量子力学习题解答 第2章

合集下载

量子力学解答(1-2 章)

量子力学解答(1-2 章)

ψ (0) = 0, ψ ( a ) = 0,
B ≠ 0, ⇒ k =
⇒ A=0 ⇒ B sin ka = 0
归一化,


i ⎧ 2 nπ − h E n t sin xe , ⎪ 得: ψ n ( x, t ) = ⎨ a a ⎪ 0, ⎩

ww

a
0
B 2 sin 2
nπx dx = 1, ⇒ B = a
&dx = ∫ mx & ∫ pdq = ∫ mx

3 h 2 k 2 n 2 1/ 3 ( ) , n = 1,2,3... 2 m v v kr ) 证明: 注意到 F = − = − kr , 径向牛顿力学方程为 r k k = ma n = mrω 2 , 即 rω 2 = m 0 0 v ˆ ⋅ dr = ∫ − kdr = kr 选取 r=0 为势能零点, 势能为 E p = ∫ − kr
ww
对全空间积分并注意可与对时间求导交换,得:
//
w.
∂ * h2 h2 * 2 2 * ih (ψ 1ψ 2 ) = − (ψ 1 ∇ ψ 2 − ψ 2 ∇ ψ 1 ) = − ∇ ⋅ (ψ 1*∇ψ 2 − ψ 2 ∇ψ 1* ) ∂t 2m 2m
粒子在一维势场 V(x) 中运动,V(x) 无奇点,设
v

∫ψψ
全 * 1
2

之值与时间无关. 证明: 由 Schrodinger 方程:
∂ψ 1 h2 2 ih = (− ∇ + V )ψ 1 ∂t 2m ih ∂ψ 2 h2 2 = (− ∇ + V )ψ 2 ∂t 2m ∂ψ 1* h2 2 = (− ∇ + V )ψ 1* ∂t 2m

《量子力学教程》作业题及答案--2017-2018第一学期

《量子力学教程》作业题及答案--2017-2018第一学期
第二章波函数和薛定谔方程
1、 求 一 维 线 性 谐 振 子 处 在 第 一 激 发 态 时 概 率 最 大 的 位 置 。
解:ψ 1(x ) =(

π
)αxe − α
2
x2 /2
w(x ) = ψ 1(x ) =
2
2α 3
π
x 2e − α
2
x2
2 2 2 2 ∂w(x ) = 0 得 2xe − α x − 2α 2xx 2e − α x = 0 ∂x
E n x n y = E n x + E n y = (n x + 2n y + )ω
3) 对于基态, n x ,n y = 0 , E 00 =
3 ω 是非简并的; 2
对于第一激发态,
5 n x = 1 , E 10 = ω 是非简并的; 2 n y = 0 7 n x = 0 n x = 2 , , E 01 = E 20 = ω 能级是二重简并的; 2 = 1 = 0 n n y y 9 n x = 3 nx = 1 , ,E E = = ω 是二重简并的。 30 11 n = 1 2 = 0 n y y
x < 0 0 ≤ x ≤ a 中, x > a
V0
4
的本征态,试确定此势阱的宽度 a 。
解:对于 E = −
V0
4
< 0 的情况,三个区域中的波函数分别为
ψ 1 ( x ) = 0 ψ 2 ( x ) = A sin kx ψ ( x ) = B exp(− αx ) 3
其中,
k=
n
则只有量子数 n = 1,3,5, 时, H n (0) = 0 ( n = 1,3,5, ) 则能级为 E n = ( n + 1 2 )ω

量子力学习题及答案

量子力学习题及答案
?2k ( 7 )
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x

量子力学——第二章作业参考答案

量子力学——第二章作业参考答案

+
⎛ ⎜ ⎝
∂ψ ∂t
*

+
∂ψ ∂t

*
⎞ ⎟


(2)
ψ 、ψ * 满足薛定谔方程
i
∂ψ ∂t
=
⎛ ⎜ ⎝

2
2m
∇2
+V
⎞⎟ψ ⎠

−i
∂ψ * ∂t
=
⎛ ⎜


2
∇2 2m
+V
⎞⎟ψ * , ⎠
(3) (4)
用 ∂ψ * 乘以(3)式加上用 ∂ψ 乘以(4)式得
∂t
∂t
∂ψ ∂t
Vψ *
dt
s
通常 < 2V2 >≠ 0 ,也就是说在整个区域找到粒子的概率随时间发生变化,概率守恒破缺;
即使 < 2V2 >= 0 ,由(8)式知概率守恒也存在局域破缺除非V2 (r ) = 0
(b)证明如下: 由(a)得
d dt
∫∫∫ d 3rψ τ

=
−∫∫ dsi s
j
+
∫∫∫ d 3rψ τ
*
2V2 ψ
第二章作业参考答案
(曾谨言著《量子力学教程》(第二版) 习题 1 P24-P26)
∫ 1.1 证明:(a)能量的平均值 < E >= d 3rψ *Hˆψ ,
哈密顿量 Hˆ = Pˆ 2 2m +V (r ) ,波函数ψ =ψ (r ,t ) ,(1)式变为
(1)
∫ < E >=
d 3r
⎛ ⎜ψ
*
Pˆ 2
+
∂ψ ∂t

量子力学(第二版)答案 苏汝铿 第二章课后答案2.16-2#14

量子力学(第二版)答案 苏汝铿 第二章课后答案2.16-2#14

2r 1 a 2 e x dxdydz 3 a 2r 1 3 e a r 2 dxdydz 3a 2r 4 4 而 3 e a r dr 3a 4 a 3 g( )5 4! 3a 2 a2
x
h2 2 h2 h 2 2 x p a 所以 3a 2 3 2
这为适合流超比方程,要使R(p)在 趋于0则有解
( ) F (S 1
s 1
本征值为
a ), 2s 2, ) 2 Eh
a n 2 Eh
n=0、1、2…..
且 所以
Enl
2
a2
2h 2 (n s 1)2
2
而 s ( (2l 1) 8 A / h 1) / 2 第 14 组 彭毅 姜麟舜 200431020117 200431020119

2h 2 2ah a3 ( p 2 h / a 2 )2
于是
px | ( p) | px dpx d p y dpz


0
由于被积函数对 px 是奇函数
2 2 px | ( p ) |2 p x dpx d p y dpz

1 | ( p) |2 p 2 dpx d p y dpz 3 8h 5 2 p4 2 5 dp sin d d 3 a 0 0 0 ( p h ) 4 a2 h2 2 3a
a A (a, A 0) ,求粒子的能量本征值。 r r2
14QM-2.18
设势场为 U (r )
解:由于 E>0 是连续谱,所以仅讨论 E<0 在极坐标中,薛定谔方程的径向方程为
2 2 E l (l 1) R '' (r ) R ' (r ) [ 2 r h r2 2 a 2 A ] R(r ) 0 h 2 r h 2 r2

量子力学第二章习题 答案

量子力学第二章习题 答案

第二章习题解答p.522.1.证明在定态中,几率流与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m 2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。

2.2 由下列定态波函数计算几率流密度:ikr ikr e re r -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。

表示向外传播的球面波。

rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。

其相对位置几率分布函数为 12==ψω表示粒子在空间各处出现的几率相同。

量子力学习题解答-第2章

量子力学习题解答-第2章


ì0, V ( x ) = í î ¥ ,
则能量本征函数和能量本征值为
- a < x < a 其它地方
y n ( x) =
1 æ n p ö sin ç ( x + a ) ÷ , - a < x < a; n = 1,2,3,... a a è 2 ø
2 2 2 n p h E = n 2 2 m(2 a ) n = 1 是基态(能量最低) , n = 2 是第一激发态。波函数相对于势阱的中心是奇偶交替
定态波函数满足含时薛定谔方程。 对分立谱,定态是物理上可实现的态,粒子处在定态时,能量具有确定值 E n ,其它力 学量(不显含时间)的期待值不随时间变化。对连续谱,定态不是物理上可实现的态(不可 归一化) ,但是它们可以叠加成物理上可实现的态。 含时薛定谔方程的一般解可由定态解叠加而成,在分离谱情况下为
第二章 定态薛定谔方程
本章主要内容概要: 1. 定态薛定谔方程与定态的性质: 在势能不显含时间的情况下,含时薛定谔方程可以通过分离变量法来求解。首先求解 定态薛定谔方程(能量本征值方程)
h 2 d 2 y + Vy = E y . 2 m dx 2
求解时需考虑波函数的标准条件(连续、有限、单值等) 。能量本征函数y n 具有正交归一 性(分立谱)
2
可以是物理上可实现(可归一化)的态。其中叠加系数 f (k ) 由初始波包 Y ( x,0) 决定
Y ( x,0) =
由能量本征函数满足
1 2p
¥
¥ ikx f ( k ) e dk ò -¥
d 函数正交归一性
1 2p
- ikx Y ( x ,0) e dk ò -¥

陈鄂生《量子力学教程》习题答案

陈鄂生《量子力学教程》习题答案

第二章 力学量算符2.1 证明空间反演算符ˆˆ(()())x x ψψ∏∏=-是厄米算符。

指出在什么条件下,ˆd p i dx =- 是厄米算符。

2.2 动量在径向方向的分量定义为1ˆˆˆ2r p r r ⎛⎫=⋅+⋅ ⎪⎝⎭r r p p ,求出ˆr p 在球坐标系中的表示式。

2.3 证明[][]ˆˆˆ,()();,()()ˆx x x x p f x i f x x f p i f p x p∂∂=-=∂∂ 2.4 设算符ˆA满足条件2ˆ1A =,证明ˆˆcos sin i A e i A ααα=+,其中α为实常数. 2.5 设算符ˆˆˆˆˆˆˆ,1KLM LM ML =-=,又设ϕ为ˆK 的本征矢,相应本征值为λ.求证ˆˆu L v M ϕϕ≡≡和也是ˆK 的本征矢,并求出相应的本征值.2.6 粒子作一维运动,2ˆˆ()2p H V x μ=+,定态波函数为n ,ˆ,1,2,3,n H n E n n == (1)证明ˆnm n pm a n x m =,并求出系数nm a . (2)利用(1)式推导求和公式()22222ˆn m nEE n x m m p m μ-=∑ (3)证明()222n m n EE n x m μ-=∑ 2.7 设ˆF为厄米算符,证明在能量表象中下式成立:()21ˆˆˆ,,2n m nk n E E F k F F H k ⎡⎤⎡⎤-=⎣⎦⎣⎦∑ 2.8 已知(,)lm Y θϕ是2ˆˆZL L 和的共同本征函数,本征值分别为2(1)l l m + 和。

令ˆˆˆx y L L L ±=±. (1)证明ˆ(,)lm L Y θϕ±仍是2ˆˆZ L L 和的共同本征函数,求出他们的本征值.(2)推导公式1ˆ(,)(,)lm lm L Y Y θϕθϕ±± 2.9 证明ˆˆ11ˆˆˆˆˆˆˆˆˆˆˆ,,,,,,2!3!A A e Be B A B A A B A A A B -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦2.10 设算符ˆA 与ˆB 同它们的对易关系式ˆˆ,A B ⎡⎤⎣⎦都对易,证明1ˆˆˆˆˆ,,n n A B nB A B -⎡⎤⎡⎤=⎣⎦⎣⎦ 1122ˆˆˆˆˆˆ,,ˆˆˆˆˆˆA B A B A B A B A B A B e e e e e e e ⎡⎤⎡⎤-+++⎣⎦⎣⎦==或2.11 设ˆL 为轨道角动量算符。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能量本征函数为
能量本征值为
含时薛定谔方程的一般解为
当 时,
显然对 测量能量,不可能得到 ,因为现在的能量本征态中,没有这个本征值,所以测量能量得到 的几率为零。现在体系基态的能量为 ,所以测量能量得到 的几率是 ,由
代入
(注意在 时刻,体系的能量期待值不是 ,因为体系的哈密顿是频率为 的谐振子哈密顿。)

由波函数 的归一性,可以得到系数 的归一性
对 态测量能量只能得到能量本征值,得到 的几率是 ,能量的期待值可由
求出。这种方法与用
方法等价。
2.一维典型例子:
(a)一维无限深势阱(分立谱,束缚态)
能量本征函数和能量本征值为

则能量本征函数和能量本征值为
是基态(能量最低), 是第一激发态。波函数相对于势阱的中心是奇偶交替的: 是偶函数, 是奇函数, 是偶函数,依次类推。
(三维情况为 )
计算出
反射系数 和透射系数 之和为1.
*习题2.1证明下列三个定理
解:(a)证:假设在定态解把实数 改为复数 ,则
若在 时刻,波函数是归一化的,即
在以后时刻
所以要求在任何时候都有
必须有 ,即 必须为实数。
(b)设 满足定态薛定谔方程
把这个式子取复共轭,注意到 是实的,得到
显然 和 是同一薛定谔方程的解,所以它们的线性叠加
*习题2.5
解:
(a)利用哈密顿本征函数的正交归一性
所以
(b)
代入
并令
(c) 时
完成积分得到
(以 为中心的振荡)
(d)由动量期待值与坐标期待值之间的关系
(e)
对 测量能量,得到 的几率为1/2,得到 的几率为1/2.,这个几率同 时刻是一样的,也就是说 不随时间变化,这是能量守恒的体现。
为什么 会随时间变化,而 不随时间变化?因为 是哈密顿算苻的本征函数, ,干涉项
习题2.8
解:(a)初始波函数为
归一化
所以
(b)一维无限深势阱的定态波函数为
把初始波函数用定态展开
其中展开系数为
所以测量能量得到基态 的几率为
*习题2.12
解:由

习题2.13
解:(a)归一化
所以
(b)
其中 是谐振子基态和第一激发态的能量。
(c)
利用


或者
由Ehrenfest’s定理
代入谐振子势能 ,及 ,有

也是同一薛定谔方程的解。显然 是实函数,所以一维定态薛定谔方程的解总可以取为实函数。
(c)对
进行空间反演 ,得到
如果势能 是偶函数,则有
因此 和 是同一薛定谔方程的解,所以它们的线性叠加
也是同一薛定谔方程的解。 ,所以当势能是偶函数,定态薛定谔方程的解总可以取为有确定宇称的解。
*习题2.2
解:如果 ,那么 和它的二次导数有同样的符号。如果 是正值,它将一直增加,这与我们 , 的要求不符,导致函数是不可归一化的。如果 是负值,它将一直减少(绝对值在增大),这同样与我们 , 的要求不符,导致函数是不可归一化的。
由于本征函数的正交性,结果为零。但是对 算苻,干涉项一般不为零( 与 , 与 一般不会正交)
*习题2..7
解:(a) 的图形为
归一化波函数
所以
(b)一维无限深势阱的定态波函数为
把初始波函数用定态展开
其中展开系数为
利用积分量得到结果为 的几率是
(d)
其中利用了级数求和公式(这些公式可由函数的傅里叶级数展开式得到,可在数学手册上查到)
显然满足Ehrenfest’s定理
如果用 替代 ,则有
其中 ,重复上面的计算,有
显然此时, 仍然满足(也必须满足)。
讨论:当不同的谐振子定态叠加时,只有叠加态中有相邻态时,即有 态时,必须还有 态, 才会以 的形式震荡。
(d)测量能量得到 的几率是 ,得到 的几率是 。
习题2.14
解:本题其实就是以经典频率为 的基态为体系的初始态,体系的哈密顿为
定态波函数满足含时薛定谔方程。
对分立谱,定态是物理上可实现的态,粒子处在定态时,能量具有确定值 ,其它力学量(不显含时间)的期待值不随时间变化。对连续谱,定态不是物理上可实现的态(不可归一化),但是它们可以叠加成物理上可实现的态。
含时薛定谔方程的一般解可由定态解叠加而成,在分离谱情况下为
系数 由初始波函数确定
散射态(连续谱):定态薛定谔方程的解为
尽管散射态不是可归一化的态,但是我们可以用它作为代表来讨论入射粒子(波包)被势反射或透射的情况。由波函数及其导数在 连续和跃变条件,可以得出反射波振幅 ,透射波振幅 与入射波振幅 的关系(设 ,没有从右向左入射的波)。计算出反射波几率流密度 ,投射波几率流密度 ,入射波几率流密度 ,可以得到反射系数 和透射系数 。由几率流密度定义
我们还可以从另一个方面讨论这个问题。设 是定态薛定谔方程的一个归一化解,我们有
在经典力学中我们同样有,一个粒子在一个势场中运动,它的总能量为动能加势能,因为动能 ,所以总能 势能 势能最小值。如果总能 势能最小值,将意味着动能为负值,这显然是不可能的。在量子力学中,如果 ,则意味着动能的期待值为负值,或 的期待值为负值。这对归一化的解是不可能的。
第二章
定态薛定谔方程
本章主要内容概要:
1.定态薛定谔方程与定态的性质:
在势能不显含时间的情况下,含时薛定谔方程可以通过分离变量法来求解。首先求解定态薛定谔方程(能量本征值方程)
求解时需考虑波函数的标准条件(连续、有限、单值等)。能量本征函数 具有正交归一性(分立谱)
或 函数正交归一性(连续谱)
由能量本征函数 可以得到定态波函数
(b)一维简谐振子(分立谱,束缚态):
能量本征函数和能量本征值为
其中 厄米多项式,可由母函数 生成
厄米多项式多项式满足递推关系
定义产生算符 与湮灭算符
则有
当处于能量本征态时
(c)一维自由粒子(连续谱,散射态):
定态薛定谔方程为
能量本征函数和本征值为
能量本征函数满足 函数正交归一性
定态波函数为
定态不是物理上可实现的态(不可归一化),它代表一个向右传播的正弦波( )或向左传播的正弦波( ),波的传播速度(相速度)为
尽管定态不是物理上可实现的态,但是定态叠加成的波包
可以是物理上可实现(可归一化)的态。其中叠加系数 由初始波包 决定
由能量本征函数满足 函数正交归一性
波包在空间的传播速度称为群速度
(d)一维 函数势阱:
函数的性质为
在 处由于 函数势的存在,波函数的导数出现跃变
(如果是 函数势,上式中做 代换)
束缚态:只有一个束缚态,能量本征函函数和本征值为
相关文档
最新文档