微软商业智能(bi)整体方案简介 ppt课件

合集下载

BI商务智能的基本定义(ppt 46页)

BI商务智能的基本定义(ppt 46页)

通过BI帮助我们
提高企业效益 建立忠实的顾客群 增进企业效率 做出明智的决策
商务智能内容
产品分析
哪种产品赢利情况最好? 哪种产品赢利最差却卖的最快? 哪种产品组合对一定收入的家庭最有吸引力?
商务智能内容
销售分析
一家已开张两年的分店销售趋势如何? 附近地区是否存在竞争者? 哪种产品的赢利有向上的趋势及哪类顾客购买
不可修改
数据库处理的是日常事务数据,有的需要 不断更新
数据仓库反映的是历史信息 ,可以添加, 但不可更改。
数据仓库生成
Extract, Transfer, and Load (ETL)
Model Integrate
Data
ETL Data warehouse
数据展现
面向高层决策者的主管信息系统(EIS) 面向决策分析者的联机分析系统(OLAP) 决策者上的即席查询系统(Ad Hoc) 灵活报表系统(Reporting) 数据展现采用多种灵活的方式,比如C/S模
了解企业情况 行动: 通过分析来更有效地分配资源
商务智能系统结构
数据仓库(Data Warehouse, DW)
联机分析处理(On-Line Analytical Processing, OLAP)
数据挖掘(Data Mining, DM)
数据仓库(DW)
数据仓库,是在数据库已经大量存在的情 况下,为了进一步挖掘数据资源、为了决 策需要而产生的,它决不是所谓的“大型 数据库”。
聚类、群集化(clustering):将不同的母体区 隔为较具同构型的群组(cluster),换句话说, 其目的是将组与组之间的差异分辨出来,并对个 别组内的相似样本进行挑选。在群集化技术中, 没有预先定义好的类别和训练样本存在,所有纪 录都根据彼此相似程度来加以归类。

商业智能(BI)解决方案

商业智能(BI)解决方案

目录第一章概述 (1)第二章商业智能综述 (2)2.1商业智能基本结构 (2)2.1.1 IBM数据仓库架构 (3)2.1.2 数据仓库:用于抽取、整合、分布、存储有用的信息 (5)2.1.3 多维分析:全方位了解现状 (6)2.1.4 前台分析工具 (6)2.1.5 数据挖掘 (6)2.2商业智能方案实施原则 (7)2.2.1 分阶段、循序渐进的原则 (7)2.2.2 实用原则 (7)2.2.3 知识原则 (8)第三章XXX公司BI系统方案 (9)3.1XXX公司BI系统的需求分析 (9)3.2IBM的解决方案 (9)3.3建议架构 (12)第四章所选IBM产品简介 (15)4.1DB2UDB (15)4.1.1 概述:DB2家族(Family)与DB2通用数据库(UDB) V7.2 (15)4.1.2 DB2通用数据库(UDB) V7.2的特色 (17)4.1.3 DB2通用数据库(UDB)的其他先进功能 (32)4.2DB2W AREHOUSE M ANAGER (数据仓库管理器) (39)4.2.1 DB2 Warehouse Manager的主要部件 (39)4.2.2 数据抽取、转换和加载(ETL)功能 (40)4.2.3 元数据(Meta Data)管理 (45)4.2.4 DB2 Warehouse Manager的其它技术特点 (46)4.3IBM OLAP S ERVER(多维数据库服务器) (48)4.3.1 DB2 OLAP Server引擎 (48)4.3.2 DB2 OLAP Server各个附件 (50)4.3.3 DB2 OLAP Server与DB2 Warehouse Manager集成 (53)4.3.4 DB2 OLAP Server支持的前端工具 (54)4.4DB2OLAP A NALYZER (54)4.5数据挖掘工具(IBM I NTELLIGENT M INER) (55)4.5.1 数据挖掘的实现方法 (56)4.5.2 数据挖掘基本方法 (58)4.5.3 数据挖掘与多维分析相结合 (60)第五章工程服务和售后服务 (61)5.1工程服务 (61)5.2售后服务 (61)5.2.1 IBM数据仓库的安装及配置服务 (61)5.2.2 IBM数据仓库的维护服务 (61)5.2.3 IBM数据仓库的顾问服务 (62)5.2.4 IBM培训服务 (62)5.3技术文档 (63)第一章概述随着市场竞争的日益激烈,各家公司纷纷把提高决策的科学性、合理性提高到一个新的认识高度。

2024版商业智能(BI)介绍

2024版商业智能(BI)介绍

•BI概述与背景•BI核心技术组件•BI实施方法论与流程目•BI在各行业应用案例分享•BI挑战及未来发展趋势录01BI定义及发展历程BI定义发展历程BI在企业中应用价值提高决策效率优化业务流程增强市场竞争力市场需求与趋势分析市场需求趋势分析02数据集成数据存储数据管理030201数据预处理关联规则挖掘分类与预测联机分析处理技术多维数据分析数据钻取与聚合实时数据分析可视化展现技术数据可视化利用图表、图像、动画等可视化手段,将数据以直观、易懂的形式展现出来。

交互式操作提供丰富的交互式操作功能,如拖拽、缩放、筛选等,方便用户对数据进行探索和分析。

定制化展现支持根据用户需求定制个性化的数据展现形式,满足不同用户的分析需求。

03明确项目目标和范围确定项目目标明确BI项目的业务目标,如提升销售额、优化运营流程等。

定义项目范围明确项目的涉及范围,包括数据源、分析维度、报表需求等。

评估项目资源对项目所需的人力、物力、时间等资源进行评估和规划。

从各种数据源中收集所需数据,包括数据库、文件、API 等。

数据收集数据清洗数据转换数据验证对数据进行清洗和处理,包括去除重复值、处理缺失值、异常值处理等。

将数据转换为适合分析的格式和结构,如数据聚合、维度转换等。

验证数据的准确性和完整性,确保数据质量符合分析要求。

数据准备和预处理模型构建与优化选择合适的模型模型训练模型评估模型优化系统部署系统测试用户培训系统维护系统部署与测试04金融行业:风险管理与客户分析风险管理客户分析制造业:生产优化与供应链管理生产优化通过BI对生产线数据进行实时监控和分析,制造企业可以及时发现生产过程中的瓶颈和问题,调整生产计划和资源配置,提高生产效率和产品质量。

供应链管理BI技术可以帮助制造企业实现供应链的可视化管理,通过对供应链各环节的数据进行分析,优化库存管理和物流配送,降低运营成本。

零售业:精准营销与库存管理精准营销库存管理其他行业:教育、医疗等教育行业医疗行业通过BI工具对医疗数据进行分析,医疗机构可以提高诊疗效率和准确性,实现医疗资源的优化配置和患者满意度的提升。

商务智能PPT

商务智能PPT
• • • • •
一、商务智能概述 二、数据仓库 三、数据挖掘 四、联机分析处理 五、总结
商务智能 商务智能即Business Intelligence,简称 智能 BI,是企业利用现代信息技术收集、管理和 是 分析商务数据和信息,创造和累计商务知 识和见解,改善商务决策水平的一套完整 一套完整 的解决方案。 的解决方案。
BI的作用和目的
• 理解业务 认识是哪些趋势、哪些非正常情况和哪些行为正对业务 产生影响 • 衡量绩效 • 改善关系 • 创造获利机会
BI的应用现状
• 欧美企业在2003年底大约有70%部署商务智能,虽然并不 一定把它当做全公司范围的、战略性的计划。美国和欧洲 的企业对商务智能工具的使用略有不同,美国企业用商务 智能做在线处理比欧洲企业多,而欧洲企业用商务智能进 行高级分析比美国企业多。 • 虽然许多企业都计划实施商务智能,但商务智能仍未能被 广泛地提升到战略性层面。 • 商务智能在中国的发展还处于起步阶段,大部分企业对商 务智能还缺乏必要的了解。 • 中国宝钢、海关以及大的银行和电信公司进行了数据仓库 和数据挖掘项目。
商务智能的发展趋势
商业智能软件市场在最近几年得到了迅速增长。从全球范围来看,据IDC预测,到 2005年,这个市场将以27%的年平均增长率发展,届时将会达到118亿美元。越来越多的 组织开始扩展商务智能的应用。而随着现今企业商业流程日趋复杂、企业战略考虑越 来越要求精确性,以及市场从供应商为导向变为客户为导向,现在的商务智能技术也 在不断地发展中,体现了许多方面的趋势: 1. 绩效管理 2. 产品模块的集成 3. 结构化和非结构化数据 4. 数据质量 5. 预测分析 6. 客户定制化 企业中的大部分商务智能用户是偶尔的信息消费者,他们仅需要基本的报表和电子 表格功能。然而大多数商务智能软件的功能和特性远远超出了那些用户的接受和学习 能力。同样的,对信息消费者分类,根据功能和特点定义级别是必要的。加强商务智 能软件的客户可定制化功能,将会进一步扩大软件的用户群。

商业智能(BI)简介

商业智能(BI)简介

02
基于客户画像,制定个性化的营销策略,如优惠券发放、新品
推荐等,提高营销效果。
营销效果评估
03
通过BI工具对营销活动的执行情况进行实时监控和数据分析,
及时调整策略,确保营销目标达成。
制造业生产过程监控与优化案例
生产过程实时监控
利用BI技术对生产线上的数据进行实时采集、处理和分析,及时发 现问题并采取措施。
BI的发展历程经历了多个阶段,从早期的决策支持系统(DSS)到数据仓库( DW)、在线分析处理(OLAP),再到现在的自助式BI、大数据BI等。
BI在企业决策中作用
1 2 3
提高决策效率
BI能够快速提供准确、全面的数据信息,帮助决 策者迅速了解企业运营状况,提高决策效率。
优化决策质量
通过对数据的深度分析和挖掘,BI能够揭示数据 背后的规律和趋势,为决策者提供更加科学、合 理的决策依据。
机器学习(ML)
ML算法可以应用于数据预处理、特征提取、模型构建等 BI流程中,实现自动化和智能化的数据分析。
深度学习(DL)
DL在图像和语音识别等领域有广泛应用,未来可进一步拓 展至BI领域,如通过图像识别技术自动解读图表信息。
数据治理对于BI成功实施重要性
01
数据质量
高质量的数据是BI分析的基础,数据治理可以确保数据的准确性、一致
学员心得分享和互动交流环节
学员心得分享
通过本次学习,我对商业智能有了更深入的了解,掌握了基本的数据分析方法 和工具使用技巧。同时,我也意识到数据质量对分析结果的重要性,需要在实 践中不断提高数据管理和治理能力。
互动交流环节
在学习过程中,我与同学们进行了积极的交流和讨论,分享了彼此的学习心得 和经验。通过互相学习,我不仅拓宽了视野,还收获了更多的知识和技巧。

BI相关知识简介PPT课件

BI相关知识简介PPT课件

01
02
03
确定业务需求
深入了解业务背景,明确 BI系统需要解决的具体问 题。
设定项目目标
根据业务需求,设定清晰、 可衡量的项目目标,如提 高决策效率、优化业务流 程等。
评估资源投入
对项目所需的人力、物力、 财力等资源进行评估,确 保项目的可行性。
选择合适工具和技术栈
工具选型
根据项目需求和目标,选 择适合的BI工具,如 Tableau、Power BI、 FineBI等。
营销效果评估与优化
利用BI工具进行数据挖掘和分析,帮 助企业识别不同市场细分并确定目标 市场。
运用BI技术对营销活动的结果进行量 化评估,发现有效和无效的策略,进 而优化未来的营销活动。
营销策略制定与执行
基于BI提供的数据洞察,制定个性化 的营销策略,并通过实时数据监控调 整策略执行。
客户关系管理
持。
02
数据仓库与数据挖掘技术
数据仓库概念及特点
数据仓库定义
数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持 管理决策。
面向主题
数据仓库中的数据是按照一定的主题域进行组织的。
集成性
数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总 和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业 的一致的全局信息。
技术栈选择
确定与所选BI工具相匹配 的技术栈,如数据库、数 据清洗、数据挖掘等。
兼容性考虑
确保所选工具和技术栈与 现有系统兼容,降低实施 难度和成本。
构建数据模型和指标体系
数据模型设计
根据业务需求,设计合理的数据 模型,包括数据结构、数据关系

BI基础概念培训PPT课件

数据整合与清洗
详细描述
数据准备是BI实施的重要环节,包括数据整合和数据清洗。数据整合是将分散在各个业务系统的数据进行整合, 形成一个统一的数据源;数据清洗则是确保数据的准确性和完整性,为后续的数据分析和报表开发提供可靠的基 础。
平台搭建
总结词
选择与配置工具
详细描述
平台搭建是选择适合的BI工具并进行配置的过程。根据需求分析的结果,选择 合适的BI工具,并进行相应的配置和设置,以确保数据展示和分析的准确性和 效率。
数据挖掘
数据挖掘定义
数据挖掘是从大量数据中 提取有用信息的过程,这 些信息可以用于决策支持。
数据挖掘技术
数据挖掘涉及多种技术, 如关联规则挖掘、聚类分 析、分类和预测等。
数据挖掘应用
数据挖掘广泛应用于金融、 零售、医疗等领域,帮助 企业发现潜在商机和改进 运营。
数据可视化
数据可视化定义
数据可视化效果
Tableau、Power BI、QlikView等。
商务智能工具的功能
数据查询、报表生成、仪表板展示、数据挖掘等。
数据可化工具
数据可视化工具
01
通过图形、图表、图像等形式展示数据,帮助用户更好地理解
数据。
常用数据可视化工具
02
Excel、Python、D3.js等。
数据可视化工具的功能
03
数据可视化、数据交互、数据探索等。
BI基础概念培训PPT课件
目录
• BI概述 • BI技术基础 • BI工具介绍 • BI实施步骤 • BI案例分享
01 BI概述
BI定义
BI定义
BI(Business Intelligence)即商业智能,是一种运用了数据仓库、数据分析和数据挖掘技 术的解决方案,旨在帮助企业更好地理解其业务数据,做出科学决策,并提升运营效率。

商业智能PPT课件教材讲义


Operational & e-business systems
Analyze & model business
operations
Decision processing
systems
Two Information Technologies Have Profound Impact on Business Today
Customers
Target right online customers
Personalized oneto-one marketing
Sales
Convert site visitors to customers
Up selling
Cross selling
BI for CRM Solutions
“数据仓库之父”Bill Inmon给的定义:
数据仓库就是一个用以更好地支持企业或组 织的决策分析处理的,面向主题的,集成的, 不可更新的,随时间不断变化的数据集合
数据仓库的特征
面向主题的:主题是一个在较高层次将数据归 类的标准,每个主题基本对应一个宏观的分析 领域
集成的:允许数据来自于跨组织和部门等不同 数据源;集成的数据必须是一致的、用户看来 是统一的数据视图
Core Technologies in Business Intelligence
Data warehousing
Integrated corporate data source for decision support
OLAP and DSS
Information query, analysis and reporting
Ability to rationalize and automate the process of building the enterprise-wide decision support system

BI概念以及数据仓库讲解PPT课件

数据处理
数据仓库具备高效的数据处理能力,支持BI进行复杂的数据分析和 查询。
数据查询优化
数据仓库通过优化查询性能,使得BI工具能够快速响应用户的查询 请求。
BI与数据仓库的结合方式
报表展示
01
BI工具利用数据仓库中的数据进行报表生成和展示,提供直观
的视觉效果。
数据分析
02
BI工具对数据仓库中的数据进行深入分析,帮助用户发现潜在
数据仓库的特点
总结词
数据仓库具有数据集成性、稳定性、时变性等特点。
详细描述
数据仓库中的数据是经过清洗、整合和转换的,具有很高的数据质量。数据仓库 中的数据是稳定的,不会像操作型数据库那样频繁变动。此外,数据仓库中的数 据可以进行时间序列分析,反映数据的演变和趋势。
数据仓库的架构
总结词
数据仓库的架构包括数据源、ETL过程、数据存储和数据查询等部分。
BI概念以及数据仓库讲解PPT课件
目 录
• BI概念简介 • 数据仓库概述 • BI与数据仓库的关系 • BI在数据仓库中的应用 • 案例分析
01 BI概念简介
BI的定义
BI的定义
BI(Business Intelligence)即 商业智能,是一种运用了数据仓 库、在线分析和数据挖掘技术来 处理和分析数据的商业应用。
预测模型
基于数据挖掘结果,构建预测模型, 对未来趋势进行预测,为企业制定战 略和决策提供科学依据。
05 案例分析
某公司BI系统的建设
总结词:成功实施
详细描述:某公司在建设BI系统时,充分考虑了业务需求和技术实现,采用了先 进的数据仓库技术和数据分析工具,成功地构建了一个高效、稳定、易用的BI系 统,为公司的决策提供了有力支持。

BI系统介绍PPT课件


9
感谢您的阅读收藏,谢谢!
2021/3/12
10
2021/3/12
8
BI(商业智能)---人员管理分析
部门负责人分析
目的:部门负责人业绩分析 结果:
对部门负责人销售毛利计划分析,对部门负责人进货库存计划分析 对部门负责人退换货额,销售额,客单数,折扣额,毛利/毛利率等项进行分析 对部门负责人促销活动次数,周期进行分析
营业员分析
目的:营业员业绩分析 结果:
目的:淘汰供应商
结果:
某品类供应商绩效分析(盈利贡献能力和人气贡献能力,场效)
任务未完成供应商分析(保底)
商品退货异常,商品折扣异常
长期业绩平平供应商分析
供应商结算稽核
目的:对供应商异常结款分析
结果:
供应商经销已付款尚有结存
经销供应商付款存货异常进度比
供应20商21费/3/用12贡献分析
4
BI(商业智能)---销售分析
BI(商业智能)---库存分析
库存结构分析
目的:分析库存,进行调整
结果:
分析买手/品类/供应商/经营方式库存,销售,库存周转率,找出最优最差
库存异常分析
目的:分析异常库存
结果: 持续无库存商品 持续不动销商品
库存超保利期的商品,数量,金额
库存超有效期的商品,数量,金额
商品最早进货天数排行
商品最早失效天数排行
库存周转率库存周转率空间面积空间面积员工人数员工人数商品贡献度商品贡献度库存库存负库存负库存缺货比率缺货比率损耗比率损耗比率员工贡献效益人效员工贡献效益人效进货量进货量销售额销售额毛利毛利退货比率退货比率空间效益空间效益场效市场占有率市场占有率毛利率毛利率客单数客单数平均客单价平均客单价交叉比率交叉比率单品促销品促销品组合品组合品z买手买手时时供应商供应商大中小类大中小类楼面楼面区域区域品牌品牌自有品牌自有品牌贵宾贵宾顾客顾客每天的某个时段每天的某个时段每周的某一星期每周的某一星期每周每周每月每月每季每季每年每年折扣期间折扣期间同期同期环期分析对象分析对象分析方法分析方法所有的指标均可进行标杆分析总部总部富基商业自劢化bi商业智能分析模型bibi商业智能商业智能商品分析商品分析商品分布分析商品分布分析目的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档