量子力学典型例题分析解答.doc

合集下载

量子力学习题集及解答

量子力学习题集及解答

量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当 A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。

[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。

这个公式就是斯忒蕃——玻耳兹曼公式。

其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y ⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n nπ故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。

量子力学习题及解答

量子力学习题及解答

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)(有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5:这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =】如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及,eVc e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学经典题目及解答

量子力学经典题目及解答
− 解:定态schr.eq 解:定态schr.eq ℏ dψ +u(x) = E ⋯ ) ψ ψ (1 2 2µ dx
2 2
(J1取 号 J2 下 ) 上 ,取 号
o
a
ψΙ = ⋯ 由波函数有限性要求,ψΙΙΙ = 0,(x < 0, x > a)⋯ (2)
ψ (1)式改写为 ′′(x) + (1)式
∂ψ ∂ψ E =E , = ψ⋯ (2) 定 :ℏ 态 i ψ ∂t ∂t iℏ ∂ψ* ∂ψ* E * * 取 共 : iℏ 复 轭 =E , ψ = ψ ⋯ ) (3 ∂t ∂t −iℏ ∴ 态 率 度 布 随 间 化 即 定 几 密 分 不 时 变 , : ∂w ∂ψ* ∂ψ E * E =ψ +ψ* =ψ ψ +ψ* ψ = 0 ∂t ∂t ∂t −iℏ iℏ ∂w 由1 ( ), iJ = − ∇ = 0, ∂t ∴ iJ与 间 关 即 为 t无 的 矢 。 ∇ 时 无 , J 与 关 常 量 ∂t
ቤተ መጻሕፍቲ ባይዱ
µ e s4
2n 2ℏ 2
试由驻波条件求粒子能量的可能值。 试由驻波条件求粒子能量的可能值。 λx h nh 解:驻波条件 1
p2 3.粒子被限制在长宽高分别为 1 3.粒子被限制在长宽高分别为 a , a2, a3 的箱中动, 的箱中动, E = 2µ
a1 = n1
2
, px = ∴
λx
=
2a1
3
a
2x 2x 2A 5 a5 = A2[ (a − x) + ∫ dx] = x = 3*4 3*4 3*4*5 0 30 0 0 30 30 ∴A = 5 , A = 5 a a
2
4

量子力学经典题目及解答

量子力学经典题目及解答

8 a1
a2
a3
2 a1
a2
a3
第一章
补充:1.设 1 af1(x)ei(x和t) 2 bf2 (x)ei分(x别t表) 示
微观粒子的两个可能状态,求当粒子处于叠加态 1 2
时的相对几率分布。a,b为复常数, f1, f2为实函数。 解: 2 1 2 2 af1ei( xt) 2 bf2ei( xt) 2
n1
x
2
, px
h
x
n1h , 2a1
同理, py n2h / 2a2, pz n3h / 2a3 n1, n2, n3 1, 2,3
E
p2
2
1
2
(
px2
py2
pz2 )
h2
2
(
n1 2a1
)2
( n2 2a2
)2
( n3 2a3
)2
E h2 [( n1 )2 ( n2 )2 ( n3 )2 ] 2 2 [( n1 )2 ( n2 )2 ( n3 )2 ]
1
hv kT
1 c2
v T
d
c1v3dv ec2v/T 1
c1v3dv c2v /T
c1 c2
Tv2dv
----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式 En
解: 角动量量子化条件,
es2 r2
Ln
v2
r
rnv
(向心力)
(1) (2)
r * (2) :
es2
(v2
)
(1)
(
的两组超越方程,经图解法求出束缚态的 后, k,可由(15)
得 2.8出分对子应间的的能范级德瓦E。n耳斯力所产生的势能可以近似的表示为

量子力学例题解析

量子力学例题解析
������
������ ������ = ������ ���� ������ ������ 根据德布罗意波长: ������ = = ������������ = ∙ ������ ������ ������ ������������������
量子力学-例题
注意: 粒子波粒二象性和光子波粒二象性形式相似。
������ = ������������ ������ = ������/������
而: 光子的能量与动量关系为 ������ = ������������ ������ = ������/������ 实物粒子能量与动量关系为(速度可以与光速相比较) ������������ = ������������������������ + ������������������ ������������ ������ = ������������
量子力学例题解析
量子力学-例题 1、令������������ =
静止质量,c为真空中光速,h为普朗克常量)。 当电子的动能等于它的静止能量时,它的德布罗意 ������/������ 波长是l =________________ lc. 解:根据相对论能量方程可知:
������ = ������������������ = ������������ + ������������������������ ������ = 即:������ ������������ = ������������������ ������������������������������
量子力学-例题 2、假定原子中的电子在某激发态的平均寿命=10-8s, 该激发态的能级宽度是多少? ∆������ = ������ = ������������−������ ������ 解:由测不准关系 E t

量子力学习题精选与解析

量子力学习题精选与解析

量子力学习题精选与解析量子力学是物理学中最前沿、最复杂和最研究领域之一。

其理论涉及到对微观粒子性质的描述和运算,因此,很多人认为量子力学就是一种数学工具,难于理解。

但是,只要我们掌握了一定的基础知识,就能够更深入地理解我们周围的世界。

本文将分享一些经典的量子力学习题,以及对它们的解析。

第一题:“测不准原理”中,什么是思想实验?解析:测不准原理是指无法同时准确测量粒子的位置和动量,因为它们存在着一种量子波粒二像性。

在对这个概念进行解析时,科学家推导出了一些经典的思想实验,旨在通过这些实验来阐明这个概念。

比如著名的双缝实验就可以用来表述波粒二象性。

在这个实验中,为了验证光是粒子还是波动,科学家用一束光照射在一个双缝上,发现光通过两个小洞的时候,它会呈现出波动性质,即光的波长被其衍射到了洞的后面,并在后面形成了衍射图案。

这是一种同样可以观测到的单粒子的波束波动性实验,可以看做基于波粒二象性的解释。

第二题:能否用最短路径法来描述量子力学中的传播?解析:传播是物理学中非常基本的物理现象。

在经典物理学中,我们可以用球体、波等最短路径来描述传播现象。

而在量子力学中,事情则需要更加微观的方法才能解释。

例如,在量子力学中,我们无法用任何一个粒子在空间中的行动路径来描述其传播情况。

这是因为,根据量子力学的观点,任何一个粒子都存在一种“叠加态”的情况,其最终的位置是不确定的,需要依靠概率性质来描述。

因此,在量子力学中,我们无法利用最短路径法来描述传播的情形。

第三题:什么是Schrodinger方程式?解析:Schrodinger方程式是一种描述量子物理学的方程式,它描述了一个量子物体在时间轴上的演化。

它的原型在1926年由奥地利物理学家Erwin Schrodinger提出。

在量子物理学中,我们无法像经典物理学那样根据初值来计算物质的演化,因为这个演化过程是随机的、不确定的。

而通过Schrodinger方程式,我们可以计算出物质的波函数随时间的演化规律,从而预测其在某一时刻的存在概率。

量子力学典型例题解答讲解

量子力学典型例题解答讲解

量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解] 薛定谔方程:当, 故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n 值,可解一个, 为分离能级.2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型: 1.算符运算; 2.力学量的平均值; 3.力学量几率分布.一. 有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。

2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符, 为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取: 试证明: 也是和共同本征函数, 对应本征值分别为: 。

[证]。

是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数。

本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。

求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率 , 出现的几率能量平均值另一做法3 .一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1) , 归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解] 薛定谔方程:当, 故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n 值,可解一个, 为分离能级. 2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型: 1.算符运算; 2.力学量的平均值; 3.力学量几率分布.一. 有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。

2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符, 为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取: 试证明: 也是和共同本征函数, 对应本征值分别为: 。

[证]。

是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数。

本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。

求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率 , 出现的几率能量平均值另一做法3 .一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1) , 归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。

4.设氢原子处于状态求氢原子的能量,角动量平方以及角动量z分量的可能值,这些可能值出现的几率和这些力学量的平均值。

[解] 能量本征值能量本征态当n=2时本征值为的,出现的几率为100%可能值为出现的几率分别为:。

5 .在轨道角动量和共同的本征态下,试求下列期望值(1).; (2).[解]:三测不准关系1.粒子处于状态式中为常数,求粒子的动量的平均值,并计算测不准关系[解]先归一化(1)动量平均值(2)(3)附:常用积分式:(1)(2)(3)第四章例题1.力学量的矩阵表示由坐标算符的归一化本征矢及动量算符构造成算符和试分别:1). 求和在态下的期望值;2). 给出和的物理意义【解】(1). 设态矢已归一化(粒子位置几率密度)(2)(利用化到坐标表象)又:,上式2.试证明:由任意一对以归一化的共轭右矢和左矢构成的投影算符(1). 是厄密算符,(2). 有,(3).的本征值为0和1【证】(1). 厄密算符的定义为厄密算符(2) 已归一化(3). 由的本征值方程,又:即:(本题主要考查厄密算符概念,本征值方程,狄拉克符号的应用)3.分别在坐标表象,动量表象,能量表象中写出一维无限深势井中(宽度)基态粒子的波函数。

(本题主要考查波函数在具体表象中的表示)【解】所描述的状态,基态波函数(1). 在x表象:(2). 动量表象:(3). 能量表象同样一个态在不同表象中的表示是不同的,不同的表象是从不同侧面来进行描述的.4.取和的共同表象,在角动量空间中写出,,的矩阵(本题主要考查算符矩阵的求法)【解】,的共同本征函数为在空间(1). ,同样(2)利用:利用正交归一条件:同样(3)利用:矩阵:矩阵:5.已知体系的哈密顿量, 试求出(1). 体系能量本征值及相应的在所在的表象的正交归一化的本征矢组. (2).将对角化,并给出对角化的么正变换矩阵【解】(1). 久期方程解之,设正交归一的本征矢对应于本征矢归一化对应归一本征矢同样::即为的本征函数集(2). 对角化后,对角元素即为能量本转换矩阵为6.证明:将算符矩阵对角化的转换矩阵的每一列对应于算符的一个本征函数矢量。

【证】算符的本征矢:则 F算符在自身表象中为一对角矩阵:对另一表象力学量的本征矢的本征矢7.为厄密算符。

①求算符的本征值,②在A 表象下求算符的矩阵表示。

[解]:①设的本征值为,本征函数为,则又同理算符的本征值也为.②在A表象,算符的矩阵为一对角矩阵,对角元素为本征值,即设利用B为厄密算符即又取:第五章例题重点:微扰论1.一根长为,无质量的绳子一段固定于支点,另一端系质量为的质点,在重力作用下,质点在竖直平面内摆动。

i) 在小角近似下,求系统能级;ii) 求由于小角近似的误差产生的基态能量的一级修正。

解:i ) 势能:系统的哈密顿量在小角近似下:ii )若不考虑小角近似又利用公式,同样2.一维谐振子的哈密顿量为,假设它处于基态,若在加上一个弹力作用,使用微扰论计算对能量的一级修正,并与严格解比较。

解:i ),又ii) 严格解发生了变化3.已知体系的能量算符为, 其中,为轨道的角动量算符。

(1)求体系能级的精确值。

(2)视项为微扰项,求能级至二级近似值。

[解]:i) 精确解令,并在平面上取方向:与z轴的夹角为,则与相互对易,它们的本征值分别为体系能级为ii)微扰法的精确解为本征函数本征能量按微扰论利用了公式能量二级修正为在二级近似下4.三维谐振子,能量算符为,试写出能级和能量本征函数。

如这振子又受到微扰,的作用,求最低的两个能级的微扰修正。

并和精确值比较。

[解]:(1设的能量本征函数为代入方程(2).基态的微绕修正对基态波函数基态能级的零级, 无简并能量的二级修正:唯一不等于零的矩阵元为(3).第一激发态三度简并计算不为零的矩阵元为久期方程可求出能量的一级修正(4).精确解令基态第一激发态5.设粒子的势能函数是坐标的n次齐次函数,即试用变分法证明,在束缚态下,动能T及势能V的平均值满足下列关系(维里定理)[证]设粒子所用的态用归一化波函数描写则取试态波函数为由归一化条件当时,试态波函数即是粒子所处的束缚态波函数。

应在时,取极值6.氢原子处于基态,加上交变电场, 电离能,用微扰论一级近似计算氢原子每秒离几率。

[解]:解这一类问题要搞清楚三个要素,初态末态是什么?微扰矩阵元?初态:氢原子基态末态: 自由状态为能量为, 在单位立体角的末态密度。

微扰7.转动惯量为 I, 电偶极矩为 D的平面转子,置于均匀场强E(沿x方向)中,总能量算符成为, 为旋转角(从x轴算起)如果电场很强,很小,求基态能量近似值。

[解]:方法一与一位谐振子的能量本征方程比较有方法二用变分法,取归一化的试探波函数所得结果与方法二一致。

8.设在表象中,的矩阵表示为其中, 试用微扰论求能级二级修正[解]:在表象中,第六章例题1.有关泡利矩阵的一些关系的证明(注意应用一些已知结论)1).; (2).;(3).;(4).设则,.【证】(1).(2).(3).(4).2.证明:并利用此结论求本征值【证】设的本征函数为则又, ,3.设为常数,证明【证】将展开成的幂级数,有,为偶数;为奇数上式4.求自旋角动量在任意方向(方位角为)的投影的本征值及本征矢(在表象),【解】在表象中,,在表象中的矩阵表示为设的本征值为,相应本征矢为,本征方程为=解久期方程,将代入本征方程由归一化条件对应的本征矢为同样:对应的本征矢为通过本题讨论我们发现,的本征值为,自旋算符在任意方向上的分量的本征值也是。

也进一步推广,对任一种角动量算符,如有的本征值为,的本征值为则在任意方向上的分量的本征值的可能值也为。

5.有一个定域电子(不考虑轨道运动)受均匀磁场作用,磁场指向正方向,磁作用势为,设时电子的自旋向上,即求时的平均值。

[解]设自旋函数在表象中体系的哈密顿算符可表示为则自旋态所满足的薛定谔方程为同理又,自旋再由即6.在自旋态中,求【解】同理7.已知电子的态函数为其中已归一化,求(1).同时测量为,为的几率。

(2).电子自旋向上的几率。

(3).和平均值。

[解]首先验证态函数是否归一化[erfwfff1]①同时测量为, 为的几率②电子自旋向上的几率:③。

相关文档
最新文档