4.1低频功率放大器的概述与变压器耦合功放
OTL功率放大器

性能指标
输出功率
衡量放大器能够提供的最大输 出信号幅度。
带宽
衡量放大器对不同频率信号的 响应能力,包括低频和高频范 围。
线性度
衡量放大器对输入信号的线性 响应能力,避免失真和信号畸 变。
效率
衡量放大器在将输入信号放大 过程中所消耗的能源效率。
电路调试与优化
调整输入和输出阻抗
根据应用需求,调整输入和输出阻抗以获得 最佳信号传输效果。
电路组成
01
02
03
04
输入级
输入级通常采用差分放大器, 用于减小输入信号的共模分量 ,提高电路的抗干扰能力。
激励级
激励级通常采用共射放大器, 用于放大输入信号,提供足够
的激励电压。
推动级
推动级通常采用共基放大器, 用于进一步放大信号,并引入 正反馈以提高带宽和稳定性。
输出级
输出级通常采用功率输出电路 ,如推挽或桥式电路,用于提
otl功率放大器
目录
• OTL功率放大器简介 • OTL功率放大器电路分析 • OTL功率放大器应用 • OTL功率放大器发展与挑战 • OTL功率放大器设计实例
01 OTL功率放大器简介
定义与特点
定义
OTL(Output Transformer Less) 功率放大器是一种电子设备,用于 将音频信号放大并驱动扬声器或其 他负载。
汽车电子系统中的OTL功率放大器设计
在汽车电子系统中,OTL功率放大器 用于驱动车载音响系统或其他电子设 备。
汽车电子系统中的OTL功率放大器需 要具备高可靠性、低功耗和良好的电 磁兼容性等性能指标,以确保在复杂 的车载环境下稳定工作。
设计要点包括选择耐高温、耐振动的 元器件,以及优化电路结构以减小电 磁干扰和散热问题。
功率放大电路的发展及目前主流功放的应用

功率放大电路的发展及目前主流功放的应用功率放大器的发展历程:一、早期的晶体管功放半导体技术的进步使晶体管放大器向前迈进了一大步。
自从有了晶体管,人们就开始用它制造功率放大器。
早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。
这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。
再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管于,所以不得不采用变压器耦合输出。
变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。
“还是胆机规声”,这种看法的确事出有因。
二、晶体管功放的发展和互调失真随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的OCL电路或OTL电路(图一)。
最初的大功率PNP管是锗管,而NPN管是硅管,两者的特性差别非常显着,电路的对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管Q1与一只大功率的NPN硅管Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。
到了六十年代末,大功率的PNP硅管商品化的时候,互补对称电路才得到广泛的应用。
元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。
在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如JBL的SA600,Marantz互补对称电路MOdel15等等。
第8章 功率放大电路

7.1 概述 *7.2 小功率放大器 7.3 互补对称功率放大电路 7.4 集成功率放大器 7.5 功率放大器实际应用电路
7.1
概述
功率放大就是在有较大的电压输出的同时,又 要有较大的电流输出。 前面学过的放大电路多用于多级放大电路的输 入级或中间级,主要用于放大微弱的电压或电 流信号。
7.3.2 单电源互补对称功率放大器 (OTL--无输出变压器电路) 当在电路中采用单电源供电 时,可采用图7-3-3所示的 电路。
图7-3-3 单电源互补对称功率放大器
图7-3-3中,功效管工作在乙类状态。静态时因电路对称, E点电位为 1 VCC ,负载中没有电流。
2
① vi正半周,T1导通,T2截止,io=iC1,负载RL上得到正半 周点
1、任务和特点:
(1)大信号工作状态
为输出足够大的功率,功放管的动态工作范围很大,功放管中的电 压、电流信号都是大信号,一般以不超过功放管的极限参数为限度。
(2)非线性失真问题
输出功率越大,电压和电流的幅度就越大,信号的非线性失真就越 严重,如何减小非线性失真是功放电路的一个重要问题。
4
78 .5%
7.3.1 双电源互补对称 电路(OCL电路) (4)管耗PT
2 1 1 2 Vom 1 Vom PT 1 PT 2 PV PO · ·CC V 2 2 RL 2 RL 2 1 VomVCC Vom R 4 L
dVom
2 VomVCC Vom 4
代入式(7-3-7)得,T1、T2消耗功率的极限值为:
OTL电路组成特点及工作原理教案

OTL电路组成特点及工作原理教案一、引言OTL电路(Output TransformerLess Circuit)是一种无输出变压器的功率放大电路,它具有简单的构造和高效率的特点。
本教案将详细介绍OTL电路的组成特点及工作原理。
二、OTL电路的组成特点1. 无输出变压器OTL电路是一种无输出变压器的功率放大电路,相比传统的输出变压器放大电路,OTL电路可以减少体积、重量和成本,并提高输出效率。
2. 高功率放大OTL电路采用直接耦合方式,可以实现高功率放大。
传统的输出变压器放大电路存在功率损耗,而OTL电路通过直接耦合方式传递信号,减少了功率损耗,提高了功率放大效果。
3. 低频特性好OTL电路在低频段具有良好的特性,可以实现低频信号的放大和传递。
这对于音频放大器等需要保持音质的应用非常重要。
4. 稳定性高OTL电路的稳定性较高,可以在不影响放大效果的情况下保持稳定的工作状态。
这使得OTL电路在长时间使用和高功率放大时能够保持良好的性能。
三、OTL电路的工作原理1. 工作原理概述OTL电路的工作原理基于直接耦合的方式,通过放大器的输入信号直接传递到输出端,实现信号的放大和传递。
具体来说,OTL电路由输入级、驱动级和输出级组成。
2. 输入级输入级是OTL电路的第一级,负责将输入信号传递到驱动级。
输入级通常采用差模放大器,可以实现对输入信号的放大和处理,提高输入信号的灵敏度和抗干扰能力。
3. 驱动级驱动级是OTL电路的第二级,负责将输入级放大的信号传递到输出级。
驱动级通常采用共射放大器或共基放大器,可以对输入信号进行进一步放大和处理,以适应输出级的工作要求。
4. 输出级输出级是OTL电路的最后一级,负责将驱动级放大的信号传递到输出端。
输出级通常采用功率管或功率晶体管,可以实现对输入信号的最终放大和输出。
5. 反馈电路OTL电路通常会使用反馈电路来提高放大器的稳定性和线性度。
反馈电路可以将输出信号与输入信号进行比较,并通过控制电路对放大器进行调整,使得输出信号更加准确和稳定。
第五章 低频功率放大电路习题及答案

第五章低频功率放大电路一、填空题1、以功率三极管为核心构成的放大器称放大器。
它不但输出一定的还能输出一定的,也就是向负载提供一定的功率。
2、功率放大器简称。
对它的要求与低频放大电路不同,主要是:尽可能大、 _____尽可能高、尽可能小,还要考虑管的散热问题。
3、功放管可能工作的状态有三种:类放大状态,它的失真、效率;它的失真、效率。
4、功率放大电路功率放大管的动态范围大,电流、电压变化幅度大,工作状态有可能超越输出特性曲线的放大区,进入或,产生失真。
5、所谓“互补”放大器,就是利用型管和型管交替工作来实现放大。
6、OTL电路和OCL电路属于工作状态的功率放大电路。
7、为了能使功率放大电路输出足够大的功率,一般晶体三极管应工作在。
8、当推挽功率放大电路两只晶体管的基极电流为零时,因晶体三极管的输入特性,故在两管交替工作时产生。
9、对于乙类互补称功放,当输入信号为正半周时,型管导通,型管截止;当输入信号为负半周时,型管导通,型管截止;输入信号为零(Ui=0)时,两管,输出为。
10、乙类互补对称功放的两功率管处于偏置工作状态,由于电压的在存在,当输入信号在正负半周交替过程中造成两功率管同时 ,引起的失真,称为失真。
11、功率放大器按工作点在交流负载线上的位置分类有:类功放、类功放和类功放电路。
12、甲乙类推挽功放电路与乙类功放电路比较,前者加了偏置电路图向功放管提代少量,以减少失真。
13、乙类互补对称功放允许输出的最大功率Pom= 。
总的管耗Pc= 。
14、为了避免输出变压器给功放电路带来的不便和失真,出现了功放电路;为了避免输出电容引出的失真,又出现了功放电路。
15、所谓复合功率管就是由一个功率三极管和一个功率三极管组成的大功率效三极管。
它分型管组合和型管组合两种。
复合管的等效电流放大系数β= 。
二、选择题1、交越失真是一种()失真。
A、截止失真B、饱和失真C、非线性失真2、OTL和OCL电路的主要区别是()A、有无输出电容B、双电源或单电源供电3、OCL甲乙类功放电路的效率可达()A、25%B、78.5%4、甲类单管变压器耦合功率放大器集电极静态工作电流为I CQ,电源电压E C,输出最大功率为()。
几种常见的放大电路原理图解

几种常见的放大电路原理图解展开全文能够把微弱的信号放大的电路叫做放大电路或放大器。
例如助听器里的关键部件就是一个放大器。
放大器有交流放大器和直流放大器。
交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。
此外还有用集成运算放大器和特殊晶体管作器件的放大器。
它是电子电路中最复杂多变的电路。
但初学者经常遇到的也只是少数几种较为典型的放大电路。
读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。
首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。
放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。
在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。
下面我们介绍几种常见的放大电路:低频电压放大器低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。
( 1 )共发射极放大电路图 1 ( a )是共发射极放大电路。
C1 是输入电容, C2 是输出电容,三极管 VT 就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。
1 、 3 端是输入, 2 、 3 端是输出。
3 端是公共点,通常是接地的,也称“地”端。
静态时的直流通路见图1 ( b ),动态时交流通路见图 1 ( c )。
电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。
( 2 )分压式偏置共发射极放大电路图 2 比图 1 多用 3 个元件。
基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。
发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。
第四章谐振功率放大器
4.1 概述 4.2 谐振功率放大器的原理 4.3 晶体管线形分析放大器的折线
近似分析法
4.4 谐振功率放大器电路
4.5 谐振功率放大器实例 4.6 晶体管倍频器
退出
4.1 概述
1、使用高频功率放大器的目的: 放大高频大信号使发射机末级获得足够大的 发射功率。
2、高频功率信号放大器使用中需要解决的两个 问题?
高效率输出 高功率输出
联想对比: 高频功率放大器和低频功率放大器的共同 特点都是输出功率大和效率高。
退出
4.1 概述(续)
3、谐振功率放大器与小信号谐振放大器的异同之处。
相同之处:它们放大的信号均为高频信号,而且放大器的负 载均为谐振回路。
不同之处:激励信号幅度大小不同;放大器工作点不同; 晶体管动态范围不同。
退出423谐振功率放大器的折线近似分析法临界状态的特点是输出功率最大效率也较高比最大效率差不了许多可以说是最佳工作状态发射机的末级常设计成这种状态在计算谐振功率放大器时也常以此状过压状态的优点是当负载阻抗变化时输出电压比较平稳且幅值较大在弱过压时效率可达最高但输出功率有所下降发射机的中间级集电极调幅级常采用这种状欠压状态的功率和效率都比较低集电极耗散功率也较大输出电压随负载阻抗变化而变化因此较少采用
基极偏置为负值;半通角c<90,即丙类工作状态; 负载为LC谐振回路。
退出
4.3 谐振功率放大器的折线近似分析法
一、折线法 所谓折线法是将电子器件的特性曲线理想化,用一组折线 代替晶体管静态特性曲线后进行分析和计算的方法。 对谐振功率放大器进行分析计算,关键在于求出电 流的直流分量Ic0和基频分量Icm1。
iB≈0,iC≈0,uCE≈UCC。三极管呈现高阻抗,类似于 开关断开。 2)放大状态 : uB>0,发射结正偏,集电结反偏, iC=βiB。 3)饱和状态 : uB>0,两个PN结均为正偏, iB≥IBS(基极临界饱和电流)≈UCC/βRc ,此时 iC=ICS(集电极饱和电流)≈UCC/Rc 。三极管呈现 低阻抗,类似于开关接通。
功放
实训报告课题名称集成功放的组装与调试姓名学号班级专业一、实训的目的1. 理解低频集成功率放大器的工作原理。
2. 熟悉低频功率放大器的主要性能指标。
3. 掌握低频功率放大电路主要性能的测试方法。
二、实训时间和地点6月10日—6月22日 三、实训的工作原理低频集成功率放大器有 DG4100 、LA4112 和 LM386 等多种集成电路。
前两种集成功率放大器的内部电路、基本功能和外部接线基本相同。
下面以 DG4100 为例说明低频集成功率放大器的基本原理和使用方法。
DG4100 的内部电路如图 1.14.1 所示。
由图可见,该集成块内部包括三级电压放大器和一级互补对称功率输出级。
第一级:是由 T 1、T 2 组成的单端输入、单端输出的差动放大器。
第二级:是由 T 4 组成的电流串联负反馈放大器。
该级的负载是以 T 5、T 6 组成的镜象恒流源电路作为有源负载。
因而,该级具有较高的电压增益。
同时该级采用 PNP 管,兼有电平移动的作用。
第三级:是由 T 7 组成的电流串联负反馈放大器。
为了提高该级的输出电压,在使用时,应在 13 端与 1 端之间外接一个自举电容C8 。
为了防止整个放大器自激,使用时应在 4 端与 5 端之间外接一个补尝电容。
功率输出级:该级由 T 8 - T 14 组成。
其中 T 12、T 13 组成一个 NPN 型复合管。
T 8 ,T 14 组成一个 PNP 型复合管。
为了克服交越失真,由 R8 为这两个复合管提供了基极静态偏置电压。
T 9 ~ T 11 和R8 构成 T 8 发射极偏置电路, 其作用是抬高 T 8 的发射极静态电位,从而通过 T 8 给 T 14 提供所需的静态电流。
该电路内部有一个负反馈电阻 R11 ,在使用时,还需要在放大器的 6 端和地之间外接一个由Rr 、Cr 组成的网络,以便与 R11 一起构成深度交流电压串联负反馈,如图 1.14.2 中所示。
功率放大器知识大全
率放大是一种能量转换的电路,在输入信号的作用下,晶体管把直流电源的能量,转换成随输入信号变化的输出功率送给负载。
功率放大器简介利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。
因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。
经过不断的电流及电压放大,就完成了功率放大。
功率放大器,简称“功放”。
很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。
功率放大器种类目前市场上车用功率放大器的种类很多,分类方法也比较复杂。
最常见的是按照工作方式分为:A型、B型和AB型。
A型是指放大器每隔一定时间收集一次主机传输过来的音频信号,并将其放大后传输给扬声器,而这一过程中的“缓冲作用”保证了系统能够输出温和、平顺的声音信号,不足之处处在于消耗的能量较大。
B型功率放大器则是取消了前面所说的“缓冲作用”,放大器的工作一直处于适时状态,但是音质方面较前者就要差了一些。
AB型放大器,实际上是A型和B型的结合,每个器件的导通时间在50%-100%之间,可以称得上是当前比较理想的功率放大器。
功率放大器选购选择功率放大器的时候,首先要注意它的一些技术指标:1、输入阻抗:通常表示功率放大器的抗干扰能力的大小,一般会在5000-15000Ω,数值越大表示抗干扰能力越强;2、失真度:指输出信号同输入信号相比的失真程度,数值越小质量越好,一般在0.05%以下;3、信噪比:是指输出信号当中音乐信号和噪音信号之间的比例,数值越大代表声音越干净。
功率放大电路
单边失真的正弦波
不失真的正弦波
半 波
§6-3 乙类推挽功率放大电路
教学目标: 1、了解乙类推挽功率放大电路组成
2、理解并掌握乙类推挽功率放大电路工作原理
3、理解电路存在的问题及解决办法
一、电路构成
T1 、T2 :输入、输出变压器 V1 、V2 :功放管
二、工作原理
1、无信号输入时: V1、V2截止,处于乙类状态。
3、 OCL功率放大电路存在的问题及解决办法。
教学目标:
1、掌握OCL电路组成 2、理解并掌握OCL电路工作原理
3、OCL电路存在的问题及解决的办法
(二)OCL电路
中点电压为UA=0 1、无信号输入时:
V1、V2处于乙类状态 2、有信号输入时:
(1)ui 正半周: 瞬时极性基极为正,发射极为负
V1导通—— 形成ic1(逆时针) —— RL左正右负
3、总结:iC1与iC2流经RL方向相反,RL可获得较
完整的正弦波。
三、改进电路 (一)电路构成
(二)工作原理
1、无信号输入时:V1、V2截止,处于乙类状态。 2、有信号输入时:
(1)ui 正半周:瞬时极性上正下负
1 —— Uc EC C 充电: V1导通 —— 形成ic1(逆时针) 2
ห้องสมุดไป่ตู้
V2截止 RL上正下负
1 2
电路缺点:效率低 3、管耗PC : PC=PE-Po 最大耗散功率PCM: PCM=PE=ECICQ=2Pom
小
1、变压器的作用
2、计算变压比
结
3、甲类功率放大电路特点及缺点
作
业
1、甲类功放电路中RL=4Ω,RL’=100Ω,ηT=80%,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、减小非线性失真——功率放大器的三极管往往在接近极限的大信号状态下工作,因此不可避免地会产生非线性失真,通常同一功率放大器输出功率越大,其非性失真就越严重。
4、功率管的散热问题与保护——在功率管上加装散热片。
从电路的实质来讲,电压放大器和功率放大器都是将信号放大,是能量转换的电路,从这些方面来看,功率放大器与电压放大器没有区别。
但是电压放大器与功率放大器所要完成的任务是不同的,因此对它们性能的要求也不相同。
电压放大器主要任务是不失真地提高幅值,以驱动后面的功率放大器,它的主要性能指标是电压放大倍数、输入和输出阻抗等。输出功率并不一定大。
交越失真:输出电压在输入电压较小时存在一小段死区,此段输出电压与输入电压不存在线性关系产生了失真,由于这段失真出现在过零处,故称为交越失真。
uiIo交越失真
wt wt
解决方案:A、给功放管加入偏置电压,克服死区,使其进入甲乙类状态(或者说微导通状态)。
B、电路表现形式:RB1,RB2即为基极偏置电阻,给功放管提供一个较小的偏置电流。
三、功放的分类
低频功率放大器
(1)根据工作频率分
高频功率放大器
变压器耦合功放 特:单电源,变压器耦合输出
OTL 特点:单电源、电容耦合输出
(2)根据输出特点分 OCL 特点:双电源,直接耦合输出
BTL 特点:单(双)电源,桥接形式
甲类 特:不失真,功耗大,η低,θ=360°
(3)按静态工作点分 乙类 特:半周失真,功耗低η高,θ=180°
A要求输出功率尽可能大B效率要高C散热性能要好D非线性失真要小
2.在低频功放中效率最高的是( )
A 甲类 B 乙类 C 甲乙类 D 丙类
3.下列功放中存在交越失真的是( )功放。
A 甲类 B 乙类 C 甲乙类
4.OCL功放采用( )电源,( )耦合输出形式。
A 双 直接 B 单 阻容 C 双 阻容 D 单 直接
课程
模拟电子技术
章节
4.1
教师
审批
课题
低频功率放大器的概述与变压器耦合功放
课时
2学时
授课日期
授课班级
教学目的
与要求
1.了解低频功率放大器的工作任务、特点和基本要求。
2.掌握低频功放的分类及各种功放的特点。
3.掌握低频功放输出功率、效率与管耗的分析。
重点
低频功放的分类及各种功放的特点
难点
低频功放输出功率、效率与管耗的分析
二、新课讲述
1、回顾多级放大电路的特点:放大电路一般有多级构成,第一级放大电路通常称为输入级,主要实现与信号源之间的匹配;中间几级称为中间级,主要用以信号电压的放大;最后一级为输出级,其作用是驱动负载工作。
功率放大器的定义:放大器以供给负载足够大的信号功率为目的的输出级,通常称为功率放大器。
2、电压放大器与功率放大器的比较:
甲乙类特:失真小,功耗低,η高,θ=180-360°
晶体管分立功放特:安装调试不便,易于维修,功率大
(4)使用器件
集成功放 特:安装调试容易,功率相对较小
四、课堂训练。
1、是非题
1.功率放大器简称功放,以放大信号功率为主要任务。 ( )
2.按照静态工作点分,低频功放可分为甲类、乙类、甲乙类功放。 ( )
功率放大器的主要任务是获得一定的不失真或较小失真的输出功率、以驱动工作,通常工作在大信号状态,它的主要性能指标是输出信号的功率、功率放大电路的效率、三极管的功率损耗以及非线性失真等。
功率放大器的性能指标:
1、有足够大的信号功率输出:要求功率管工作时的实际值接近于极限值(ICM、PCM),但又不允许超过这些极限值,否则不仅输出波形会产生严重失真,而且会烧毁功率管,影响电路的正常工作。
授课类型
教具
多媒体
作业
教材130页第4.1,4.3题
教学进程和时间分配表(可略去,直接填写教学内容)
序号
教学内容
时间分配授课类型Βιβλιοθήκη 1复习引入10
2
低频功率放大器的概述
30
讲授
4
输出功率、效率和管耗的分析
20
讲授
5
交越失真及其解决的方法
10
讲授
7
课堂练习。
20
提问、讲授
教学内容:
一、复习引入
在电子技术应用领域中,扬声器的发声、伺服电机的旋转等设备都需要有足够的输出功率去控制或驱动,对于放大电路的要求除了要求有足够的电压放大能力外,还需要有足够的电流放大能力,要满足这一要求则需采用功率放大器。
5.乙类功放的导通角是( )度
A 360 B 180 C 90 D 90-180
五、课堂训练答案。
(一)对 对 错 对 对 对
(二)ABCDBBAB
3.甲类功放放大器具有功耗低,不失真,效率低的特点。 ( )
4.乙类功率放大器的效率比甲类功放高,理想效率可达78.5%。 ( )
5.交越失真产生的原因是因为三极管死区电压的存在,功放管缺少基极偏置。( )
6.变压器耦合功放主要优点是易于实现阻抗匹配。( )
㈡、选择题
1.下列选项中符合功率放大器特点及要求的是( )