量子力学经典题目及解答

合集下载

量子力学习题集及解答

量子力学习题集及解答

量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当 A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。

[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。

这个公式就是斯忒蕃——玻耳兹曼公式。

其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y ⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n nπ故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学复习题附答案

量子力学复习题附答案

量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。

2. 描述态叠加原理的内容。

答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。

系统的态函数可以表示为这些可能状态的叠加。

3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。

4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。

5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。

6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。

7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。

8. 描述量子力学中的隧道效应。

答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。

这是量子力学中粒子波性质的体现。

9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。

10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。

量子力学经典题目及解答

量子力学经典题目及解答

8 a1
a2
a3
2 a1
a2
a3
第一章
补充:1.设 1 af1(x)ei(x和t) 2 bf2 (x)ei分(x别t表) 示
微观粒子的两个可能状态,求当粒子处于叠加态 1 2
时的相对几率分布。a,b为复常数, f1, f2为实函数。 解: 2 1 2 2 af1ei( xt) 2 bf2ei( xt) 2
n1
x
2
, px
h
x
n1h , 2a1
同理, py n2h / 2a2, pz n3h / 2a3 n1, n2, n3 1, 2,3
E
p2
2
1
2
(
px2
py2
pz2 )
h2
2
(
n1 2a1
)2
( n2 2a2
)2
( n3 2a3
)2
E h2 [( n1 )2 ( n2 )2 ( n3 )2 ] 2 2 [( n1 )2 ( n2 )2 ( n3 )2 ]
1
hv kT
1 c2
v T
d
c1v3dv ec2v/T 1
c1v3dv c2v /T
c1 c2
Tv2dv
----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式 En
解: 角动量量子化条件,
es2 r2
Ln
v2
r
rnv
(向心力)
(1) (2)
r * (2) :
es2
(v2
)
(1)
(
的两组超越方程,经图解法求出束缚态的 后, k,可由(15)
得 2.8出分对子应间的的能范级德瓦E。n耳斯力所产生的势能可以近似的表示为

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

量子力学经典练习题及答案解析

量子力学经典练习题及答案解析

1.设氢原子处于基态030,1),,(0a e a r a r -=πϕθψ为Bohr 半径,求电子径向概率密度最大的位置(最概然半径)。

解 22)()(r r R r w nl nl ⋅= 23010021)(r e a r w a r ⋅=-π ⎭⎬⎫⎩⎨⎧+⋅-=--0202221203010a r a r re r e a a dr dw π 011203002=⎭⎬⎫⎩⎨⎧+-=-r a re a a r π 由此得0=r , ∞→r , 0a r =2. 验证ϕθϕθψ33sin )(),,(i e r f r =是2ˆL 和zL ˆ的共同本征函数,并指出相应的本征值。

( ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L )解 ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂-=22222sin 1)(sin sin 1ˆϕθθθθθ L 将2ˆL作用于所给函数上,得 ϕθϕθθθθθ332222sin )(sin 1)(sin sin 1i e r f ⎥⎦⎤⎢⎣⎡∂∂+∂∂∂∂- ⎥⎦⎤⎢⎣⎡-∂∂-=ϕϕθθθθθθ332332sin )(sin 9cos sin )(sin 3i i e r f e r f ⎥⎦⎤⎢⎣⎡---=ϕϕθθθθθθ33222232sin )(sin 9)sin cos sin 3()(sin 3i i e r f e r f []ϕϕθθθ332232sin )(3sin )1(cos )(9i i e r f e r f +⋅--=ϕϕθθ332332sin )(3sin )(9i i e r f e r f +=ϕθ332sin )(12i e r f =上式满足本征方程ψψ22ˆL L =,可见θϕθψ3sin )(),,(r f r =ϕ3i e 是2ˆL的本征函数,本征值为212 。

又ϕ∂∂=i L z ˆ,将z L ˆ作用于所给函数上,得 ϕϕθθϕ33333sin )(sin )(i i ie r f ie rf i ⋅=∂∂ ϕθ33sin )(3i e r f ⋅=可见满足本征方程ψψz L L =2ˆ,故ϕθϕθψ33sin )(),,(i e r f r =是zL ˆ的本征函数,本征值为 3。

量子力学经典八十题(推荐版本)【含答案】

量子力学经典八十题(推荐版本)【含答案】

ψ
nxnynz
(x,
y,
z)
=
⎧ ⎪ ⎨ ⎪⎩0
8 abc ,
sin
nxπx a
sin
nyπ b
y
sin
nzπ c
z
, 0 < x < a,0 其余区域
<
y
<
b
,
0
<
z
<
c
n = 1, 2,3,""
9. 粒子在一维 δ 势阱
V (x) = −γ δ (x) (γ > 0)
中运动,波函数为ψ (x) ,写出ψ ′(x) 的跃变条件。
2
量子力学复习题答案(安徽大学)
( ) 解: L2 , L z 的共同本征函数是球谐函数Ylm (θ ,ϕ) 。
L2Ylm (θ ,ϕ) = l(l + 1)= 2Ylm (θ ,ϕ ) , LzYlm (θ ,ϕ ) = m=Ylm (θ ,ϕ)
15. 写出电子自旋 s z 的二本征态和本征值。
V (x)
=

n= 2 mx0 x
+
=2 2m
n (n −1) x2
10. 一 个 质 量 为 m 的 粒 子 在 势 V (x) 作 用 下 作 一 维 运 动 。 假 定 它 处 在 E = =2α 2 的 能 量 本 征 态 2m
ψ
(
x)
=
⎛ ⎜ ⎝
α2 π
⎞1/ ⎟
4
e−γ
2x2

2,
( a )求粒子的平均位置; ( b )求粒子的平均动量;
22. 使用定态微扰论时,对哈密顿量 H 有什么样的要求?

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
− 解:定态schr.eq 解:定态schr.eq ℏ dψ +u(x) = E ⋯ ) ψ ψ (1 2 2µ dx
2 2
(J1取 号 J2 下 ) 上 ,取 号
o
a
ψΙ = ⋯ 由波函数有限性要求,ψΙΙΙ = 0,(x < 0, x > a)⋯ (2)
ψ (1)式改写为 ′′(x) + (1)式
∂ψ ∂ψ E =E , = ψ⋯ (2) 定 :ℏ 态 i ψ ∂t ∂t iℏ ∂ψ* ∂ψ* E * * 取 共 : iℏ 复 轭 =E , ψ = ψ ⋯ ) (3 ∂t ∂t −iℏ ∴ 态 率 度 布 随 间 化 即 定 几 密 分 不 时 变 , : ∂w ∂ψ* ∂ψ E * E =ψ +ψ* =ψ ψ +ψ* ψ = 0 ∂t ∂t ∂t −iℏ iℏ ∂w 由1 ( ), iJ = − ∇ = 0, ∂t ∴ iJ与 间 关 即 为 t无 的 矢 。 ∇ 时 无 , J 与 关 常 量 ∂t
ቤተ መጻሕፍቲ ባይዱ
µ e s4
2n 2ℏ 2
试由驻波条件求粒子能量的可能值。 试由驻波条件求粒子能量的可能值。 λx h nh 解:驻波条件 1
p2 3.粒子被限制在长宽高分别为 1 3.粒子被限制在长宽高分别为 a , a2, a3 的箱中动, 的箱中动, E = 2µ
a1 = n1
2
, px = ∴
λx
=
2a1
3
a
2x 2x 2A 5 a5 = A2[ (a − x) + ∫ dx] = x = 3*4 3*4 3*4*5 0 30 0 0 30 30 ∴A = 5 , A = 5 a a
2
4
a
a
4
2
a
第二章
2.1证明在定态中,几率流密度与时间无关。 2.1证明在定态中,几率流密度与时间无关。 证明在定态中 ∂ 证: w +∇ J = 0⋯ 1 i ()
iℏ e∓ikr ∂ e±ikr e±ikr ∂ e∓ikr =− [ ( )− ( )]er 2µ r ∂r r r ∂r r e±ikr e∓ikr ∓ike∓ikr iℏ e∓ikr e±ikr ±ike±ikr =− [ ( 2 + )− ( 2 + )]er 2µ r r r r r r
∴J =−
量子力学经典题目及解答
绪论
补充: 补充: 1.证明 1.证明Plank公式在高频区化为Wein公式,在低频区化为 证明Plank公式在高频区化为 公式在高频区化为Wein公式 公式, Rayley-Jeans公式 Rayley-Jeans公式。 公式。 证明:Plank公式为 证明:Plank公式为 或写为
2µE ψ(x) = 0,(0 ≤ x ≤ a)⋯ (3) ⋯ 2 ℏ
2µE ψ′ ψ ⋯ ,则 ′ +α2 = 0⋯ (4) 2 ℏ 解 ψ = Acosαx + Bsinαx⋯ (5 为 ⋯ ) 令 2= α 由 函 的 续 , 求 波 数 连 性要 :
ψΙ (0) =ψΠ(0) = A = 0,∴ (x) = Bsinαx⋯ ψ (6) ψΠ(a) =ψΙΙΙ (a) = Bsinαa = 0, B ≠ 0,∴ αa = 0 sin n π α π ,2 ⋯ 即 a = n , n =1 ,3 ,α = ⋯ (7) ⋯
h2 n 2 n2 2 n3 2 π 2ℏ2 n 2 n2 2 n3 2 E = [( 1 ) +( ) +( ) ] = [( 1 ) +( ) +( ) ] 8µ a1 a2 a3 2µ a1 a2 a3
第一章
补充:1.设 补充:1.设 ψ1 = af1(x)e 和 ψ2 = bf2(x)e分别表示 微观粒子的两个可能状态, 微观粒子的两个可能状态,求当粒子处于叠加态 ψ =ψ1 +ψ2 时的相对几率分布。 为复常数, 为实函数。 时的相对几率分布。a,b为复常数, f1, f2 为实函数。 2 2 解: ψ 2 = ψ +ψ 2 = af ei(αx−ωt ) + bf ei(βx−ωt )
∧ ∧ iℏ 1 * * * 解: = − J ( ∇ −ψ ψ ) = ψ ψ ∇ ( ψ pψ −ψ pψ*) 2µ 2µ ∂ 1 ∂ 1 ∂ 其 , 中 ∇= er +e +e θ ϕ ∂r r ∂θ r sinθ ∂ϕ ∂ 由 ψ1=ψ1 于 (r)与 向 关 ∵∇ 1 = ψ1 er 方 无 , ψ (r) ∂r iℏ J =− ( 1∇ 1 −ψ1∇ 1 ) ψ* ψ ψ* 2µ

1
<2>
−∞
ψ dx = ∫ A2x2e−2λxdx =1 分 积 ) ,( 部 分 ∫
2 0

π
1/4
,ψ =
π
1/4
2 A 2 A ∫ x2e−2λxdx = [x2e−2λx − λ 2 0 2 A 1 −2λx = [ xe −2λ λ 2 A =− e−2λx 4λ3 ∞ ∞

∞ 0
− ∫ 2xe−2λxdx]
µ r * (2) :
µ e s2
rn
L 2 nℏ 2 = (µ v ) = ( ) = ( ) r rn
2
(1)
n2ℏ2 ∴ rn = ⋯ (4) 2 µ es e s2 p 2 e s2 ( µ v ) 2 e s2 又由 E = − = − =− ⋯ (5) 2µ r 2µ r 2 rn (4) 代 入 (5) 得 : E n = −
iℏ 1 ±ik 1 1 −1 ∓ik ±1 ℏk [ ( )]er = 2 − 2 )− ( 2 + er 2µ r r r r r r r µ
J1平 于 r ,发 波 J2 平 于 r, 敛 行 e 散 ,反 行 e 收 波
2.3一粒子在一维势场中运动,求粒子的能级和对应的 2.3一粒子在一维势场中运动 一粒子在一维势场中运动, 波函 u , ∞ x <0 数。其中 Ⅰ Ⅱ Ⅲ u(x) = 0,0 ≤ x ≤ a ∞ x >a ,
2

2
−∞ ∞
e dx = A2I =1 ∫
−x2 −y
2
I = ∫ e dx ∫ e dy = ∫ e
−∞ ∞ −∞ −∞

−(x +y )
2 2
dxdy = ∫ ∫e rdrdθ
−r2 0 0
2π ∞
r2 −r −r2 = 2π ∫ e d( ) =πe 2 0
2
0 ∞
=π 1 e
−x2 /2
∴I = π , A =
e2 −1 c2v / T c2
−c2ν
----Wein公式 ----Wein公式
----R ----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式 2.由玻尔角动量量子化条件导出氢原子能级公式 En 解: L = n ℏ = rn µ v ⋯ (1) 角动量量子化条件, 角动量量子化条件, e 2 µ v 2 s (向 心 力 ) ⋯ 2 ) ( 2 = r r
根 波 数 有 性 x →±∞时 ψ →0, 据 函 的 限 : , 有 ψΙ (x < a) = aeαx , b = 0 (6) , 则 →∞ 否 ψ −αx (7) ψ ΙΙΙ (x > a) = be , a = 0 又 于 能 (x)关 原 左 对 : (x) = u(−x)∴波 数 具 确 的 称 由 势 u 于 点 右 称 u 函 应 有 定 宇 B= A 即 ( ) 中 B = A ,可 在 4 式 , 取 B =−A 奇 称 函 A′sin kx, 宇 波 数 ∴ ΙΙ (x) = ψ 偶 称 函 B′cos kx, 宇 波 数 (9) (10) (11) (8)
0 ∞


0
1

λ0
∫e
−2λx
2 A dx] = 2λ2
e−2λxdx ∫
0
x 2 3 2 <3> ∫ ψ(x) dx = ∫ A x (a − x) dx =A [ (a − x) + ∫ x (a − x)dx] 3 3 0 0 0 0
2 2 2 2 2
2 A = =1 3 0 4λ 2λ3/2xe−λx , x ≥ 0 ∴A = 2λ3/2,ψ = 0, x ≤ 0 a a a
2.2由下列两定态波函数计算几率流密度,并从所得结果说 2.2由下列两定态波函数计算几率流密度 由下列两定态波函数计算几率流密度, ψ 表示向内传播的球面波。 表示向外传播的球面波, 表示向内传播的球面波。 明 ψ1 表示向外传播的球面波, 2 1 ikr 1 −ikr ( ) 1 = e ,(2) 2 = e 1ψ ψ r r
Axe−λx, ≥ 0 x −x /2 (2) 2.试将下列波函数归一化 (1) 2.试将下列波函数归一化: ψ = Ae , ψ = 试将下列波函数归一化: , 0 x ≤0 (3)ψ(x) = Ax(a − x), < x < a 0
2
解:<1>

−∞
∫ ψ dx = A
2 ∞ 2 −x
Ⅰ -a Ⅱ o a Ⅲ
ℏ ′′ 2µE x < a⋯ (2) ⋯ ψ ΙΙ + ℏ2 ψΙΙ = 0 即 ′′ − 2µ(u0 − E)ψΙ,ΙΙΙ = 0 x > a⋯ (3) ⋯ ψ 2 Ι,ΙΙΙ ℏ
ψΙΙ (x) = Aeikx + Be−ikx x < a⋯ (4) ⋯ 2µE 2 2µ(u0 − E) 2 令 = 2 ,α = k , 为 解 : 2 ψΙ,ΙΙΙ (x) = aeαx +be−αx x > a⋯ (5) ⋯ ℏ ℏ
相关文档
最新文档