汽轮机转子及构成

合集下载

汽轮机工作原理

汽轮机工作原理

汽轮机工作原理什么是汽轮机?汽轮机是将蒸汽的热能转换成机械能的一种旋转式原动机,有转子(即转动部分的总称,包括:转轴、叶轮、叶片、联轴器及其附件)和静子(即不转动部分的总称,包括:汽缸、进汽机构、排汽机构、汽封、滑销系统、轴承和盘车装置等)组成,如图:就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。

蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。

汽轮机本体结构详解图(示意图):汽轮机本体主要由转子、静子、轴承及轴承箱、盘车装置四大部分构成,如图:1、转子:汽轮机通流中的转动部分,是汽轮机作功的关键部件,由主轴,叶轮,叶片,联轴器等主要零部件组成。

2、静子:汽轮机通流中的静止部分及汽轮机的外壳部分,由汽缸、隔板及隔板套、进汽部分、排汽部分、端汽封等主要零部件组成。

3、轴承及轴承箱:支持轴承用来承受转子的重量并保持转子的径向位置,推力轴承用来固定转子的轴向位置,轴承箱用来安装轴承和轴承座。

4、盘车装置:在进汽冲转前及停汽停机后使汽轮机继续保持低速旋转的装置,由电动机、减速器、离合器、操纵机构构成。

汽轮机的工作原理:汽轮机是用蒸汽做功的旋转式原动机,它将蒸汽的热能转变成透平转子旋转的机械能,这一转变过程需要经过两次能量转换,即蒸汽通过透平喷嘴(静叶片)时,将蒸汽的热能转换成蒸汽高速流动的动能,然后高速气流通过工作叶片时,将蒸汽的动能转换成透平转子旋转的机械能。

汽轮机工作原理分为两类:冲动式和反动式。

冲动式汽轮机的蒸汽热能转变成动能的过程,仅在喷嘴中进行,而工作叶片只是把蒸汽的动能转换成机械能,即蒸汽在喷嘴中膨胀,速度增大,温度压力降低,而在叶片中仅将其动能部分转变为机械能(汽体流速降低),而由于叶片沿流动方向的间槽道截面不变,因而蒸汽不再膨胀,压力也不再降低;反动式汽轮机中的蒸汽在静叶片中膨胀,压力温度均下降,流速增大,然后进入动叶片(工作叶片),由于动叶片沿流动方向的间槽道截面形状与静叶片间槽道截面变化相同,所以蒸汽在动叶片中继续膨胀,压力也要降低,由于汽流沿着动叶片内弧流动时方向是改变的,因此,叶片既受到冲击力的作用,同时又受到蒸汽在动叶片中膨胀,高速喷离动叶片产生反动力的作用,冲动力和反动力的合力就是动叶片所承受的力,这就是说,在反动式汽轮机中,蒸汽热能转变成动能的过程,不仅在静叶片中进行,也在动叶片中进行。

汽轮机工作原理 结构

汽轮机工作原理  结构

汽轮机工作原理和结构1 汽轮机工作原理汽轮机是将蒸汽的热能转换成机械能的蜗轮式机械。

在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。

如图1所示。

高速汽流流经动叶片3时,由于汽流方向改变,产生了对叶片的冲动力,推动叶轮2旋转做功,将蒸汽的动能变成轴旋转的机械能。

图1 冲动式汽轮机工作原理图1-轴;2-叶轮;3-动叶片;4-喷嘴2 汽轮机结构汽轮机主要由转动部分(转子)和固定部分(静体或静子)组成。

转动部分包括叶栅、叶轮或转子、主轴和联轴器及紧固件等旋转部件。

固定部件包括气缸、蒸汽室、喷嘴室、隔板、隔板套(或静叶持环)、汽封、轴承、轴承座、机座、滑销系统以及有关紧固零件等。

套装转子的结构如图2所示。

套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套(过盈配合)在主轴上,并用键传递力矩。

图2 套装转子结构1-油封环2-油封套3-轴4-动叶槽5-叶轮6-平衡槽汽轮机主要用途是在热力发电厂中做带动发电机的原动机。

为了保证汽轮机正常工作,需配置必要的附属设备,如管道、阀门、凝汽器等,汽轮机及其附属设备的组合称为汽轮机设备。

图3为汽轮机设备组成图。

来自蒸汽发生器的高温高压蒸汽经主汽阀、调节阀进入汽轮机。

由于汽轮机排汽口的压力大大低于进汽压力,蒸汽在这个压差作用下向排汽口流动,其压力和温度逐渐降低,部分热能转换为汽轮机转子旋转的机械能。

做完功的蒸汽称为乏汽,从排汽口排入凝汽器,在较低的温度下凝结成水,此凝结水由凝结水泵抽出送经蒸汽发生器构成封闭的热力循环。

为了吸收乏汽在凝汽器放出的凝结热,并保护较低的凝结温度,必须用循环水泵不断地向凝汽器供应冷却水。

由于汽轮机的尾部和凝汽器不能绝对密封,其内部压力又低于外界大气压,因而会有空气漏入,最终进入凝汽器的壳侧。

若任空气在凝汽器内积累,凝汽器内压力必然会升高,导致乏汽压力升高,减少蒸汽对汽轮机做的有用功,同时积累的空气还会带来乏汽凝结放热的恶化,这两者都会导致热循环效率的下降,因而必须将凝汽器壳侧的空气抽出。

汽轮机 - 结构

汽轮机 - 结构

正在套中的叶轮
(三)叶片

动叶片:在汽轮机工作过
程中随汽轮机转子一起转
动的叶片称工作叶片,作 用是把蒸汽的动能转变成 机械能,使转子旋转。

静叶片安装在隔板或汽缸 上;动叶片安装在叶轮或 转鼓上。
安装在高压转子上的叶片
动叶片的结构型式

叶根:将动叶片固定在叶轮或转鼓上的连接部分,它的 结构应保证在任何运行条件下都能牢固地固定。
4)
斜销 位置:低压缸撑脚和基座之间 结构:撑脚和基座开槽,配销 作用: 引导低压缸横向、纵向膨胀的叠加。
5)
二) 滑销系统的作用
转子和汽缸(轴承座和台板)同心的保证
汽缸均匀、对称膨胀。横向中分面上各点膨
胀运动中仍然保持为中分面。
三)胀差
1)
胀差的定义:启动、停机过程中因为转子、 汽缸的质面比和加热条件不同导致的轴向热 膨胀的差值。 2) 胀差的危害:动、静部分轴向间隙减小。 3) 胀差的计算: △l相对=△l转子-△l汽缸
(一)转子

汽轮机的转动部分统称为转子,它是汽轮机的重要部 件之一,起着工质能量转换及扭矩传递的作用,它汇 集了各级动叶栅上得到的机械能并传给发电机(或其 他机械)
转子的工作条件相当复杂,它处在高温工质中,以高 速旋转承受着离心力所引起的巨大应力、蒸汽作用在 其上的轴向推力以及由于温度分布不均匀引起的热应 力,还要承受巨大的扭转力矩和轴系振动所产生的动 应力。
纵树型 叶根承 载能力 高
叉型叶根
叉型叶根强度高、适 应性好。检修时可以 单独拆换个别叶片, 所以被大功率汽轮机 末几级广泛采用。但 装配时比较费工;由 于整锻转子和焊接转 子的工作空间小,给 钻铆钉孔带来了困难, 所以这两种转子一般 不用叉型叶根。

汽轮机的基本结构

汽轮机的基本结构

汽轮机的基本结构1. 引言汽轮机是一种常见的热能转换设备,广泛应用于发电厂、船舶、石化、制冷等领域。

它通过燃烧燃料产生高温高压蒸汽,然后将蒸汽的热能转化为机械能,驱动轴承旋转,从而实现能源的转换和利用。

本文将介绍汽轮机的基本结构,包括主要组成部分和工作原理。

2. 汽轮机的主要组成部分汽轮机的主要组成部分包括燃烧室、汽轮机转子、汽轮机定子、汽轮机减速器和辅助设备。

2.1 燃烧室燃烧室是汽轮机内部进行燃烧的空间,其主要功能是将燃料和空气混合并点燃,产生高温高压的燃烧产物。

燃烧室通常由燃烧室壳体、燃烧器和燃烧室衬里等组成。

2.2 汽轮机转子汽轮机转子是汽轮机的核心部件,承载着转动能量的传递。

它由多个叶片组成,叶片通常采用高温合金材料制成,以承受高温高压蒸汽的冲击和离心力的作用。

汽轮机转子一般分为高压转子、中压转子和低压转子,它们按照蒸汽的压力级别进行排列。

2.3 汽轮机定子汽轮机定子是与转子相对固定的部件,起到引导蒸汽流动的作用。

它由固定叶片和定子壳体组成,定子壳体通常由铸铁或钢制成。

汽轮机定子的叶片角度和形状是根据流体动力学原理设计的,以确保蒸汽在定子中流动时能够转换热能为机械能。

2.4 汽轮机减速器汽轮机减速器用于将高速旋转的汽轮机转子的转速降低,以适应发电机等负载设备的要求。

它通常由齿轮传动系统组成,通过齿轮的啮合和传动,将高速转动的轴承驱动转速降低到合适的范围。

2.5 辅助设备汽轮机的辅助设备包括进汽系统、排汽系统、冷却系统、润滑系统等。

进汽系统负责将蒸汽送入汽轮机中,排汽系统则将排出的低温低压蒸汽排出。

冷却系统用于冷却汽轮机的转子和定子,以防止过热。

润滑系统则负责给汽轮机的滑动部件提供润滑油,以减少摩擦和磨损。

3. 汽轮机的工作原理汽轮机的工作原理可以简单描述为以下几个步骤:压力能转化为动能、动能转化为机械能、机械能输出。

3.1 压力能转化为动能燃料在燃烧室中燃烧产生高温高压蒸汽,蒸汽进入汽轮机的高压转子,叶片上的高压蒸汽将其动能转化为动能,推动转子高速旋转。

《汽轮发电机介绍》课件

《汽轮发电机介绍》课件
汽轮发电机介绍
目录
CONTENTS
• 汽轮发电机概述 • 汽轮发电机的结构与组成 • 汽轮发电机的运行与维护 • 汽轮发电机的故障诊断与处理 • 汽轮发电机的应用与前景
01 汽轮发电机概述
定义与特点
定义
汽轮发电机是一种将热能转换为 电能的旋转式发电设备,利用汽 轮机驱动发电机转子旋转,产生 交流电。
定子的设计和制造要 求严格,以确保磁场 稳定、减少铁损和热 损失。
定子的作用是构成发 电机的磁场,将机械 能转化为电能。
冷却系统
01
冷却系统用于降低汽轮发电机运 行时的温度,由散热器、水泵、 风扇等组成。
02
冷却系统的效果直接影响到发电 机的效率和寿命,因此需要定期 维护和清洗。
油系统
油系统为汽轮发电机提供润滑、冷却 和调速等功能,由润滑油、控制油和 顶轴油等组成。
历史与发展
早期发展
汽轮发电机起源于19世纪末期, 最初用于船舶和军舰的动力系统

现代应用
随着技术的发展和需求的增长,汽 轮发电机在火电、核电等领域得到 广泛应用,单机容量不断增大,效 率也不断提高。
未来趋势
未来汽轮发电机将朝着更高效、环 保、智能化的方向发展,如采用先 进的冷却技术、新材料等提高发电 效率,降低能耗和排放。
市场前景
01
市场需求持续增长
随着全球能源需求的不断增长,汽轮发电机的市场需求将持续增长。
02
技术创新推动市场发展
随着技术的不断进步和创新,汽轮发电机将不断改进和优化,推动市场
发展。
03
环保要求促进市场发展
随着环保要求的不断提高,清洁能源发电将逐渐成为主流,汽轮发电机
作为清洁能源发电的重要设备之一,其市场前景将更加广阔。

汽轮机的原理及结构分析

汽轮机的原理及结构分析
汽轮机是一种将蒸汽能量转换为机械功的旋转式动力机械,广泛应用于工业领域。其主要由转动部分和静止部分组成。转动部分包括主轴、叶轮、动叶片等,负责将蒸汽的热能转换为机械能。静止部分则包括进汽部分、汽缸、隔板等,为转动部分提供稳定的运行环境。当蒸汽进入汽轮机后,会经过一系列环形配置的喷嘴和动叶,蒸汽的热能在此过程中被转换为汽轮机转子的机械能,从而驱动其他机械转动。与往复式大的功率。根据结构型式,汽轮机转子可分为轮式转子和鼓式转子两种。此外,汽轮机的功率与其工作原理、工作条件、受力情况、工艺要求以及材料性质等密切相关。中小功率的汽轮机通常采用单缸结构,而大功率汽轮机则由高压缸、中压缸和低压缸组成。通过积木块设计原理,汽轮机可以实现多级反动式运行,提高热效率。总之,了解汽轮机的结构和工作原理对于实际操作和维护具有重要意义。

汽轮机结构

汽轮机结构

(二)
排汽缸
汽轮机末级排汽倒入凝汽器的部分
1、结构:铸造结构和钢板焊接结构。
2、设有导流板以减小排汽压力损失。
3 、低压缸喷水减温装置:机组启动、空负 荷及低负荷时,蒸汽流量很小,不足以带走 低压缸内摩擦鼓风产生的热量,引起排汽温 度升高,为防止低压缸温度过高,排汽缸上 设置低负荷了喷水减温装置。
4、大机组低压缸的特点:
(1)排汽缸尺寸庞大,一般采用钢板焊接结构;
(2)在热机组低压缸的进汽温度一般超过230℃,与排汽 温度差达200 ℃,因此也采用双层结构。通流部分在内缸 中承受温度变化,低压内缸用高强度铸铁铸造,低压外缸 仍为焊接结构。庞大的外缸只承受排汽温度,温差变化小。 (3)为防止长时间空负荷运行,排汽温度过高而引起排 汽缸变形,排汽缸内设有喷水降温装臵;
4、可倾瓦
高压油顶起装臵:减少盘车启动力矩,防止启动、 停机过程中转子转动很慢时轴瓦的磨损。
三、推力轴承 (一)推力轴承的油膜形成 (二)推力轴承的结构
(三)推力间隙:
推力盘在工作瓦片和非工作瓦片之间的移动距离叫做 推力间隙。一般不大于 0.4mm 。瓦片上的乌金厚度一般为 1.5mm,其值小于汽轮机通流部分动静之间的最小间隙, 以保证即使在乌金熔化的事故情况下,汽轮机动静部分也 不会相互摩擦。
3、 法兰螺栓加热装臵:减小汽缸、法兰和螺
栓之间的温差,有效控制机组的胀差,缩短 启动时间。
法兰螺栓加热装臵均设有高、低温汽源。 4、双层汽缸:减轻单个汽缸的重量;合理利 用材料;缸壁薄、内外温差小,有利于改善 机组的启动性能和变工况适应能力。 5、双层进汽管:既要保证高压蒸汽的密封又 要保证内外缸的相对膨胀。
汽缸外部保温不良,造成收入不均
造成汽缸裂纹的主要原因:

汽轮机工作原理__结构

汽轮机工作原理__结构

汽轮机工作原理和结构1汽轮机工作原理汽轮机是将蒸汽的热能转换成机械能的蜗轮式机械。

在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。

如图1所示。

高速汽流流经动叶片3时,由于汽流方向改变,产生了对叶片的冲动力,推动叶轮2旋转做功,将蒸汽的动能变成轴旋转的机械图1冲动式汽轮机工作原理图1-轴;2-叶轮;3-动叶片;4-喷嘴2汽轮机结构汽轮机主要由转动部分(转子)和固定部分(静体或静子)组成。

转动部分包括叶栅、叶轮或转子、主轴和联轴器及紧固件等旋转部件。

固定部件包括气缸、蒸汽室、喷嘴室、隔板、隔板套(或静叶持环)、汽封、轴承、轴承座、机座、滑销系统以及有关紧固零件等。

套装转子的结构如图2所示。

套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套(过盈配合)在主轴上,并用键传递力矩。

图2套装转子结构1-油封环2-油封套3-轴4-动叶槽5-叶轮6-平衡槽汽轮机主要用途是在热力发电厂中做带动发电机的原动机。

为了保证汽轮机正常工作,需配置必要的附属设备,如管道、阀门、凝汽器等,汽轮机及其附属设备的组合称为汽轮机设备。

图3为汽轮机设备组成图。

来自蒸汽发生器的高温高压蒸汽经主汽阀、调节阀进入汽轮机。

由于汽轮机排汽口的压力大大低于进汽压力,蒸汽在这个压差作用下向排汽口流动,其压力和温度逐渐降低,部分热能转换为汽轮机转子旋转的机械能。

做完功的蒸汽称为乏汽,从排汽口排入凝汽器,在较低的温度下凝结成水,此凝结水由凝结水泵抽出送经蒸汽发生器构成封闭的热力循环。

为了吸收乏汽在凝汽器放出的凝结热,并保护较低的凝结温度,必须用循环水泵不断地向凝汽器供应冷却水。

由于汽轮机的尾部和凝汽器不能绝对密封,其内部压力又低于外界大气压,因而会有空气漏入,最终进入凝汽器的壳侧。

若任空气在凝汽器内积累,凝汽器内压力必然会升高,导致乏汽压力升高,减少蒸汽对汽轮机做的有用功,同时积累的空气还会带来乏汽凝结放热的恶化,这两者都会导致热循环效率的下降,因而必须将凝汽器壳侧的空气抽出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. . . . . . .. 汽轮机转子及构成 1转子定义 汽轮机所有转动部件的组合体称为转子(图13)。它主要包括:主轴、叶轮(转鼓)、叶片、联轴器等部件。

图13 转子 转子的作用:汇集各级动叶栅所得到的机械能,并传给发电机。 转子受力分析:传递扭矩、离心力引起的应力、温度不均匀引起的热应力、轴系振动所产生的振动应力。 汽轮机转子在高温蒸汽中高速旋转,不仅要承受汽流的作用力和由叶片、叶轮本身离心力所引起的应力,而且还承受着由温度差所引起的热应力。 此外,当转子不平衡质量过大时,将引起汽轮机的振动,转子要承受轴系振动所产生的振动应力。因此,转子的工作状况对汽轮机的安全、经济运行有着很大的影响。

2转子的分类 根据汽轮机的分类,转子分为两种:轮式转子、鼓式转子。前者用于冲动式汽轮机,后者用于反动式汽轮机,鼓式转子上的动叶直接安装在转鼓上。 按临界转速是否在运行转速围,分为刚性转子和柔性转子。在启动过程中,刚性转子启动就很方便,不存在跨临界区域,而柔性转子因需要快速的跨临界,故要求用户在实际启动过程中,要充分暖机,为快速跨临界作好准备。 1、轮式转子 轮式转子根据转子结构和制造工艺的不同,可分为:套装转子、整段转子、焊接转子以及组合转子。 . . . . . . .. 1-油封环 2-轴封套 3-轴 4-动叶栅 5-叶轮 6-平衡槽 图14 套装转子示意图 (1)套装转子 套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套在主轴上,各部件与主轴之间采用过盈配合,并用键传递力矩。主轴加工成阶梯形,中间直径大。 适用性:只适用于中、低参数的汽轮机和高参数汽轮机的中、低压部分,其工作温度一般在400℃以下。不宜用于高温高压汽轮机的高、中压转子。 ①优点:加工方便,材料利用合理,质量容易得到保证。 ②缺点:轮孔处应力较大,转子刚性差,高温下套装处易松动。 (2)整锻转子 叶轮和主轴及其他主要零部件由整体毛坯加工制成,没有热套部件。主轴的中心通常钻有中心孔,其作用是: ①去掉锻件中残留的杂质及疏松部分; ②用来检查锻件的质量; ③减轻转子的重量。 其缺陷在于: ①使转子工作应力增大,制造成本增加; ②运行中易出现中心孔进油、进水、腐蚀,引起转子不明的振动; ③检修、动平衡复杂。 随着锻造、热处理及探伤技术水平的提高,无中心孔的转子结构应运而生。 ①优点:不会出现零件松动问题,结构紧凑,强度、刚度高,适合高温、高应力环境下工作; ②缺点:贵重材料消耗大,对加工工艺要求高。 适用性:中小型汽轮机的高压转子、大型汽轮机的任何转子(高参数或超高参数机组的高压转子)。 . . . . . . .. 图15 整锻转子毛坯 (3)焊接转子 若干实心轮盘、端轴单独铸造,然后焊接加工。焊接转子的主要优点是:不存在松动问题;采用实心的轮盘,强度高,不需要叶轮轮壳,结构紧凑;轮盘和转子可以单独制造,材料利用合理,加工方便且易于保证质量;焊成整体后转子刚性较大等。但是焊接转子要求材料的可焊性好,焊接工艺及检验技术要求高且比较复杂,这一切在一定程度下妨碍了焊接转子的应用。

图16 整锻转子示意图 . . . .

. . .. 1-叶轮 2-焊缝 3-动叶栅4-平衡槽 5-联轴器的连接轮 图17 焊接转子示意图 (4)组合转子 根据各段的工作条件不同,在同一转子上,高压部分采用整锻结构,中、低压部分采用套装结构,从而兼得整锻转子和套装转子的优点。 适用性:广泛用于高参数、中等功率的汽轮机上。

图18 组合转子示意图 2、鼓式转子 反动式汽轮机采用,无叶轮,动叶片直接装在转鼓的凸环上(反动式汽轮机级数较多,动叶栅的反动度大,采用转鼓式转子可缩短轴向长度,避免轴向推力过大) . . . . . . .. 图19鼓式整锻转子 附表 不同转子结构的比较 序号 项目 套装转子 整锻转子 焊接转子 组合转子 1 结构紧凑程度 不紧凑 紧凑 紧凑 中等 2 转子零件 多 少 少 中等 3 加工周期 短 长 长 中等 4 锻件质量保证程度 容易 较难 中等 中等 5 轮孔应力 高 低 低 高 6 锻件大小 小 大 小 中等 7 转子刚度 小 大 大 中等 8 转子静挠度 大 小 小 中等 9 启动速度 慢 快 快 中等 10 叶轮松动可能 有 无 无 11 应力腐蚀程度 易 不易 不易 易 12 转子重量 较轻 较重 较轻 中等 13 不同材料合理应用 能 不能 能 能 14 制造成本 较低 较高 较低 中等 3、转子的选材 转子材料选择要素:转子工作温度、结构特点、应力状态、工作条件以及材料使用的经济性;叶轮、转子的材料应具有足够的机械强度和韧性,性能稳定,金项组织均匀、无损探伤合格、热处理和冷热工艺性良好。高温下工作的部件,不仅要考虑工作温度下的屈服极限,还要考虑工作温度下的持久强度和蠕变强度。 对于套装转子,叶轮的材料通常采用34CrMo1A和35CrMoV,载荷较大的低压叶轮可用34CrNi3Mo;套装转子的主轴,根据工作温度和应力状态分别选用45或34CrMo1A。 对于整锻转子,可根据工作温度分档选取,工作温度低于480℃,可选用34CrMo1A,工作温度低于540℃时,可选用34Cr2MoV或30Cr1Mo1V;低压整锻转子工作温度较低,要求材料在常温下有较高的机械强度和低的脆性转变温度,. . . . . . .. 常采用30Cr2Ni4MoV。工作温度达到600℃时,可选用X12CrMoWVNbN10-1-1 对于焊接转子,材料要有良好的焊接性能,可选用25Cr2NiMoV。

3动叶片 在汽轮机工作过程中随汽轮机转子一起转动的叶片称工作叶片,动叶片安装在转子叶轮(冲动式汽轮机)或转鼓(反动式汽轮机)上,接受喷管叶栅射出的高速汽流,把蒸汽的动能转换成机械能,带动转子旋转。 动叶由叶型、叶根、叶顶三部分组成。 1、叶型 (1)按照蒸汽经过叶片时的膨胀程度来分为冲动式叶片和反动式叶片; (2)按照截面积变化来分为等截面叶片和变截面叶片。等截面叶片的截面积沿叶高是不变的,变截面叶片的截面积沿叶高按照一定的规律减小,即叶片绕各截面形心连续发生扭转,通常又称为扭曲叶片。 叶身是动叶片的主要部分,它构成汽流通道。它的横截面形状称作叶型,叶型的周线称为型线。

图20 动叶片的组成 叶根 叶型 叶顶 . . . .

. . .. a 冲动式叶片 b 反动式叶片 图21 冲动式叶片、反动式叶片示意图 2、叶根 将动叶片固定在叶轮或转鼓上的连接部分,使其在经受汽流的推力和旋转离心力作用下,不致于从轮缘沟槽里拔出来。它的结构应保证在任何运行条件下都能牢固地固定 常用的叶根结构型式有:T型、叉型和枞树型。 (1)T型叶根结构简单、加工方便、工作可靠为短叶片普遍采用。它的缺点是叶片的离心力对轮缘两侧截面产生弯矩,使轮缘有开的趋势。故将叶根和轮缘上做成凸肩形。 T型和菌型叶根属于周向装配式叶根。这类叶根的轮缘槽上开有一个或两个缺口,叶片就从这些缺口一片片依次装入轮缘槽中。最后装在缺口处的叶片叫做封口叶片,研配装入后用两个铆钉固定在轮缘上。 周向装配式叶根的缺点是当个别叶片损坏时,不能单独拆换,而必须将部分或全部叶片拆下重装。

(a)等截面直叶片 (b)变截面扭曲叶片 1-叶顶 2-叶型 3-叶根 图22 等截面直叶片、变截面扭曲叶片示意图 (2)叉型叶根的叉尾直接插入轮缘槽,并用两排铆钉固定叉尾,叉尾数可根据叶片离心力大小选择。叉型叶根强度高、适应性好。检修时可以单独拆换个别叶片,所以被大功率汽轮机末几级广泛采用。但装配时比较费工,且轮缘较厚,. . . . . . .. 钻铆钉孔不便由于整锻转子和焊接转子的工作空间小,给钻铆钉孔带来了困难,所以这两种转子一般不用叉型叶根。 (3)枞树型叶根沿轴向直接装入轮缘相应的枞树槽中。这种叶根承载能力强,叶根齿数可根据离心力大小决定,同时拆装容易,故被大功率的调节级和末几级采用。但由于其加工面多,精度要求高,所以受到限制。

a-T型叶根 b-外包T型叶根 c-双T型叶根 d-转入T型叶根的切口 图23 T型叶根

图24 叉形叶根 图25 枞树型叶根 . . . .

. . .. 3、叶顶 汽轮机的短叶片和中长叶片通常在叶顶用围带连在一起,构成叶片组。长叶片在叶型部分用拉金连接成组,或者围带和拉金都不用,成为自由叶片。 (1)高、中压转子使用的短叶片,由围带连成叶片组,围带的作用: ①减小叶片工作的弯应力; ②增加叶片刚性,调整叶片的自振频率,避开共振; ③使叶片顶部封闭,避免蒸汽从汽道顶部泄漏,减少叶顶漏汽,降低漏汽损失。 (2)低压转子使用的长叶片,由拉金连成叶片组,拉金的作用:增加叶片刚性;调整叶片的自振频率,避开共振,改善振动性能;但增加了蒸汽流动阻力,且会削弱叶片强度,所以在满足叶片振动和刚度要求下,尽量避免采用拉金。 拉金一般是以6~12mm的金属丝或金属管,穿在叶身的拉金孔中。拉金与叶片之间可以是焊接的(焊接拉金),也可以是不焊接的(松拉金)。在一级叶片中,一般有1~2圈拉金,最多不超过3圈拉金。 拉金处在汽流通道中间,将影响级汽流流动,同时,拉金孔削弱了叶片的强度,所以在满足振动和强度要求的情况下,有的长叶片可设计成自由叶片。 有的低压叶片,不用拉金,呈自由叶片。一般,自由叶片和仅用拉金固定成组的叶片都将顶部削薄,可起到汽封齿的作用;且一旦发生动、静部分摩擦,可减轻事故程度,保护汽轮机。

拉金 围带

相关文档
最新文档