13解析:选C 法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos 60° =⎝⎛⎭⎫132+12-2×13×1×12=79, 即AD =73,同理可得AE =73, 在△ADE 中,由余弦定理得 cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD ―→·AE ―→=|AD ―→|·|AE ―→|cos ∠DAE =73×73×1314=1318. 法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD ―→=⎝⎛⎭⎫-16,-32,AE ―→=⎝⎛⎭⎫16,-32,所以AD ―→·AE ―→=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.8.(2017·东北四市模拟)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为( )A.52B.102C. 5D.10解析:选C 由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3), 则|OC ―→|=(1+2m )2+(4m -3)2=20m 2-20m +10 =20⎝⎛⎭⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.9.已知向量m ,n 的模分别为2,2,且m ,n 的夹角为45°.在△ABC 中,AB ―→=2m +2n ,AC ―→=2m -6n ,BC ―→=2BD ―→,则|AD ―→|=( )A .2B .2 2C .4D .8解析:选B 因为BC ―→=2BD ―→,所以点D 为边BC 的中点,所以AD ―→=12(AB ―→+AC ―→)=2m -2n ,所以|AD ―→|=2|m -n |=2(m -n )2=22+4-2×2×2×22=2 2. 10.(2018届高三·湘中名校联考)若点P 是△ABC 的外心,且PA ―→+PB ―→+λPC ―→=0,C =120°,则实数λ的值为( )A.12 B .-12C .-1D .1解析:选C 设AB 中点为D ,则PA ―→+PB ―→=2PD ―→PD ―→. 因为PA ―→+PB ―→+λPC ―→=0,所以2PD ―→+λPC ―→=0,所以向量PD ―→,PC ―→共线. 又P 是△ABC 的外心,所以PA =PB , 所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°, 所以四边形APBC 是菱形, 从而PA ―→+PB ―→=2PD ―→=PC ―→,所以2PD ―→+λPC ―→=PC ―→+λPC ―→=0,所以λ=-1.11.已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA ―→|OA ―→|,b =OB ―→|OB ―→|,OP ―→=a +2b ,则PA ―→·PB ―→的最大值为( )A .1B .2C .3D .4解析:选A 如图,设A (m,0),B (0,n ),∴mn =2,则a =(1,0),b =(0,1),OP ―→=a +2b =(1,2),PA ―→=(m -1,-2),PB ―→=(-1,n -2),PA ―→·PB ―→=5-(m +2n )≤5-22nm =1,当且仅当m =2n ,即m =2,n =1时,等号成立.12.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18 C.14D.118解析:选B 如图所示, AF ―→=AD ―→+DF ―→.又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝⎛⎭⎫12AB ―→+34AC ―→·(AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→ =34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.二、填空题13.在△ABC 中,点O 在线段BC 的延长线上,且||BO ―→=3||CO―→,当AO ―→=x AB ―→+y AC ―→时,则x -y =________.解析:∵AO ―→=AB ―→+BO ―→=AB ―→+32BC ―→=AB ―→+32(AC ―→-AB ―→)=-12AB ―→+32AC ―→,∴x -y =-2.答案:-214.已知a ,b 是非零向量,f (x )=(ax +b )·(bx -a )的图象是一条直线,|a +b |=2,|a |=1,则f (x )=________.解析:由f (x )=a ·bx 2-(a 2-b 2)x -a ·b 的图象是一条直线,可得a ·b =0.因为|a +b |=2,所以a 2+b 2=4.因为|a |=1,所以a 2=1,b 2=3,所以f (x )=2x . 答案:2x15.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→.又AB ―→·AC ―→=3×2×12=3,所以AD ―→·AE ―→=⎝⎛⎭⎫13AB ―→+23AC ―→·(-AB ―→+λAC ―→) =-13AB ―→2+⎝⎛⎭⎫13λ-23AB ―→·AC ―→+23λAC ―→2 =-3+3⎝⎛⎭⎫13λ-23+23λ×4=113λ-5=-4, 解得λ=311.法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系,不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3). 由BD ―→=2DC ―→,得D ⎝⎛⎭⎫53,233, 由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝⎛⎭⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案:31116.定义平面向量的一种运算a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ·b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.解析:①中,因为〈a ,b 〉=90°,则a ⊙b =|a +b |·|a -b |=a 2+b 2,所以①成立;②中,因为|a |=|b |,所以〈(a +b ),(a -b )〉=90°,所以(a +b )⊙(a -b )=|2a |·|2b |=4|a ||b |,所以②不成立;③中,因为|a |=|b |,所以a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉≤|a +b |·|a -b |≤|a +b |2+|a -b |22=2|a |2,所以③成立;④中,因为a =(1,2),b =(-2,2),所以a +b =(-1,4),sin 〈(a +b ),b 〉=33434,所以(a +b )⊙b =35×5×33434=453434,所以④不成立.故①③正确.答案:①③送分专题(四) 不等式[全国卷3年考情分析][题点·考法·全练]1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( )A .2B .-2C .-12D .12解析:选B 根据一元二次不等式与之对应方程的关系知-1,-12是一元二次方程ax 2+(a -1)x -1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2. 2.若x >y >0,m >n ,则下列不等式正确的是( ) A .xm >ymB .x -m ≥y -nC.x n >y mD .x >xy解析:选D A 不正确,因为同向同正不等式相乘,不等号方向不变,m 可能为0或负数;B 不正确,因为同向不等式相减,不等号方向不确定;C 不正确,因为m ,n 的正负不确定.故选D.3.(2017·云南第一次统一检测)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x -2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x -2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3;当x <2时,由22-x -2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.4.已知x ∈(-∞,1],不等式1+2x +(a -a 2)·4x >0恒成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-2,14 B .⎝⎛⎦⎤-∞,14 C.⎝⎛⎭⎫-12,32 D .(-∞,6]解析:选C 根据题意,由于1+2x +(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x =t (0<t ≤2),则可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+t t 2,故只要求解h (t )=-1+tt2(0<t ≤2)的最大值即可,h (t )=-1t 2-1t =-⎝⎛⎭⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a的取值范围为⎝⎛⎭⎫-12,32. [准解·快解·悟通]。

2018届高中数学高考二轮复习创新题解题策略教案含答案(全国通用)

2018届高中数学高考二轮复习创新题解题策略教案含答案(全国通用)

教学过程一、考纲解读高考数学归纳抽象创新题的命题特点:加强创新意识的考查,有利于实现选拔功能;深化课改,促进能力立意命题的实践和发展. 其中新定义信息型创新题是近年高考出现频率最高的创新题之一,因其背景新颖,构思巧妙,能有效甄别考生的思维品质,因而倍受高考命题专家垂青.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.创新题具有以下特点:一是立意的鲜明性;二是背景的深刻性;三是情境的新颖性;四是设问的巧妙性二、复习预习创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、例题精析例1 [2014全国1卷] 甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 【规范解答】解法:填A∵丙说:三人同去过同一个城市,甲说没去过B 城市,乙说:我没去过C 城市∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B ,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A。

【总结与反思】 本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.可先由乙推出,可能去过A 城市或B 城市,再由甲推出只能是A ,B 中的一个,再由丙即可推出结论。

2018届高考数学二轮填空题解法技巧专题卷(全国通用)(1)

2018届高考数学二轮填空题解法技巧专题卷(全国通用)(1)

填空题1.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=242,10{,01x x x x -+-≤<≤<则32f ⎛⎫⎪⎝⎭=________.【答案】1【解析】32f ⎛⎫⎪⎝⎭ =21142122f ⎛⎫⎛⎫-=--+= ⎪ ⎪⎝⎭⎝⎭2.在ABC 中, 6A π=, 712B π=,c =a =____.【解析】由三角形内角和为π可得: 76124C ππππ=--=,由正弦定理可得12a =,可得a =3.设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则的值为【解析】试题分析:因为α为锐角,所以02πα<<,即得2663πππα<+<因为4cos 65πα⎛⎫+= ⎪⎝⎭,所以3sin 65πα⎛⎫+= ⎪⎝⎭所以3424sin 22sin cos 23665525πππααα⎛⎫⎛⎫⎛⎫+=+⋅+=⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2247cos 22cos 12136525ππαα⎛⎫⎛⎫⎛⎫+=+-=⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭sin 2sin 2sin 2cos cos 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦考点:三角函数求值.【方法点晴】善于发现角之间的差别与联系,合理对角拆分,完成统一角和角与角转换的目的是三角函数式的求值的常用方法.三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角. 4..如右上图:设椭圆()012222>>=+b a by a x 的左,右两个焦点分别为21,F F ,短轴的上端点为B ,短轴上的两个三等分点为Q P ,,且Q PF F 21为正方形,若过点B 作此正方形的外接圆的切线在x 轴上的一个截距为423-,则此椭圆方程的方程为 ▲ . 【答案】221109x y += 【解析】略5.执行右边的程序框图,若,则输出的.【答案】5 【解析】略6. 已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x =【答案】-3 【解析】略7.0.6log 0.9a =, ln0.9b =, 0.92c =,则a 、b 、c 的大小顺序是________(用大于号连接).【答案】c a b >>【解析】因为l n 0.9l n 1b =<=, 0.60.60.60log 1log 0.9log 0.61a =<=<=,0.90221c =>=,所以c a b >>,故填c a b >>.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小. 8.已知4()ln()f x x a x=+-,若对任意的m R ∈,方程()f x m =均有正实数解,则实数a 的取值范围是 . 【答案】[4,)+∞. 【解析】试题分析:由题意得,问题等价于当0x >时,4y x a x=+-可取遍所有正数,而4y a a ≥=-, ∴404a a -≤⇒≥,即实数a 的取值范围是[4,)+∞,故填:[4,)+∞. 考点:对数函数的性质.9.已知F 1,F 2分别是椭圆+=1(a>b>0)的左、右焦点,以原点O 为圆心,OF 1为半径的圆与椭圆在y 轴左侧交于A,B 两点,若△F 2AB 是等边三角形,则椭圆的离心率等于 . 【答案】e=-1【解析】因为△F 2AB 是等边三角形,所以A(-,c)在椭圆+=1上,所以+=1,因为c 2=a 2-b 2,所以,4a 4-8a 2c 2+c 4=0,即e 4-8e 2+4=0,所以,e 2=4±2,e=-1或e=+1(舍).【误区警示】本题易出现答案为-1或+1的错误,其错误原因是没有考虑椭圆离心率的范围.10.命题“对所有实数a ,都有||0a <”的否定是 . 【答案】存在实数a ,有||0a ≥;【解析】试题分析:该命题为全称命题,故其否定为特称命题,即存在实数a ,有||0a ≥。

2018届高中数学高考二轮复习客观题答题策略与技巧教案含答案(全国通用)

2018届高中数学高考二轮复习客观题答题策略与技巧教案含答案(全国通用)

教学过程一、考纲解读解数学选择题的常用方法,主要分为直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格. 《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”. 为此在解填空题时要做到:细——审题要细,不能粗心大意;活——解题要活,不要生搬硬套;稳——变形要稳,不可操之过急;快——运算要快,力戒小题大作;全——答案要全,力避残缺不齐.二、复习预习选择题在高考中注重多个知识点的小型综合,渗透各种思想方法,体现以考查“三基”为重点的导向,解答选择题的基本要求是四个字——准确、迅速.填空题是将一个数学真命题,写成其中缺少一些语句的不完整形式,要求学生在指定空位上将缺少的语句填写清楚、准确. 它是一个不完整的陈述句形式,填写的可以是一个词语、数字、符号、数学语句等. 填空题大多能在课本中找到原型和背景,故可以化归为我们熟知的题目或基本题型.三、知识讲解考点1 选择题答题技巧充分利用题干和选项所提供的信息作出判断.先定性后定量,先特殊后推理;先间接后直接,先排除后求解.解题时应仔细审题、深入分析、正确推演、谨防疏漏.解答选择题的常用方法主要是直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要研究解答选择题的一些间接法的应用技巧. 考点2 填空题答题技巧解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格.《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”.为此在解填空题时要做到:快——运算要快,力戒小题大做;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意.四、例题精析例1 [2014全国1卷]设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 ( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【规范解答】解法1.选C (验证推理)设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C. 解法2.选C (特值验证)从题意条件我们不难想到将函数()f x ,()g x 特殊化,设x x f =)(,2)(x x g =则A 选项中3)()(x x g x f =不是偶函数,排除A ;B 选项中|()f x |()g x =2x x 很明显是偶函数,排除B 。

2018届高中数学高考二轮复习三角函数及解三角形教案含答案(全国通用)

2018届高中数学高考二轮复习三角函数及解三角形教案含答案(全国通用)

教学过程 一、考纲解读在复习该部分内容时要有整体意识,抓住角的变换主线解决相关问题,其中三角函数的图形和性质是核心内容,相对于其它模块而言,三角函数的考查的点分散得比较细,这也要引起重视,复习一定要全面,常见的思想方法有化归转化,数形结合等.三角函数模块在高考试卷中通常有1大1小两个问题,总分值在25分左右,小题难度中等,大题属简单题,无论是全国卷还是省市卷大都放在第一个解答题位置,是考生得分的关键点之一.(1)任意角的概念、弧度制 (2)三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义. ② 能利用单位圆中的三角函数线推导出απ±2,απ±的正弦、余弦、正切的诱导公式,能画出x y x y x y tan ,cos ,sin ===的图像,了解三角函数的周期性.③ 理解正弦函数、余弦函数在区间[]π2,0的性质(如单调性、最大和最小值以及与x 轴交点等).理解正切函数在区间⎪⎭⎫⎝⎛-2,2ππ的单调性. ④ 理解同角三角函数的基本关系式:x xxx x tan cos sin ,1cos sin 22==+ ⑤ 了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图像,了解参数ϕω,,A 对函数图像变化的影响.⑥ 会用三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(3)两角和与差的三角函数公式① 会用向量的数量积推导出两角差的余弦公式. ② 会用两角差的余弦公式导出两角差的正弦、正切公式.③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(4)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(5)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (6) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 二、复习预习复习相关概念:三角函数基本概念、诱导公式、同角三角函数关系、三角函数图像和性质、两角和与差的计算及二倍角公式以及三角函数的实际应用,正余弦定理等.在复习该部分内容时要有整体意识,抓住角的变换主线解决相关问题,其中三角函数的图形和性质是核心内容,相对于其它模块而言,三角函数的考查的点分散得比较细,这也要引起重视,复习一定要全面,常见的思想方法有化归转化,数形结合等. 三、知识讲解考点1 三角函数的定义及性质(1)任意角的概念、弧度制.扇形相关内容,如弧长,面积,圆锥侧面等 (2)三角函数①任意角三角函数(正弦、余弦、正切)的定义.②正弦、余弦、正切的诱导公式, x y x y x y tan ,cos ,sin ===的图像,三角函数的周期性. ③正弦函数、余弦函数在区间[]π2,0的性质(如单调性、最大和最小值以及与x 轴交点等).正切函数在区间⎪⎭⎫⎝⎛-2,2ππ的单调性.④ 理解同角三角函数的基本关系式:x xxx x tan cos sin ,1cos sin 22==+ ⑤ 了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图像,了解参数ϕω,,A 对函数图像变化的影响.⑥ 会用三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.考点2 三角恒等变形(1)两角和与差的三角函数公式① 会用向量的数量积推导出两角差的余弦公式. ② 会用两角差的余弦公式导出两角差的正弦、正切公式.③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. (2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 考点3 解三角形 (1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (2) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.四、例题精析例1 [2014全国1卷]设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 ( )A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【规范解答】解法1.选B (演绎推理) ∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=解法2.选B (特殊角) 取6πβ=代入1sin tan cos βαβ+=,可得3tan =α,所以3πα=,通过四个选项验证,只有选项B 符合。

2018届高考数学二轮复习排列与组合学案含答案(全国通用)

2018届高考数学二轮复习排列与组合学案含答案(全国通用)

2018届⾼考数学⼆轮复习排列与组合学案含答案(全国通⽤)排列与组合【考点梳理】1.排列与组合的概念(1)从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n 个不同元素中取出m个元素的排列数.(2)从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质考点⼀、排列问题【例1】(1)六个⼈从左⾄右排成⼀⾏,最左端只能排甲或⼄,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种(2)把5件不同产品摆成⼀排.若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.[答案] (1)B(2)36[解析] (1)第⼀类:甲在最左端,有A55=5×4×3×2×1=120(种)⽅法;第⼆类:⼄在最左端,有4A44=4×4×3×2×1=96(种)⽅法.所以共有120+96=216(种)⽅法.(2)记其余两种产品为D,E,A,B相邻视为⼀个元素,先与D,E排列,有A22A33种⽅法;再将C插⼊,仅有3个空位可选,共有A22A33C13=2×6×3=36种不同的摆法.【类题通法】1. 第(1)题求解的关键是按特殊元素甲、⼄的位置进⾏分类.注意特殊元素(位置)的优先原则,即先排有限制条件的元素或有限制条件的位置.对于分类过多的问题,可利⽤间接法.2.对相邻问题采⽤捆绑法、不相邻问题采⽤插空法、定序问题采⽤倍缩法等常⽤的解题⽅法.【对点训练】1.7⼈站成两排队列,前排3⼈,后排4⼈,现将甲、⼄、丙三⼈加⼊队列,前排加⼀⼈,后排加两⼈,其他⼈保持相对位置不变,则不同的加⼊⽅法种数为( )A.120B.240C.360D.480[解析] 第⼀步,从甲、⼄、丙三⼈选⼀个加到前排,有3种,第⼆步,前排3⼈形成了4个空,任选⼀个空加⼀⼈,有4种,第三步,后排4⼈形成了5个空,任选⼀个空加⼀⼈有5种,此时形成6个空,任选⼀个空加⼀⼈,有6种,根据分步计数原理有3×4×5×6=360种⽅法.2.某班准备从甲、⼄等七⼈中选派四⼈发⾔,要求甲⼄两⼈⾄少有⼀⼈参加,那么不同的发⾔顺序有( )A.30B.600C.720D.840[答案] C[解析]若只有甲⼄其中⼀⼈参加,有C12C35A44=480种⽅法;若甲⼄两⼈都参加,有C22C25A44=240种⽅法,则共有480+240=720种⽅法,故选C.考点⼆、组合问题【例2】某市⼯商局对35种商品进⾏抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某⼀种假货必须在内,不同的取法有多少种?(2)其中某⼀种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)⾄少有2种假货在内,不同的取法有多少种?(5)⾄多有2种假货在内,不同的取法有多少种?[解析] (1)从余下的34种商品中,选取2种有C234=561种,∴某⼀种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种.∴某⼀种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有C120C215=2 100种.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3件假货有C315种,共有选取⽅式C120C215+C315=2 100+455=2 555种.∴⾄少有2种假货在内的不同的取法有2 555种.(5)选取3件的总数为C335,因此共有选取⽅式C335-C315=6 545-455=6 090种.∴⾄多有2种假货在内的不同的取法有6 090种.【类题通法】组合问题常有以下两类题型变化:1.“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元素取出,再由另外元素补⾜;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.2.“⾄少”或“⾄多”含有⼏个元素的组合题型:解这类题必须⼗分重视“⾄少”与“⾄多”这两个关键词的含义,谨防重复与漏解.⽤直接法和间接法都可以求解,通常⽤直接法分类复杂时,考虑逆向思维,⽤间接法处理.【对点训练】1.现有6个不同的⽩球,4个不同的⿊球,任取4个球,则⾄少有两个⿊球的取法种数是()B.115C.210D.385[答案] B[解析] 分三类,取2个⿊球有C24C26=90种,取3个⿊球有C34C16=24种,取4个⿊球有C44=1种,故共有90+24+1=115种取法,选B.2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种[答案] D[解析]共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,∴共有不同的取法有C45+C44+C25C24=66(种).考点三、排列、组合的综合应⽤【例3】4个不同的球,4个不同的盒⼦,把球全部放⼊盒内.(1)恰有1个盒不放球,共有⼏种放法?(2)恰有1个盒内有2个球,共有⼏种放法?(3)恰有2个盒不放球,共有⼏种放法?[解析] (1)为保证“恰有1个盒不放球”,先从4个盒⼦中任意取出去⼀个,问题转化为“4个球,3个盒⼦,每个盒⼦都要放⼊球,共有⼏种放法?”即把4个球分成2,1,1的三组,然后再从3个盒⼦中选1个放2个球,其余2个球放在另外2个盒⼦内,由分步乘法计数原理,共有C14C24C13×A22=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒⼦放2个球,每个盒⼦⾄多放1个球,也即另外3个盒⼦中恰有⼀个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同⼀件事,所以共有144种放法.(3)确定2个空盒有C24种⽅法.4个球放进2个盒⼦可分成(3,1)、(2,2)两类,第⼀类有序不均匀分组有C34C11A22种⽅法;第⼆类有序均匀分组有C24C22A22·A22种⽅法.故共有C24(C34C11A22+C24C22A22·A22)=84(种). 【类题通法】1. 解排列组合问题常以元素(或位置)为主体,即先满⾜特殊元素(或位置),再考虑其他元素(或位置).对于排列组合的综合题⽬,⼀般是将符合要求的元素取出或进⾏分组,再对取出的元素或分好的组进⾏排列.2.不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组⽅法的差异.其次对于相同元素的“分配”问题,常⽤的⽅法是采⽤“隔板法”.【对点训练】1.某校⾼⼆年级共有6个班级,现从外地转⼊4名⽣,要安排到该年级的两个班级且每班安排2名,则不同的安排⽅案种数为( )A.A 26C 24B.12A 26C 24C.A 26A 24D.2A 26 [答案] B[解析] 法⼀将4⼈平均分成两组有12C 24种⽅法,将此两组分配到6个班级中的2个班有A 26(种).所以不同的安排⽅法有12C 24A 26(种).法⼆先从6个班级中选2个班级有C 26种不同⽅法,然后安排⽣有C 24C 22种,故有C 26C 24C 22=12A 26C 24(种). 2.在8张奖券中有⼀、⼆、三等奖各1张,其余5张⽆奖.将这8张奖券分配给4个⼈,每⼈2张,不同的获奖情况有________种(⽤数字作答).[答案] 60[解析] 把8张奖券分4组有两种分法,⼀种是分(⼀等奖,⽆奖)、(⼆等奖,⽆奖)、(三等奖,⽆奖)、(⽆奖,⽆奖)四组,分给4⼈有A 44种分法;另⼀种是⼀组两个奖,⼀组只有⼀个奖,另两组⽆奖,共有C 23种分法,再分给4⼈有C 23A 24种分法,所以不同获奖情况种数为A 44+C 23A 24=24+36=60.。

2018届高中数学高考二轮复习第2讲导数的综合应用教案含答案(全国通用)

2018届高中数学高考二轮复习第2讲导数的综合应用教案含答案(全国通用)

第2讲:《导数的综合应用》教案一、教学目标1.应用导数讨论函数的单调性,并会根据函数的性质求参数范围.2.会利用导数解决某些实际问题.二、知识梳理1.已知函数单调性求参数值范围时,实质为恒成立问题.2.求函数单调区间,实质为解不等式问题,但解集一定为定义域的子集.3.实际应用问题:首先要充分理解题意,列出适当的函数关系式,再利用导数求出该函数的最大值或最小值,最后回到实际问题中,得出最优解.三、题型突破题型一 讨论函数的单调性例1 已知函数f (x )=x 2e-ax (a >0),求函数在[1,2]上的最大值.变式迁移1 设a >0,函数f (x )=a ln x x. (1)讨论f (x )的单调性;(2)求f (x )在区间[a,2a ]上的最小值.题型二 用导数证明不等式例2 已知f (x )=12x 2-a ln x (a ∈R ), (1)求函数f (x )的单调区间;(2)求证:当x >1时,12x 2+ln x <23x 3.变式迁移2 (2010·安徽)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.题型三实际生活中的优化问题例3某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).变式迁移3甲方是一农场,乙方是一工厂.由于乙方生产需占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关系x=2 000t.若乙方每生产一吨产品必须赔付甲方S元(以下称S为赔付价格).(1)将乙方的年利润ω(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S是多少?四、针对训练(满分:90分)一、填空题(每小题6分,共48分)1.已知曲线C :y =2x 2-x 3,点P (0,-4),直线l 过点P 且与曲线C 相切于点Q ,则点Q 的横坐标为________.2.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =________.3.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,则a =f (0)、b =f (12)、c =f (3)的大小关系为________________. 4.函数f (x )=-x 3+x 2+tx +t 在(-1,1)上是增函数,则t 的取值范围是________.5.若函数f (x )=sin x x ,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系为________. 6.在直径为d 的圆木中,截取一个具有最大抗弯强度的长方体梁,则矩形面的长为________.(强度与bh 2成正比,其中h 为矩形的长,b 为矩形的宽)7.要建造一个长方体形状的仓库,其内部的高为3 m ,长和宽的和为20 m ,则仓库容积的最大值为_______________m 3.8.若函数f (x )=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围为________. 二、解答题(共42分)9.(12分)设函数f (x )=kx 3-3x 2+1(k ≥0).(1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围.10.(14分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k 3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.11.(16分)设函数f (x )=ln x ,g (x )=ax +b x,函数f (x )的图象与x 轴的交点也在函数g (x )的图象上,且在此点有公共切线.(1)求a 、b 的值;(2)对任意x >0,试比较f (x )与g (x )的大小.五、参考答案二、知识梳理1.0<a <1 2.123.-24.⎣⎡⎦⎤12,12e π25.6 三、题型突破例1 解题导引 求函数在闭区间上的最值,首先应判断函数在闭区间上的单调性,一般方法是令f ′(x )=0,求出x 值后,再判断函数在各区间上的单调性,在这里一般要用到分类讨论的思想,讨论的标准通常是极值点与区间端点的大小关系,确定单调性或具体情况.解 ∵f (x )=x 2e-ax (a >0), ∴f ′(x )=2x e-ax +x 2·(-a )e -ax =e -ax (-ax 2+2x ).令f ′(x )>0,即e -ax (-ax 2+2x )>0,得0<x <2a. ∴f (x )在(-∞,0),⎝⎛⎭⎫2a ,+∞上是减函数,在⎝⎛⎭⎫0,2a 上是增函数. ①当0<2a<1,即a >2时,f (x )在[1,2]上是减函数, ∴f (x )max =f (1)=e -a .②当1≤2a≤2,即1≤a ≤2时,f (x )在⎣⎡⎭⎫1,2a 上是增函数,在⎝⎛⎦⎤2a ,2上是减函数,∴f (x )max =f ⎝⎛⎭⎫2a =4a -2e -2. ③当2a>2,即0<a <1时,f (x )在[1,2]上是增函数, ∴f (x )max =f (2)=4e-2a . 综上所述,当0<a <1时,f (x )的最大值为4e -2a ;当1≤a ≤2时,f (x )的最大值为4a -2e -2; 当a >2时,f (x )的最大值为e -a . 变式迁移1 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a ·1-ln x x 2(a >0), 由f ′(x )=a ·1-ln x x 2>0,得0<x <e ; 由f ′(x )<0,得x >e.故f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.(2)∵f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴f (x )在[a,2a ]上的最小值[f (x )]min =min{f (a ),f (2a )}.∵f (a )-f (2a )=12ln a 2, ∴当0<a ≤2时,[f (x )]min =ln a ;当a >2时,[f (x )]min =ln 2a 2. 例2 解题导引 利用导数解决不等式问题的主要方法就是构造函数,通过研究函数的性质进而解决不等式问题.(1)解 f ′(x )=x -a x =x 2-a x(x >0), 若a ≤0时,f ′(x )>0恒成立,∴函数f (x )的单调增区间为(0,+∞).若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ).(2)证明 设F (x )=23x 3-(12x 2+ln x ), 故F ′(x )=2x 2-x -1x. ∴F ′(x )= x -1 2x 2+x +1 x.∵x >1,∴F ′(x )>0. ∴F (x )在(1,+∞)上为增函数.又F (x )在(1,+∞)上连续,F (1)=16>0, ∴F (x )>16在(1,+∞)上恒成立. ∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3. 变式迁移2 (1)解 由f (x )=e x -2x +2a ,x ∈R ,知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表: x(-∞,ln 2) ln 2 (ln 2,+∞) f ′(x )- 0 + f (x ) 极小值故f (x )的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R .于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增,于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0,即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.例3 解 (1)分公司一年的利润L (万元)与售价x 的函数关系式为L =(x -3-a )(12-x )2,x ∈[9,11].(2)L ′(x )=(12-x )2-2(x -3-a )(12-x )=(12-x )(18+2a -3x ).令L ′=0,得x =6+23a 或x =12(不合题意,舍去). ∵3≤a ≤5,∴8≤6+23a ≤283. 在x =6+23a 两侧L ′的值由正变负. ∴①当8≤6+23a <9,即3≤a <92时,L max =L (9)=(9-3-a )(12-9)2=9(6-a ). ②当9≤6+23a ≤283,即92≤a ≤5时,L max =L (6+23a )=(6+23a -3-a )[12-(6+23a )]2=4(3-13a )3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技法篇:4大思想提前看,依“法”训练提时效高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数思想方法、数能力的考查.如果说数知识是数内容,可用文字和符号记录与描述,那么数思想方法则是数意识,重在领会、运用,属于思维的范畴,着眼于对数问题的认识、处理和解决.高考中常用到的数思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.这些在一轮复习中都有所涉及,建议二轮复习前应先习此部分.带着方法去复习,这样可以使理论指导实践,“一法一练”“一练一过”,既节省了复习时间又能起到事半功倍的效果,而市面上有些资料把方法集中放于最后,起不到”依法训练”的作用,也因时间紧造成而不透、而不深,在真正的高考中不能从容应对.不过也可根据自身情况选择完后再复习此部分.
思想1函数与方程思想
函数的思想,就是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的数思想.
方程的思想,就是建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数思想.【例1】(1)(2017·天水二模)定义域为R的可导函数y=f(x)的导函数为f′(x),满
足f(x)>f′(x),且f(0)=1,则不等式f(x)
e x<1的解集为()
A.(-∞,0)B.(0,+∞) C.(-∞,2) D.(2,+∞)
B[构造函数g(x)=f(x)
e x,则g′(x)=
e x·f′(x)-e x·f(x)
(e x)2

f′(x)-f(x)
e x.由题意
得g′(x)<0恒成立,所以函数g(x)=f(x)
e x在R上单调递减.又g(0)=
f(0)
e0=
1,所以f(x)
e x<1,即g(x)<1,解得x>0,所以不等式的解集为(0,+∞).故
选B.]
(2)(名师押题)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.
【导 号:04024000】
[1,+∞) [以AB 为直径的圆的方程为x 2+(y -a )2=a ,
由⎩⎨⎧
y =x 2,x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0,
即(y -a )[y -(a -1)]=0,
由题意得⎩⎨⎧
a >0,a -1≥0,
解得a ≥1.] [方法指津]
函数与方程思想在解题中的应用
1.函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.
2.数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.
3.解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数有关理论.
4.立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.
[变式训练1] 将函数y =sin ⎝ ⎛⎭
⎪⎫4x -π3的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为________.
【导 号:04024001】
5π24 [把y =sin ⎝ ⎛⎭
⎪⎫4x -π3的图象上所有的点向左平移m 个单位长度后,得到y =sin ⎣⎢⎡⎦⎥⎤4(x +m )-π3=sin ⎝ ⎛⎭
⎪⎫4x +4m -π3的图象, 而此图象关于y 轴对称,则4m -π3=k π+π2(k ∈Z ),
解得m =14k π+5π24(k ∈Z ).又m >0,所以m 的最小值为5π24.]
思想2 数形结合思想
数形结合思想,就是通过数与形的相互转化 解决数 问题的思想.其应用包括以下两个方面:
(1)“以形助数”,把某些抽象的数 问题直观化、生动化,能够变抽象思维为形象思维,揭示数 问题的本质,如应用函数的图象 直观地说明函数的性质.
(2)“以数定形”,把直观图形数量化,使形更加精确,如应用曲线的方程 精确地阐明曲线的几何性质.
【例2】 (经典高考题)已知函数f (x )=⎩⎨⎧
|x |,x ≤m ,x 2-2mx +4m ,x >m ,
其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.
(3,+∞) [作出f (x )的图象如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,∴要使方程f (x )=b 有三个不同的根,则4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.]
[方法指津]
数形结合思想在解题中的应用
1.构建函数模型并结合其图象求参数的取值范围或解不等式.
2.构建函数模型并结合其图象研究方程根或函数零点的范围.
3.构建解析几何模型求最值或范围.
4.构建函数模型并结合其图象研究量与量之间的大小关系.
[变式训练2] (1)已知函数f (x )=⎩⎪⎨⎪⎧ 2x
,x ≥2,(x -1)3,x <2,若关于x 的方程f (x )=k 有两
个不相等的实根,则实数k 的取值范围是( )
【导 号:04024002】
A .(-1,1)
B .(0,2)
C .(0,1)
D .(0,1] (2)若不等式4x 2-log a x <0对任意x ∈⎝ ⎛⎭
⎪⎫0,14恒成立,则实数a 的取值范围为( )
A.⎝ ⎛⎭
⎪⎫1256,1 B.⎣⎢⎡⎭⎪⎫1256,1 C.⎝ ⎛⎭⎪⎫0,1256 D.⎝ ⎛⎦
⎥⎤0,1256 (1)C (2)B [(1)当x ≥2时,f (x )=2x ,
此时f (x )在[2,+∞)上单调递减,
且0<f (x )≤1.
当x <2时,f (x )=(x -1)3,此时f (x )过点(1,0),(0,-1),
且在(-∞,2)上单调递增.
当x →2时,f (x )→1.
如图所示作出函数y =f (x )的图象,由图可得f (x )在(-∞,2)上单调递增且f (x )<1,f (x )在[2,+∞)上单调递减且0<f (x )≤1,
故当且仅当0<k <1时,关于x 的方程f (x )=k 有两个不相等的实根,即实数k 的取值范围是(0,1).
(2)由已知4x 2<log a x 对任意x ∈⎝ ⎛⎭⎪⎫0,14恒成立,相当于在⎝ ⎛⎭
⎪⎫0,14上,函数y =log a x 的图象恒在函数y =4x 2图象的上方,显然当a >1时,不成立,当0<a
<1时,如图,只需log a 14≥4×⎝ ⎛⎭
⎪⎫142⇒a 14≥14⇒a ≥1256,
又0<a <1,故a ∈⎣⎢⎡⎭
⎪⎫1256,1.故选B.] 思想3 分类讨论思想
分类讨论思想是当问题的对象不能进行统一研究时,就需要对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数 思想.
【例3】(1)(经典高考题)设函数f (x )=⎩⎨⎧
3x -1,x <1,2x ,x ≥1.
则满足f (f (a ))=2f (a )的a 的取值范围是( )
A.⎣⎢⎡⎦
⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞) (2)设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,
F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________. (1)C (2)2或72
[(1)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.
当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.
综上,a ≥23,故选C.
(2)若∠PF 2F 1=90°,
则|PF 1|2=|PF 2|2+|F 1F 2|2.
∵|PF 1|+|PF 2|=6,|F 1F 2|=25,。

相关文档
最新文档