2018年广州市第二中学初三年级第二学期一模考试数学卷word版含答案
广东省广州市白云区2018届九年级数学下学期综合测试(一模)试题

(A)3+ = (B) — =
(C)— + =0 (D) - =
4.矩形ABCD的对角线AC、BD交于点O,以下结论不一定成立的是(*)
(A)∠BCD=90° (B)AC=BD (C)OA=OB (D)OC=CD
5。不等式组 的整数解有(*)
(A)4个 (B)3个 (C)2个 (D)1个
答:现在从A地到B地可比原来少走5.9km路程.………………………………8分
23.(本小题满分12分,分别为3、3、6分)
解:(1)由tan∠AOB= ,得 = ,……………………………………1分
∴OH=2BH,又B( , ),即 =2× = ,………………………2分
∴H点的坐标为H(0, );……………………………………………………3分
=2( +2)( -2)………………………………………………9分
18.(本小题满分9分)
证明:∵C是BD的中点,∴BC=CD(线段中点的 定义);……………2分
∵AB∥EC,∴∠B=∠ECD(两直线平行,同位角相等)。…………4分
在△ABC和△ECD中,……………………………………………………5分
∵ ,∴△ABC≌△ECD(AAS),……………………8分
14。从1至9这9个自然数中任取一个,是2的倍数或是3的倍数的概率是*.
15。若分式 的值为0,则 =*。
16。如图3,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为*(结果用根号表示).
三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)
∴该区九年级学生大约有36000人视力不良;…………………………4分
2018年广州市有关中学考试数学真题和详细解析汇报(纯word版)

2018年市有关中考数学真题和详细解析(纯word 版)2011年市初中毕业生学业考试一、选择题(每小题3分,共30分)1.四个数-5,-0.1,21,3中为无理数的是( ) A. -5 B. -0.1 C. 21D. 32.已知□ABCD 的周长为32,AB=4,则BC=( ) A. 4 B. 121 C. 24 D. 283.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是( ) A. 4 B. 5 C. 6 D. 104.将点A (2,1)向左平移2个单位长度得到点A ',则点A '的坐标是( ) A. (0,1) B. (2,-1) C. (4,1) D. (2,3)5.下列函数中,当x>0时,y 值随x 值增大而减小的是( ) A.2x y = B. 1-=x y C. x y 43=D. xy 1= 6.若a<c<0<b ,则abc 与0的大小关系是( ) A. abc<0 B. abc=0 C. abc>0 D. 无法确定 7.下面的计算正确的是( )A. 2221243x x x =⋅B. 1553x x x =⋅C. 34x x x =÷ D. 725)(x x =8.如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着对折后的纸片沿虚线CD 向下..对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )9.当实数x 的取值使得2-x 有意义时,函数y=4x+1中y 的取值围是( ) A.y ≥-7 B. y ≥9 C. y>9 D. y ≤910.如图,AB 切⊙O 于点B ,OA=23,AB=3,弦BC//OA ,则劣弧BC 的弧长为( ) A.π33 B. π23 C. π D. π23二、填空题:(每小题3分,共18分) 11.9的相反数是______12.已知α∠=260,则α∠的补角是______度。
【推荐】广东省广州市2018年中考数学试题(有答案)

2018年广州市初中毕业生学业考试数学试题第一部分选择题(共30分)一、选择题(本大题共10一个小题,每小题3分)1. 四个数12中,无理数的是( )A. B. 1 C.12D.0 2.图1所示的五角星是轴对称图形,它的对称轴共有( ) A. 1条 B. 3条 C. 5条 D. 无数条3.图2所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )4.下列计算正确的是( ) A. ()222a b a b +=+ B. 22423a a a += C. ()2210x y x y y÷=≠ D. ()32628x x -=-5.如图3,直线AD,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A. ∠4,∠2B. ∠2,∠6C. ∠5,∠4D. ∠2,∠46.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( ) A.12 B. 13 C. 14 D. 167.如图4,AB 是圆O 的弦,OC ⊥AB,交圆O 于点C ,连接OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 辆,每枚白银重y 辆,根据题意的:( )A. ()()11910813x y y x x y =⎧⎪⎨+-+=⎪⎩B. 10891311y x x y x y +=+⎧⎨+=⎩C. ()()91181013x y x y y x =⎧⎪⎨+-+=⎪⎩D. ()()91110813x y y x x y =⎧⎪⎨+-+=⎪⎩9.一次函数y ax b =+和反比例函数a by x-=在同一直角坐标系中大致图像是( )10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m ,其行走路线如图所示,第1次移动到1A ,第2次移动到2A ……,第n 次移动到n A ,则△220180A A 的面积是( )A. 5042m B.210092m C.210112m D. 21009m 第二部分(非选择题共120分)11. 已知二次函数2y x =,当x >0时,y 随x 的增大而____________(填“增大”或“减小”) 12.如图6,旗杆高AB=8m ,某一时刻,旗杆影子长BC=16m ,则tanC=____________13.方程146x x =+的解是_____________ 14.如图7,若菱形ABCD 的顶点A,B 的坐标分别为(3,0),(-2,0)点D 在y 轴上,则点C 的坐标是_____________15. 如图8,数轴上点A 表示的数为a ,化简:a =______________16.如图9,CE 是平行四边形ABCD 的边AB 的垂直平分线,垂足为点O,CE 与DA 的延长线交于点E,连接AC,BE,DO,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD=∠BAE ③AF:BE=2:3 ④:23AFOE CODS S=:其中正确的结论有_______________-(填写所有正确结论的序号) 三:解答题(本大题共9个小题,满分102分)17(本小题满分9分)解不等式组1+0213x x ⎧⎨-⎩><18(本题满分9分)如图10,AB 与CD 相交于点E ,AE=CE,DE=BE.求证:∠A=∠C19(本题满分10分) 已知()()229633a T a a a a -=+++(1)化简T(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值。
广东省广州市第二中学 2019年初三数学二模卷考试试卷(无答案)

广州市第二中学2018学年第二学期初三二模数学试卷(满分150分)一、选择题(本大题共有10小题,每小题3分,共30分,每小题有且只有一个正确答案)1.16的算术平方根是( )A 、2B 、-2C 、4D 、-42.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A 、B .C .D .3.下列说法正确的是( )A .“明天的降水概率为30%”是指明天下雨的可能性是30%B .连续抛一枚硬币50次,出现正面朝上的次数一定是25次C .连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D .某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖4.为筹备班级的初中毕业联欢晚会,班长为全班同学爱吃哪几种水果作了调查,从而最终决定买什么水果,下列调查数据中最值得关注的是( )A 、平均数B .众数C .中位数D .方差5.若分式122+--x x x 的值为零,那么x 的值为( ) A.x =-1或x =2 B.x =0 C .x =2 D =-16.下列计算中,正确的是( )A .32+24=56B .3327=÷C .632333=⨯D .3)3(2±=7.已知扇形的弧长为6π cm ,该弧所对圆心角为90°,则此扇形的面积为( ) A .36πcm ² B .72πcm ² C .36cm ² D .72cm ²8. 如图是抛物线y =ax ²+bx +c (a ≠0)的一部分,当y <0时,自变量x 的范围是( ) )A.x <-1或x >2 B .x <-1或x >5 C .-1<x <5 D .-1<x <29.如图,用同样规格的黑.白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究在第N 个图中,黑.白瓷砖分别各有多少块( )A .4n +6,n (n +1)B .4n +6,n (n +2)C .n (n +1),4n +6D .n (n +2),4n +610.函数与xa y =与a ax y +-=2 在同一直角坐标系中的大致图象可能是( )二.填空题(本大题共有6小题,每小题3分,共18分) 11.3-的相反数是__________________12.太阳系外距离地球最近的一颗恒星叫做比邻星,它离地球的距离约为360 000 000 000 000千米,这个数用科学计数法表示为_______________________________千米.13.分解因式:=-+22363-y xy x _________________14.如图,在平面直角坐标系中有两点A (6,0),B (0,3),如果点C 在x 轴上(C 与A 不重合),当点C 的坐标为___________________________时,△BOC 与△AOB 相似。
广东省广州二中2018年中考数学二模试卷(解析版)

广东省广州二中2018年中考数学二模试卷一、选择题(每小题3分,满分30分)1.下列运算正确的是()A.B.C.﹣|﹣2|=2D.2.将两个全等的直角三角形纸片构成如下的四个图形,这四个图形中是中心对称图形的是()A.B.C.D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10104.把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)2 5.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°7.某县为发展教育事业,加强了对教育经费的投入,2015年投入3千万元,预计2017年投入5千万元.设教育经费的年平均增长率为x,则下面所列方程正确的是()A.3(1+x)2=5B.3x2=5C.3(1+x%)2=5D.3(1+x)+3(1+x)2=58.如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.abπD.acπ9.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°10.如图,在Rt△AOB中,两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y=的图象恰好经过=4,tan∠ABO=,则k的值为()斜边A′B的中点C,且S△AOBA.3B.4C.6D.8二、填空题(本大题共6小题,每小题3分,满分18分)11.使有意义的x的取值范围是.12.因式分解:a2b﹣b=.13.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=.14.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.15.分式方程+=2的解是.16.如图,AB是⊙O的弦,AB=8,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.18.(9分)如图,点E,F是平行四边形ABC D的对角线AC上的点,CE=AF,求证:BE =DF.19.(10分)先化简,再求值:,其中a=2,b=﹣1.20.(10分)为测山高,在点A处测得山顶D的仰角为31°,从点A向山方向前进140米到达点B,在B处测得山顶D的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D作DC⊥AB,交AB的延长线于点C;(2)山高DC是多少(结果取整数)?21.(12分)某完全中学(含初、高中)篮球队12名队员的年龄情况如下:(1)这个队队员年龄的众数是,中位数是,平均数是.(2)若把这个队队员年龄的分布情况绘成扇形统计图,请求出年龄为15岁的队员人数所对应的圆心角的度数.(3)为了检查队员们的训练水平,教练要从年龄为15岁的4名队员(用A、B、C、D表示)中随机抽取2人,请用列表法或树形图法求出恰好选中B、D的概率.22.(12分)如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.23.(12分)如图1,AB是⊙O的直径,AC是⊙O的切线.(1)连接BC,BC交⊙O于点E,连接AE.①若D为AC的中点,连接DE,证明:DE是⊙O的切线.②若BE=3EC,求tan∠ABC.(2)如图2,CF是圆O的另一条切线,F为切点,OC与圆O交于点G,求证:点G是三角形ACF的内心.24.(14分)已知抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2)两点.(1)用含a的式子表示b.(2)当a=﹣时,y=ax2+bc+c的函数值为正整数,求满足条件的x值.(3)若a>0,线段AB下方的抛物线上有一点E,求证:不管a取何值,当△EAB的面积最大时,E点的横坐标为定值.25.(14分)如图1,在矩形ABCD中,AB=4,AD=6,M是AD的中点,点E是线段AB 上一动点,连接EM并延长交直线CD于点F,过M作MN⊥EF,交射线BC于点N,连接NF,点P是线段NF的中点.(1)连接图1中的PM,PC,求证:PM=PC.(2)如图2,当点N与C重合时,求AE的长.(3)当点E从点A运动到点B时,求点P经过的路径长.参考答案一、选择题1.下列运算正确的是()A.B.C.﹣|﹣2|=2D.【分析】根据算术平方根、负整数指数幂、绝对值性质、立方根的定义逐一计算可得.解:A、=2,此选项错误;B、()﹣2=4,此选项错误;C、﹣|﹣2|=﹣2,此选项错误;D、,此选项正确;故选:D.【点评】本题主要考查实数的运算,解题的关键是掌握算术平方根、负整数指数幂、绝对值性质、立方根的定义.2.将两个全等的直角三角形纸片构成如下的四个图形,这四个图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:4 400 000 000=4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)2【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.解:原抛物线的顶点为(0,0),向右平移1个单位,那么新抛物线的顶点为(1,0);可设新抛物线的解析式为y=(x﹣h)2+k代入得:y=(x﹣1)2,故选:D.【点评】抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.5.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选:C.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.第二象限的点横坐标为<0,纵坐标>0.6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【分析】本题主要利用两直线平行,内错角相等作答.解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.7.某县为发展教育事业,加强了对教育经费的投入,2015年投入3千万元,预计2017年投入5千万元.设教育经费的年平均增长率为x,则下面所列方程正确的是()A.3(1+x)2=5B.3x2=5C.3(1+x%)2=5D.3(1+x)+3(1+x)2=5【分析】设教育经费的年平均增长率为x,根据某地2015年投入教育经费3千万元,预计2017年投入5千万元可列方程.解:设教育经费的年平均增长率为x,则2016的教育经费为:3×(1+x)2017的教育经费为:3×(1+x)2.那么可得方程:3(1+x)2=5.故选:A.【点评】本题考查了一元二次方程的应用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.8.如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.abπD.acπ【分析】易得此几何体为圆锥,侧面积=.解:由题意得底面直径为a,母线长为c,∴几何体的侧面积为acπ,故选:B.【点评】本题需先确定几何体的形状,关键是找到等量关系里相应的量.9.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°【分析】欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.【点评】此题主要考查了三角形的外角性质及圆周角定理的应用.10.如图,在Rt△AOB中,两直角边OA,OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y=的图象恰好经过=4,tan∠ABO=,则k的值为()斜边A′B的中点C,且S△AOBA.3B.4C.6D.8【分析】先根据三角函数设未知数,根据面积求B和A'的坐标,根据中点坐标公式可得C 的坐标,从而计算k的值;解:∵tan∠ABO==,∴设OA=x,则OB=2x,则S=OA•OB=x•2x=4,△ABO∴x=2,∴B(0,4),A'(4,2),∵点C为斜边A′B的中点,∴C(2,3),∴k=2×3=6;故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题的关键在于读懂题意,作出合适的辅助线,求出点C的坐标,然后根据点C的横纵坐标之积等于k值求解即可.二、填空题(本大题共6小题,每小题3分,满分18分)11.使有意义的x的取值范围是x≤1.【分析】根据二次根式的被开方数为非负数,即可得出x的范围.解:∵有意义,∴1﹣x≥0,解得:x≤1.故答案为:x≤1.【点评】此题考查了二次根式有意义的条件,属于基础题,解答本题的关键是熟练掌握二次根式的被开方数为非负数.12.因式分解:a2b﹣b=b(a+1)(a﹣1).【分析】先提取公因式b,再对余下的多项式利用平方差公式继续分解.解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.13.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC=6.【分析】首先证明BD=DE=2AD,再由DE∥BC,可得=,求出EC即可解决问题;解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴=,∴=,∴EC=4,∴AC=AE+EC=2+4=6,故答案为6.【点评】本题考查平行线分线段成比例定理,角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.【分析】根据旋转的性质得到:BE′=DE=1,在直角△EE′C中,利用勾股定理即可求解.解:根据旋转的性质得到:BE′=DE=1,在直角△EE′C中:EC=DC﹣DE=2,CE′=BC+BE′=4.根据勾股定理得到:EE′===2.【点评】本题主要运用了勾股定理,能根据旋转的性质得到BE′的长度,是解决本题的关键.15.分式方程+=2的解是x=4.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:1+x﹣1=2x﹣4,解得:x=4,经检验x=4是分式方程的解.故答案为:x=4【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.如图,AB是⊙O的弦,AB=8,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是4.【分析】根据中位线定理得到MN的长最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.解:如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=8,∴∠AC′B=45°,∴BC′=,=4.∴MN最大故答案为:4【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.【分析】方程组利用加减消元法求出解即可.解:①×3+②得:11x=11,即x=1,把x=1代入①得:y=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,点E,F是平行四边形ABCD的对角线AC上的点,CE=AF,求证:BE =DF.【分析】利用平行四边形的性质和平行线的性质可以得到相等的线段和相等的角,从而可以证明△BCE≌△DAF,进而证得结论.证明:∵四边形ABCD是平行四边形,∴CB=AD,CB∥AD,∴∠BCE=∠DAF,在△BCE和△DAF,,∴△BCE≌△DAF,∴BE=DF.【点评】本题考查了平行四边形的性质和全等三角形的判定及性质,本题的难点在于第一步的猜想,学生在解题时往往只考虑一种关系.19.(10分)先化简,再求值:,其中a=2,b=﹣1.【分析】根据提公因式法和分式的除法可以化简题目中的式子,再将a、b的值代入化简后的式子即可解答本题.解:====a﹣b,当a=2,b=﹣1时,原式=2﹣(﹣1)=2﹣+1=3﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(10分)为测山高,在点A处测得山顶D的仰角为31°,从点A向山方向前进140米到达点B,在B处测得山顶D的仰角为62°(如图).(1)在所给的图②中尺规作图:过点D作DC⊥AB,交AB的延长线于点C;(2)山高DC是多少(结果取整数)?【分析】(1)以D为圆心,大于DC长度为半径作弧,与AB及其延长线相交于E、F,分别以E、F为圆心,ED为半径作弧,相交于G,过D、G作垂线即可;(2)根据角的度数判断出AB=DB,利用三角函数求出DC即可.解:(1)如图②,(2)如图②,∵∠DBC=62°,∠DAB=31°,∴∠BDA=∠DAB=31°,∴AB=DB,∵AB=140米,∴DB=140米,在Rt△DCB中,∠C=90°,sin∠DBC=,∴DC=140•sin62°≈124米.答:山高124米.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将实际问题转化到三角形中是解题的关键.21.(12分)某完全中学(含初、高中)篮球队12名队员的年龄情况如下:(1)这个队队员年龄的众数是15,中位数是16,平均数是16.(2)若把这个队队员年龄的分布情况绘成扇形统计图,请求出年龄为15岁的队员人数所对应的圆心角的度数.(3)为了检查队员们的训练水平,教练要从年龄为15岁的4名队员(用A、B、C、D表示)中随机抽取2人,请用列表法或树形图法求出恰好选中B、D的概率.【分析】(1)众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解、利用求平均数公式计算即可;(2)年龄为15岁所占的百分比,乘以360即可得到结果.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、D两人进行比赛的情况,再利用概率公式即可求得答案.解:(1)15岁出现了4次,次数最多,因而众数是:15;12个数,处于中间位置的都是16,因而中位数是:16.这个队队员的平均年龄=×(14×1+15×4+16×3+17×2+18×2)=16,故答案为15、16、16;(2)年龄为15岁的队员人数所对应的圆心角的度数360°×=120°;(3)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴恰好选中B、D的概率为=.【点评】此题主要考查了扇形统计图与条形统计图的综合应用以及利用列表法求概率等知识,利用条形统计图与扇形统计图得出正确信息是解题关键.22.(12分)如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.【分析】(1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C(3,﹣2),然后利用待定系数法求反比例函数与一次函数的解析式;(2)将点E的坐标(m,3)代入反比例函数的解析式即可求出m的值,根据图象找出一次函数落在反比例函数图象上方的部分对应的自变量的取值范围即可;(3)设P(t,﹣),根据三角形面积公式和正方形面积公式得到×1×|t|=3×3,然后解绝对值方程求出t即可得到P点坐标.解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).【点评】本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数以及一次函数的解析式,三角形的面积.运用数形结合思想以及方程思想是解题的关键.23.(12分)如图1,AB是⊙O的直径,AC是⊙O的切线.(1)连接BC,BC交⊙O于点E,连接AE.①若D为AC的中点,连接DE,证明:DE是⊙O的切线.②若BE=3EC,求tan∠ABC.(2)如图2,CF是圆O的另一条切线,F为切点,OC与圆O交于点G,求证:点G是三角形ACF的内心.【分析】(2)①根据切线的性质和圆周角定理得出∠CAB=∠AEB=∠AEC=90°,根据等腰三角形的性质得出∠DEA=∠DAE,∠OEA=∠EAO,求出∠DEO=∠D AO=90°,根据切线的判定得出即可.②由∠EAC+∠EAB=90°,∠EBA+∠EAB=90°,证得∠EAC=∠EBA,可证得△EAC∽△EBA,根据相似三角形的性质可求出EA=,根据正切函数的定义即可求得tan∠ABC 的值.(2)过A作∠CAF的角平分线分别交OC、CF于G、D两点,过F作∠CF A的角平分线分别交OC、CA于G、E两点连接OF,OC于AF交于点M,证明△CAM和△CFM全等,从而得到CO为∠ACF的角平分线,所以三条角平分线交于一点,即证点G是三角形ACF 的内心.证明:(1)①连接OE,如图1所示∵AC是⊙O的切线,AB是⊙O的直径,∴∠CAB=∠AEB=∠AEC=90°,又∵D为AC中点,∴DE=CD=DA,∴∠DEA=∠DAE,∵OE=OA,∴∠OEA=∠EAO,∴∠DEA+∠OEA=∠DAE+∠EAO即∠DEO=∠DAO=90°,∵点E在⊙O上,∴DE与⊙O相切.②在直角△EAC与直角△EBA中,∵∠EAC+∠EAB=90°,∠EBA+∠EAB=90°,∴∠EAC=∠EBA,∴△EAC∽△EBA,∴=,EA2=EB•EC,设EC=1,则EB=3,EA2=EB•EC=3,EA=,∴tan∠ABC==.(2)过A作∠CAF的角平分线分别交OC、CF于G、D两点,过F作∠CF A的角平分线分别交OC、CA于G、E两点连接OF,OC与AF交于点M,如图2,由垂径定理可知:AF⊥OC,AM=MF在△CAM和△CFM中,∴△CAM≌△CFM∴∠ACO=∠FCO∴CO为∠ACF的角平分线,又∵CO交AD、EF于G∴点G是三角形ACF的内心.【点评】本题主要考查了切线的性质和判定定理,全等三角形的判定和性质,正切三角函数的定义,三角形的内心等知识,综合能力强,熟练掌握切线的性质和判定是解决问题的关键.24.(14分)已知抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2)两点.(1)用含a的式子表示b.(2)当a=﹣时,y=ax2+bc+c的函数值为正整数,求满足条件的x值.(3)若a>0,线段AB下方的抛物线上有一点E,求证:不管a取何值,当△EAB的面积最大时,E点的横坐标为定值.【分析】(1)利用待定系数法建立方程组求解即可得出结论;(2)先求出抛物线解析式,进而根据函数值为正数求出x的范围,再根据整数即可得出结论;(3)根据三角形的面积的计算方法建立函数关系式,即可得出结论.解:(1)∵抛物线y=ax2+bx+c经过A(0,2),B(2,﹣2),∴,∴,即:b=﹣2a﹣2;(2)由(1)知,c=2,b=﹣2a﹣2,∵a=﹣,∴b=﹣1,∴抛物线解析式为y=﹣x2﹣x+2=﹣(x+1)2+,∵y=ax2+bc+c的函数值为正数,∴﹣(x+1)2+>0,∴(x+1)2﹣5<0,∴﹣﹣1<x<﹣1,∵y=ax2+bc+c的函数值为整数,即﹣(x+1)2+为整数,∴(x+1)2是奇数,∴x为偶数,∴x=﹣2或x=0;(3)由(1)知,c=2,b=﹣2a﹣2,∴抛物线的解析式为y=ax2﹣(2a+2)x+2,∵A(0,2),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点E在线段AB下方的抛物线上,设点E(m,am2﹣(2a+2)m+2),过点E作y轴的平行线,交AB于F,∴F(m,﹣2m﹣2),∴EF=﹣2m﹣2﹣[am2﹣(2a+2)m+2]=﹣a(m﹣1)2+a,∴S=EF×|x B﹣x A|=EF=﹣a(m﹣1)2+a,△EAB∵a>0,∴﹣a<0,∴m=1时,△EAB面积最大,即:不管a取大于0的何值,当△EAB的面积最大时,E点的横坐标为定值,定值为1.【点评】此题是二次函数综合题,主要考查了待定系数法,解不等式的方法,三角形的面积的计算方法,函数极值的确定方法,表示出EF是解本题的关键.25.(14分)如图1,在矩形ABCD中,AB=4,AD=6,M是AD的中点,点E是线段AB 上一动点,连接EM并延长交直线CD于点F,过M作MN⊥EF,交射线BC于点N,连接NF,点P是线段NF的中点.(1)连接图1中的PM,PC,求证:PM=PC.(2)如图2,当点N与C重合时,求AE的长.(3)当点E从点A运动到点B时,求点P经过的路径长.【分析】(1)如图1中,连接PM、PC.利用直角三角形斜边中线定理证明即可;(2)如图2中,连接EC,设AE=x.首先证明AE=DF,在Rt△ECM中,利用勾股定理构建方程即可解决问题;(3)如图3中,点P的运动轨迹是线段PP1.作PH⊥AD于H.利用勾股定理求出PP1即可解决问题;解:(1)如图1中,连接PM、PC.∵四边形ABCD是矩形,∴∠FCN=90°,∵PF=FN,∴PC=FN,∵NM⊥EF,∴∠FMN=90°,∵FP=FN,∴PM=FN,∴PM=PC.(2)如图2中,连接EC,设AE=x.∵AB∥DF,∴∠AEM=∠F,∵AM=MD,∠AMD=∠DMF,∴△AME≌△DMF,∴AE=DF=x,EM=FM,∵NM⊥EF,∴EC=CF=4+x,在Rt△EBC中,∵EB2+BC2=EC2,∴(4﹣x)2+62=(x+4)2,∴x=.∴AE=.(3)如图3中,点P的运动轨迹是线段PP1.作PH⊥AD于H.当点E与A重合时,点P是矩形CDMN的中点,易知PH=2,DH=,当点E与B重合时,点P1在AD的延长线上,设BN1=F1N1=m,在Rt△CF1N1中,m2=(m﹣6)2+82,∴m=,∴CN1=﹣6=,∴DP1=CN1=,∴HP1=+=,在Rt△HPP1中,PP1==,∴点P的运动路径为.【点评】本题考查四边形综合题、全等三角形的判定和性质、线段的垂直平分线的性质、直角三角形的斜边中线定理、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考压轴题.。
广东省2018年中考模拟考试数学试卷(含答案)

九年级学业模拟考试数学试卷说明:本试卷共 4页,25小题,满分120分•考试用时100分钟. 注意事项:1答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号, 再用2B 铅笔把试室号、座位号的对应数字涂黑. 2 •选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3•非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上; 如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的 答案无效. 4.考生必须保持答题卡的整洁•考试结束后,将试卷和答题卡一并交回. 一、选择题(本大题10小题,每题3分,共30分)111.-的倒数是(▲) A .B . - 8C . 88 8若一个正n 边形的每个内角为150。
,则这个正n 边形的边数是(▲)1个球,则摸出的球是白球的概率为( ▲)C .- 21D .-82. 是中心对称图形的是(F 图形是我国国产品牌汽车的标识,在这些汽车标识中, B .C .② D. ®▲)3. 4. C . 5. 10 B . 11 C .地球的表面积约是0.51 XI09 千米5.1 X 07 千米 2一个布袋里装有 12 D . 13510 000 000千米2,用科学记数法表示为(▲) 8十、2B . 5.1X10 千米D . 51 X107 千米 26个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸6.在 Rt △ ABC 中, C=90° 如果BC=2 , 2sinA=,那么AB 的长是(▲)37. 如果代数式 4 324y - C .5D .■132y+5的值是 9,那么代数式2y 2- y+2的值等于(▲)‘2a15.已知满足 a —3+(a —b —5) =0,则 b = ▲.16.如图,△ ABC 的面积是4,点D 、E 、F 分别是 BC 、AD 、 则厶C EF 的面积是▲.三.解答题(一)(本大题3小题,每题6分,共18 分)17 .计算:(兀 一 1) + V_1 _ 寸 9 十 | —1 1 2m18. 先化简,再求值( )* —2 ,其中m =3.m —2 m +2 m —4m +48.下面是一位同学做的四道题, 其中正确的是(▲)3 3 6 2 3 52A . m +m =mB . x ?x =xC . (- b ) 吃b=2b 233 6D . (- 2pq ) = - 6p q9.已知四边形ABCD 是平行四边形,对角线 AC 、BD 交于点O , E 是BC 的中点, 以下说法错误的是(▲) A . OE= DC 2 C .Z BOE= / OBA B . OA=OC D . Z OBE= / OCE 10.对于函数y =-2x ,2,下列结论:①.当x > 1时,y v 0;②.它的图象经过第一、二、三象限; ③.它的图象必经过点 (-2, 2);④.y 的值随x 值的增大而增大,其中正确结论的个数是( 二.填空题(本大题 6小题,每小题4分,共24 分) 11.比较大小:3 ▲ 77(填 “ >” “ c ” 或“=”). 12 .如图,正六边形 ABCDEF 内接于O O ,若AB=2则O O 的半径为▲. D'CAf EF13•不等式组x2:3x的解集为、 x-4 空 0 14 .如图,将 ^ABC 沿直线AB 向右平移后到达 BDE 的位置, 若区 CAB = 50° Z ABC = 100° ,贝U N CBE 的度数为 ▲. DRABE 的中点,ED19. 光明市在道路改造过程中,需要铺设一条污水管道,决定由甲、乙两个工程队来完成这一工程已知甲工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.求甲、乙工程队每天各铺设多少米?四•解答题(二)(本大题3小题,每小题7分,共21 分)20. 如图,在△ ABC 中,/ ABC=60。
(完整word版)2018年广东省广州市中考数学试卷(含答案解析)

2018年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.(3分)(2018•广州)四个数0,1,,中,无理数的是()A .B.1 C .D.02.(3分)(2018•广州)如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条3.(3分)(2018•广州)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A .B .C .D .4.(3分)(2018•广州)下列计算正确的是( )A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y ÷=x2(y≠0)D.(﹣2x2)3=﹣8x6第1页(共45页)5.(3分)(2018•广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠46.(3分)(2018•广州)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A .B .C .D .7.(3分)(2018•广州)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°8.(3分)(2018•广州)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意第2页(共45页)思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A .B .C .D .9.(3分)(2018•广州)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是()A .B .C .D .10.(3分)(2018•广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()第3页(共45页)A.504m2B .m2 C .m2 D.1009m2二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)(2018•广州)已知二次函数y=x2,当x>0时,y随x 的增大而(填“增大”或“减小”).12.(3分)(2018•广州)如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC= .13.(3分)(2018•广州)方程=的解是.14.(3分)(2018•广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.第4页(共45页)15.(3分)(2018•广州)如图,数轴上点A表示的数为a,化简:a+= .16.(3分)(2018•广州)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE :S△COD=2:3.其中正确的结论有.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)(2018•广州)解不等式组:.第5页(共45页)18.(9分)(2018•广州)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.19.(10分)(2018•广州)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.20.(10分)(2018•广州)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位第6页(共45页)居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21.(12分)(2018•广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.第7页(共45页)第8页(共45页)22.(12分)(2018•广州)设P(x ,0)是x 轴上的一个动点,它与原点的距离为y 1.(1)求y 1关于x 的函数解析式,并画出这个函数的图象;(2)若反比例函数y 2=的图象与函数y 1的图象相交于点A,且点A 的纵坐标为2.①求k 的值;②结合图象,当y 1>y 2时,写出x 的取值范围.23.(12分)(2018•广州)如图,在四边形ABCD 中,∠B=∠C=90°,AB>CD,AD=AB+CD .(1)利用尺规作∠ADC 的平分线DE ,交BC 于点E ,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.24.(14分)(2018•广州)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C 三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r ,求的值.第9页(共45页)25.(14分)(2018•广州)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.第10页(共45页)2018年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分。
2018年广东省广州中学中考数学一模试卷

2018年广东省广州中学中考数学一模试卷一、选择题(每小题3分,满分30分)1.(3分)下列图案中,属于轴对称图形的是()A.B.C.D.2.(3分)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球3.(3分)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°4.(3分)下列运算正确的是()A.3﹣=3B.=4﹣3=1C.3x=D.(ab2)3÷(a2b﹣1)=ab75.(3分)如图,是由4个相同小正方体组合而成的几何体,它的主视图是()A.B.C.D.6.(3分)若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1+x2的值是()A.2B.﹣2C.3D.﹣37.(3分)亮亮想用一块铁皮制作一个圆锥模型,要求圆锥的母线长为12cm,底面圆的半径为5cm.那么,这个圆锥模型的侧面展开扇形铁皮的圆心角度数应为()A.90°B.120°C.150°D.240°8.(3分)如图,在⊙O中,AB是直径,C是弦,AB⊥CD,垂足为E,连接CO、AD、OD,∠BAD=22.5°,则下列说法中不正确的是()A.CE=EO B.OC=CD C.∠OCE=45°D.∠BOC=2∠BAD9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=710.(3分)如图,抛物线y=ax2+bx+c的开口向下,交x轴的正半轴于(1,0),则下列结论:(1)﹣abc<0;(2)a﹣b+c<0;(3)2a+b<0;(4)a+c<0,正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,满分18分)11.(3分)因式分解:ab2﹣16a=.12.(3分)方程组的解是.13.(3分)方程x2﹣9x+8=0的解是.14.(3分)把抛物线y=x2﹣2向左平移3个单位,然后向下平移4个单位,则平移后的抛物线解析式(用y=ax2+bx+c 的形式作答)为.15.(3分)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.16.(3分)问题:如图,点O是等边△ABC内部一点,OA=1,OB=2,OC=3,求∠AOB的度数,四位同学为了解决此题,分别作了各自的辅助线,具体如下:甲:旋转使得△AOB≌△APC:乙翻折使得△AOB≌△AOD,使得点B的对应点D落在边BC上;丙旋转使得△AOB≌△CEB;丁旋转使得△BOC≌△BMA,那么辅助线有利于实现解题的是(只填序号).三、解答下列各题(满分102分)17.(9分)解方程:﹣=118.(9分)如图,点E、F在线段BC上,BE=CF,AB=DC,∠B=∠C=78°,∠DEC=42°,求sin A的值.19.(10分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述事件所有可能的结果;(2)求一次打开锁的概率.20.(10分)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象相交于第二、四象限内的A,B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求k的值;(2)求的值.21.(12分)如图,等腰三角形ABC中,AC=BC=10,AB=12.(1)动手操作:利用尺规作以BC为直径的⊙O,⊙O交AB于点D,⊙O交AC于点E,并且过点D作DF⊥AC交AC于点F.(2)求证:直线DF是⊙O的切线;(3)连接DE,记△ADE的面积为S1,四边形DECB的面积为S2,求的值.22.(12分)某校九年级二班为开展“迎五一劳动最光荣”的主题班会活动,派小明和小丽两位同学去学校附近的超市购买钢笔作为奖品,已知该超市的宝克牌钢笔每支8元,英雄牌钢第每支4.8元.他们要购买这两种笔共40支.小明和小丽根据主题班会活动的设奖情况,决定所购买的宝克牌钢笔的数量要少于英雄牌钢笔的数量的,但又不少于英雄牌钢笔的数量的,如果他们买了宝克牌钢笔x支,买这两种笔共花了y元.(1)请写出y(元)关于x(支)的函数关系式,并求出自变量x的取值范围;(2)请帮助他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?23.(12分)已知:关于x的方程(a+2)x2﹣2ax+a=0有两个不相等的实数根x1和x2,并且抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点A、B分别位于点(2,0)的两旁.(1)求实数a的取值范围;(2)点A和B是否可能都在原点的右侧?为什么?24.(14分)如图,AP是△ABC的外接圆⊙O的直径,AD是△ABC的高,直径AP交边BC于点M,延长AD交⊙O于点E,连接OE交边BC于点N.(1)求证:OA=;(2)按边分类,试判断△OMN的形状,并证明你的结论;(3)已知AB=15;BC=14,cos∠ABC=,求MN的长.25.(14分)如图,二次函数y=x2+bx﹣3的图象l交x轴于点A(﹣3,0)、B(1,0),交y轴于点C,将图象l 沿坐标轴翻折得到新的图象,与图象l开口方向相同的新的图象l1交x轴于点A1(在x轴的正半轴上)(1)求出b的值,并写出点A1的坐标以及新的图象所对应的函数解析式;(2)若P为y轴上的一个动点,E为直线A1C上的一个动点,请找出点P,使得PB+PE最小,并求出最小值;(3)在y轴的正半轴上有一点M,使得∠MA1O=k∠OCB,直线A1M交图象l1于点D(点D在第二象限).①若k=2,试求点D的坐标;②若k=3,请直接写出OM的长.2018年广东省广州中学中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,满分30分)1.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.【解答】解:A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选:A.3.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD是AC边上的高,∴BD⊥AC,∴∠DBC=90°﹣72°=18°.故选:A.4.【解答】解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=,所以C选项错误;D、原式=a3b6÷(a2b﹣1)=ab7,所以D选项正确.故选:D.5.【解答】解:从正面看易得第一层右边有1个正方形,第二层最有3个正方形.故选:C.6.【解答】解:∵一元二次方程x2﹣2x﹣3=0的一次项系数是a=1,二次项系数b=2,∴由韦达定理,得x1+x2=2.故选:A.7.【解答】解:=10π,解得n=150°.故选C.8.【解答】解:∵AB⊥CD,∴CE=DE,=,∴∠BOC=2∠BAD=2×22.5°=45°,∴△OCE为等腰直角三角形,∴∠OCE=45°,OC=CE,CE=OE,∴OC=CD.故选:B.9.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.【解答】解:①由图象可得a<0,c>0,对称轴在y轴右侧,又可知a、b异号,故b>0,故﹣abc<0,正确;②x=﹣1时,y<0,正确;③对称轴在y轴右侧,即﹣>0,2a+b>0,错误;④(1,0)在图象上,所以a+b+c=0,且b>0;故a+c<0,正确.正确个数有3个,故选C.二、填空题(每小题3分,满分18分)11.【解答】解:ab2﹣16a=a(b2﹣16)=a(b+4)(b﹣4).故答案为:a(b+4)(b﹣4).12.【解答】解:,①+②得:5x=15,x=3,将x=3代入2x﹣y=4,∴y=2,∴方程组的解为,故答案为:13.【解答】解:∵x2﹣9x+8=0,∴(x﹣1)(x﹣8)=0,∴x=1或x=8,故答案为:1或814.【解答】解:∵抛物线y=x2﹣2向左平移3个单位,然后向下平移4个单位,∴平移后的抛物线的解析式为:y=(x+3)2﹣2﹣4,即y=x2+6x+3故答案是:y=x2+6x+3.15.【解答】解:如图,在BE上截取BG=CF,连接OG,∵RT△BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,在△OBG与△OCF中∴△OBG≌△OCF(SAS)∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在RT△BCE中,BC=DC=6,DE=2EC,∴EC=2,∴BE===2,∵BC2=BF•BE,则62=BF,解得:BF=,∴EF=BE﹣BF=,∵CF2=BF•EF,∴CF=,∴GF=BF﹣BG=BF﹣CF=,在等腰直角△OGF中OF2=GF2,∴OF=.故答案为:.16.【解答】解:甲,丁的辅助线,有利于解题.理由:如图甲①中,连接OP.由题意:AO=AP,∠OAP=∠BAC=60°,∴△AOP是等边三角形,∴OP=OA=1,∠APO=60°,∵PC=OB=2,OC=3,∴OP2+PC2=OC2,∴∠OPC=90°,∴∠APC=∠APO+∠OPC=60°+90°=150°,∵∠AOB=∠APC,∴∠AOB=150°.如图丁④中,连接OM.同法可证:∠BOM=60°,∠AOM=90°,可得∠AOB=150°,故答案为甲,丁.三、解答下列各题(满分102分)17.【解答】解:去分母得:2(2x﹣1)﹣(5x﹣1)=6,去括号得:4x﹣2﹣5x+1=6,移项得:4x﹣5x=6+2﹣1,合并同类项得:﹣x=7,系数化成1得:x=﹣7.18.【解答】解:∵∠C=78°,∠DEC=42°,∴∠D=180°﹣78°﹣42°=60°,∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠A=∠D=60°,∴sin A=sin60°=.19.【解答】解:(1)分别用A与B表示锁,用A、B、C、D表示钥匙,画树状图得:则可得共有8种等可能的结果;(2)∵一次打开锁的有2种情况,∴一次打开锁的概率为:=.20.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3),将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12.(2)∵反比例函数的解析式为y=﹣.将B点坐标代入y=﹣中,得﹣2=﹣,解得m=6.即B(6,﹣2),将A、B两点坐标代入y=ax+b,得,解得∴==﹣.21.【解答】解:(1)如右图所示,图形为所求;(2)证明:连接OD∵DF⊥AC,∴∠AFD=90°,∵AC=BC,∴∠A=∠B,∵OB=OD,∴∠B=∠ODB,∴∠A=∠ODB∴OD∥AC,∴∠ODF=∠AFD=90°,∴直线DF是⊙O的切线;(3)连接DE;∵BC是⊙O的直径,∴∠CDB=90°,即CD⊥AB,∵AC=BC,CD⊥AB,∴AD=BD=AB=6,∵四边形DECB是圆内接四边形,∴∠BDE+∠C=180°,∵∠BDE+∠ADE=180°,∴∠C=∠ADE,∵在△ADE和△ACB中,∠ADE=∠C,∠DAE=∠CAB,∴△ADE∽△ACB,∴=,∴=,∵S△ABC=S△ADE+S四边形DECB,∴==,∴=,即=.22.【解答】解:(1)买了宝克牌钢笔x支,则购买英雄牌钢笔(40﹣x)支,y=8x+4.8(40﹣x)=3.2x+192,∵所购买的宝克牌钢笔的数量要少于英雄牌钢笔的数量的,但又不少于英雄牌钢笔的数量的,∴,解得,8≤x<13,∵x为整数,∴8≤x≤13,即y(元)关于x(支)的函数关系式是y=3.2x+192(8≤x≤13且x为整数);(2)∵y=3.2x+192,8≤x≤13且x为整数,∴x=8时,y取得最小值,此时y=3.2×8+192=217.6,40﹣x=32,答:买了宝克牌钢笔8支,购买英雄牌钢笔32支时,所花钱最少,此时花了217.6元.23.【解答】解:(1)∵关于x的方程(a+2)x2﹣2ax+a=0有两个不相等的实数根∴解得:a<0,且a≠﹣2 ①设抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点的坐标分别为(α,0)、(β,0),且α<β∴α、β是关于x的方程x2﹣(2a+1)x+2a﹣5=0的两个不相等的实数根∵△=[﹣(2a+1)]2﹣4×1×(2a﹣5)=(2a﹣1)2+21>0∴a为任意实数②由根与系数关系得:α+β=2a+1,αβ=2a﹣5∵抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点分别位于点(2,0)的两旁∴α<2,β>2∴(α﹣2)(β﹣2)<0∴αβ﹣2(α+β)+4<0∴2a﹣5﹣2(2a+1)+4<0解得:a>﹣③由①、②、③得a的取值范围是﹣<a<0;(2)点A和B不可能都在原点的右侧,∵抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点都在原点的右侧,则α>0,β>0,∴αβ>0,∵αβ=2a﹣5,∴2a﹣5>0,解得a>,这与关于x的方程(a+2)x2﹣2ax+a=0有两个不相等的实数根,a<0且a≠﹣2无公共解,故A和B不可能都在原点的右侧.24.【解答】(1)证明:∵AP是⊙O的直径,∴∠ABP=90°,AP=2OA,∵AD是△ABC的高,∴∠BDE=∠ADB=∠ADC=90°=∠ABP,∵∠P=∠C,∴△ABP∽△ADC,∴=,∴AP=,∴OA=;(2)解:△OMN是等腰三角形;理由如下:∵OA=OE,∴∠OAE=∠OEA,∵∠OMN+∠OAE=90°,∠DNE+∠OEA=90°,∠ONM=∠DNE,∴∠OMN=∠ONM,∴OM=ON,即△OMN是等腰三角形;(3)解:∵∠ADB=90°,AB=15,cos∠ABC==,∴BD=AB=×15=9,∴AD===12,CD=BC﹣BD=14﹣9=5,∴AC===13,由相交弦定理得:AD×DE=BD×CD,∴DE===,∴AE=AD+DE=12+=,作OF⊥AE于F,连接PE,如图所示:则OF∥BC,∴△DEN∽△FEO,∴=,∵OA=OE===,∴EF=AE=,AP=2OA=,∴OF===2,∴=,解得:DN=,∵AP是⊙O的直径,∴∠AEP=90°,∴PE===4,∴PE⊥AE,∵BC⊥AD,∴BC∥PE,∴△ADM∽△AEP,∴=,即=,解得:DM=,∴MN=DM﹣DN=﹣=.25.【解答】解:(1)函数l的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),即﹣3a=﹣3,解得:a=1,故函数l的表达式为:y=x2+2x﹣3,b=2,点A、A1关于y轴对称,故点A1(3,0);(2)点B′是点B关于y轴的对称点,过点B′作B′E⊥A1C交于点E,B′E交y轴于点P,则此时,PB+PE最小,最小值为B′E,∵OA1=OC=3,故直线A1C的表达式为:y=x﹣3…①,B′E⊥A1C,则B′E的函数表达式为:y=﹣x+s,将点B′坐标代入上式并解得:直线B′E的表达式为:y=﹣x﹣1…②,联立①②并解得:x=1,故点E(1,﹣2),则PB+PE的最小值B′E=2;(3)将图象A、B、C区域放大为图2,连接OB′,则∠BCB′=2OCB=2α,在点B右侧作∠BCB″=α,交x轴于点B″,则∠B′CB″=3α,则tan∠OCB===tanα,B′C=BC=,设∠CB′B=β,则tanβ=3,则sinβ=当k=2时,即∠MA1O=2∠OCB=2α,故点B作BH⊥CB′,BH=B′B sinβ=2×=,tan∠HCB=tan2α==,当k=3时,同理tan∠MA1O=tan3α=;①当k=2时,tan∠MA1O=tan2α=,则直线A1M的表达式为:y=﹣x+b,将点A1(3,0)的坐标代入上式并解得:直线A1M的表达式为:y=﹣x+,将A1M表达式与l的表达式联立并解得:x=﹣(正值也舍去),故点D(﹣,),②k=3时,tan∠MA1O=tan3α=;则OM=OA1tan∠MA1O=×3=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州市第二中学2017学年第二学期初三年级一模考试
数学科 试卷 (满分 150分)
本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.
第一部分 选择题(共30分)
一、 选择题(本大题共10小题,每小题3分,满分30分,每小题只有一个正确答案.) 1. 在A 、B 、C 、D 四幅图案中,能通过图1平移的到的是( )
图1 A B C D
2.已知一组数据c b a 、、的平均数为5,那么数据222---c b a 、、的平均数是( )
A. 2
B. 3
C. 5
D.-1 3.从不同方向看一只茶壶,俯视效果图是( )
图1 A B
C D
4.下列单项式中,与b a 2
是同类项的是( )
A.b a 22
B.22b a
C.2
ab D.ab 3
5.关于8的叙述不正确的是( )
A.228=
B.面积为8的正方形的边长是8
C.8是有理数
D.在数轴上可以找到表示8的点 6.如图2,为了测量河岸B A 、两点的距离,在与AB 垂直的方向点C 处测得 50,=∠=ACB a AC °,那么AB 等于( )
A.︒50sin a
B.︒50tan a
C.︒50cos a
D.
︒
50tan a
7.如图3,圆锥的底面半径为2,母线长为6,则侧面积为( )
A.4π
B.6π
C.12π
D. 16π
8.方程组⎩⎨
⎧=-=+13
47
23y x y x 的解是( )
A.⎩⎨
⎧=-=31y x B.⎩⎨⎧-==13y x C.⎩⎨⎧-=-=13y x D.⎩⎨⎧-=-=3
1
y x
9.下列命题中假命题是( )
A.正六边形的外角和等于360°
B.位似图形必定相似
C.样本方差越大,数据波动越小
D.方程012=++x x 无实数根
10.如图4,已知在ABC ∆中,点E D 、分别在边AC AB 、上,BC DE ∥,1:2:=BD AD ,点F 在AC 上,2:1:=FC AF ,连接BF ,交DE 于点G ,那么GE DG :等于( )
A. 1:2
B. 1:3
C. 2:3
D. 2:5
图3 图4
第二部分 非选择题(共120分)
二、 填空题(本题共6小题,每小题3分,满分18分)
11.人体中成熟的红细胞的平均直径为0.00000077米,用科学记数法表示为____________.
12.分解因式:=-x x 43
___________________.
13.已知直线)3(2a x y -+=与x 轴的交点在)0,3(),0,1(B A 之间(包括B A 、两点),则a 的取值范围是____________________.
14.如图5,由6个小正方形组成32⨯的网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是_______________.
15.如图6,在直角坐标系中,四边形OABC 为正方形,顶点C A 、在坐标轴上,以边AB 为弦的⊙M 与x 轴相切,若点A 的坐标为(0, 8),则圆心M 的坐标为__________.
图5 图6
16.如图7(a ),在直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB ∥x 轴,直线x y -=从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图像如图7(b )所示,那么AD 的长为___________.
7(a ) 7(b )
三、 解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17.(9分)解不等式2
1
23+-x x >,并把它的解集在数轴上表示出来。
18.(9分)如图,四边形ABCD 为平行四边形,F 是CD 的中点,连接AF 并延长与BC 的延长线交于点E 。
求证:CE BC =.
19. (10分)某校举行了“文明在我身边”摄影比赛,已知每幅参赛作品成绩记为x 分
(60≤x ≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了他们的成绩,并绘制了如下不完整的统计图表.
根据以上信息解答下列问题:
(1)统计表中c 的值为_______;样本成绩的中位数落在分数段____________中; (2)补全频数分布直方图;
(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?
20. (10分)如图,已知ABC Rt ∆中︒=∠90A ,4=AC .
(1)利用尺规作ABC ∠的平分线交AC 于点D ;(保留做图痕迹,不写作法) (2)过点D 作BC DE ⊥于点E ,若3=CE ,CDE ∆的周长为y ,先化简
)1
1
11(12122+--÷+--=y y y y y A ,再求A 的值.
21.(12分)已知反比例函数)0(2
≠=k x
k y . (1)若点),2
3
(1y A -
和点),21(2y B -是该反比例函数图像上的两点,试利用反比例函数的性质比较1y 和
2y 的大小;
(2)设点),(n m P (0>m )是其图像上的一点,过点P 作x PM ⊥轴于点M ,若17
17
cos =
∠POM ,17=PO (O 为坐标原点),求k 的值,并直接写出不等式022
>x
k kx -的解集。
22.(12分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?
23. (12分)如图,边长为2的圆内接正方形ABCD 中,P 为边CD 的中点,直线AP 交圆于E 点. (1)求证:︒=∠45AED ; (2)求弦DE 的长;
(3)若Q 是线段BC 上一动点,当线段BQ 的长度为何值时,DE AQ ∥.
24. (14分)已知抛物线3222-+-=m mx x y (m 是常数)与x 轴交于点B A 、(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.
(1)若m 取不同的值,线段AB 的长度是否保持不变?若不变,请求出AB 的长;若改变,请说明理由; (2)若点B 在x 轴正半轴上,且BCD ∆是以点D 为直角顶点的直角三角形,请求出m 的值;
(3)设抛物线与直线3=x 交于点P ,PAB ∆的外接圆圆心为点Q ,问:点Q 是否总在某个函数的图像上?若是,请求出该函数解析式;若不是,请说明理由。
25. (14分)已知菱形ABCD ,︒=∠60DAB .
(1)若菱形ABCD 的边长为2cm ,如图(a )所示,点P 从A 点出发,以s cm /3的速度沿AC 向C 作匀速运动;与此同时,点Q 也从A 点出发,以s cm /1的速度,沿射线AB 作匀速运动.当P 运动到C 点时,
Q P 、都停止运动,设P 点的运动时间为t 秒.
①当P 异于A 、C 时,请说明BC PQ ∥;
②以P 为圆心,PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P 与边BC 分别有1个公共点和2个公共点?
(2)如图(b )所示,菱形ABCD 对角线交于点O ,2=AE ,1=BE ,连接OE ,请直接写出OE 的最大值.
图(a )
图(b )。