功率放大器的性能指标
功率放大器主要指标测试方法

一、功率/1dB压缩点测试
功率计测试框图4:
小功率负载
波导大功率负载
信号源
功率放大器
波导耦合器 功率计探头
注意事项: 1、信号源输出功率包含-10dBm~+15dBm,具有脉冲信号调制; 2、功率放大器输出通过大功率射频电缆连接大功率耦合器和大功率负载; 3、耦合器及负载的承载功率和频段需要与功放的最大频率一致。 4、功率计需要使用连续波功率计或者雷达脉冲功率计,频率上限覆盖功放 的频率。耦合器为40dB或者50dB满足耦合端不损坏功率计为原则。
有用信号
杂散 f1
杂散
f0
f2
频率
三、输出失真(谐波, 交调, 杂波)
失真测试框图:
小功率负载
波导负载
信号源
功率放大器
波导耦合器
频谱分析仪
注意事项: 1、信号源输出功率包含-10dBm~+15dBm,具有连续波/脉冲信号调制; 2、功率放大器输出通过大功率射频电缆连接大功率耦合器和大功率负载; 3、耦合器及负载的承载功率和频段需要与功放的最大频率一致。 4、频谱仪至少需要覆盖功放最大频率。功率标记点分别测试主信号和其 他谐波或交调等杂散信号。
二、增益及带内平坦度测试
增益测试框图:
小功率负载
波导负载
信号源
功率放大器
波导耦合器
频谱分析仪
注意事项:
1、信号源输出功率包含-10dBm~+15dBm,具有连续波/脉冲信号调制;
2、功率放大器输出通过大功率射频电缆连接大功率耦合器和大功率负载;
3、耦合器及负载的承载功率和频段需要与功放的最大频率一致。
反射特性测量是通过测试被测件的反射损耗,或测出被测件的反射系数、 电压驻波比,反映端口的匹配情况。 回波损耗 LR、反射系数ρ、电压驻波比S 三者的关系如下:
基本放大器的性能指标

后
小
结
本节较为简单,学生容易掌握
2012年9月17日
主题
基本放大电路的主要性能指标
教学目标
电压放大倍数
电流放大倍数
功率放大倍数
重点难点
功率放大倍数用增益的方式表达
教法
讲授(配合多媒体相关教学内容)
教
学
过
程
•1.放大倍数
•(1)电压放大倍数
•Байду номын сангаас大电路的电压放大倍数定义为输出电压有效值与输入电压有效值之比,
•(2)电流放大倍数
•放大电路的电流放大倍数定义为输出电流有效值与输入电流有效值之比,即(3)功率放大倍数
•放大电路的功率放大倍数定义为输出信号功率(Po=UoIo)与输入信号功率(Pi=UiIi)之比,即
•在实际工作中,放大倍数常用增益G来表示,增益的单位为分贝(dB)。定义为
•(2)输出电阻
•从放大器输出端(不包括外接负载电阻RL)看进去的交流等效电阻叫输出电阻。
我们把放大
电路能正常放大的频率范围,叫做放大电路的通频带,如图2-21所
功率放大器及其与音箱的匹配

一、功率放大器与音箱的性能指标(一)功率放大器的性能指标1.频率响应人耳能够听到的频率范围在20Hz-20kHz之间,因此放大器的频率范围理论上应做到20-20kHz(±3dB)平直就足够,但事实上音乐中含有的许多乐器或反射泛音谐波有很多是超出这个频率范围的。
由于人耳对声音的判别精度可达到0.1dB,有些高级放大器的频响标称20-20kHz的不均匀度为正负0.1dB,当以±3dB不均匀度测量时它们的时频响可能达到10Hz至50kHz甚至更宽。
从改善瞬态反应的目的考虑,放大器应该有更宽广的频应范围,现代高级放大器的频响应能达到从10Hz-100kHz(±3dB)。
但放大器的频响也不是越宽越好,否则易引入高频或低频干扰,反而使S/N降低或诱发互调失真。
2.谐波失真物体在受到外界的干扰振动后会出现一个呈周期性衰减振动。
例如,两端固定的吉它弦线在中部受到弹拨时,会产生一个肉眼可见的大振动,这个振动称作基波(Fundemental),弦线除了沿中点作大幅度摆动外,线的本身还有许多肉眼很难看到的细小振动,它们的频率都比基波高,这些振动频率被称为谐波(Harmonics),乐器产生的谐波常叫做泛音(Overtone)。
除了由信号源产生谐波外,声音振动波传播时遇上障碍物产生的反射、绕射和折射也会产生谐波。
放大器线路中的各种电子元件、接线和焊点会在一定程度上降低放大器的线性表现。
当音乐信号通过放大器时,非线性特性会令信号产生某种程度的变形扭曲,即相当于在信号中加入了一些谐波,这种信号变形的失真称为谐波失真。
当输出功率接近最大值时,谐波失真急剧加大,特别是晶体管放大器会因接近过载(Overload)会发生将信号的顶部齐平削去的严重波形畸变失真。
谐波失真一般用百分比来表示,百分比数越小即是放大器产生的谐波少,也就是说信号波形的失真较低。
3.互调失真互调失真是指整个可听频带中高低频混合成全频的过程引起的失真。
功放性能指标详细解析

功放性能指标详细解析功率放大器简称功放,是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。
功放的主要性能指标有输出功率,频率响应,失真度,信噪比,输出阻抗,阻尼系数等。
输出功率输出功率(output power):表明该功率放大器在一定负载下输出功率的大小,一般在功放说明书上标明在8欧姆负载,4欧姆负载或2欧姆负载状态下的输出功率,同时也会表明功放在桥接状态下,8欧姆负载时或4欧姆负载时的输出功率。
这个输出功率表示功放的额定输出功率,而不是最大或者峰值输出功率。
负载阻抗负载阻抗(load impedance):表明功放的负载能力,负载的阻抗越小,表明功放能通过的电流能力就越强,一般来说,大部分的功放最低负载阻抗为4欧姆,品质好的功放最低负载一般为2欧姆。
双通道时能够负载4欧姆的功放,在桥接状态下可以负载最低为8欧姆,双通道时能够负载2欧姆的功放,桥接状态下可以负载4欧姆。
桥接状态下只能负载8欧姆的功放,不可以负载更低的阻抗,否则会造成功放因为电流过大而烧毁。
立体声(两路)模式立体声(两路)模式(stereo mode or dual mode):一般的功放内部具有两个独立的放大电路,可以分别接受两路不同的信号分别进行放大并输出,这种工作状态称为立体声(两路)模式。
桥接模式(bridge mode):桥接模式是利用功放内部的两个放大电路相互推挽,从而产生更大输出电压的方式,功放设定为桥接模式后,成为一台单声道放大器,只可以接受一路输入信号进行放大,输出端为两路功放输出的正端之间。
并联输入模式并联输入模式(parallel mode):此方式将功放的两路输入信号通道进行并联,只输入一路信号来同时驱动两个放大电路,两个输出端输出信号相同。
频响范围频响范围(frequency range):表明功放可以进行放大的工作频段,一般为20-20000赫兹,一般在此数据后面有一个后缀,比如-1/+1dB,这代表这个频率范围的误差或浮动范围,这个数值约小,表明频率范围内的频响曲线更平直。
实验三高频功率放大器(丙类)

实验操作过程
调整丙类功率放大器的输入和输 出阻抗,使其与信号源和负载匹 配。
逐步增加输入信号的幅度,观察 放大器的输出波形和参数变化。
使用示波器记录放大器的输入和 输出波形,分析波形的失真情况。
打开高频信号发生器,设置合适 的信号频率和幅度。
使用电压表和电流表测量放大器 的各项参数,如输入电压、输出 电压、输入电流、输出电流等。
02
它主要由输入匹配网络、功放管 、输出匹配网络和偏置电路等部 分组成。
高频功率放大器的分类
根据功放管的类型,高频功率 放大器可分为电子管式高频功 率放大器和晶体管式高频功率
放大器。
根据工作频率,高频功率放 大器可分为超短波高频功率 放大器和微波高频功率放大
器。
根据放大器的级数,高频功率 放大器可分为单级高频功率放 大器和多级高频功率放大器。
对未来实验的展望与建议
01
深入研究不同类型的 高频功率放大器
在未来的实验中,可以进一步探索甲 类、乙类等不同类型的高频功率放大 器的设计与制作,比较它们之间的性 能差异和应用特点。
02
结合实际应用场景进 行优化设计
针对实际应用需求,可以对高频功率 放大器进行优化设计,如提高输出功 率、降低失真度、拓宽带宽等,以满 足不同场景下的使用要求。
通过分析实验数据,我们发现放大器在不同频率下的响应特性有所不同。在低频段,放大 器的放大效果较好;而在高频段,放大效果逐渐减弱。这可能与放大器的设计参数和元器 件特性有关。
线性度与失真
在实验过程中,我们观察到输出信号存在一定的失真现象。失真可能源于放大器的非线性 特性,如饱和、截止等。为了量化失真程度,我们采用了失真度指标进行分析。
功率放大器(功放)知识讲解

功放基本知识:功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。
一套良好的音响系统功放的作用功不可没。
功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。
功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。
由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。
分类:按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类.功放(又称D类)。
甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。
甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。
单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。
乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。
乙类放大器的优点是效率高,缺点是会产生交越失真。
甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。
甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。
丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。
许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。
这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。
按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。
单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。
功率放大器(功放)知识
功放基本知识:功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。
一套良好的音响系统功放的作用功不可没。
功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。
功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。
由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。
分类:按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类.功放(又称D类)。
甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。
甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。
单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。
乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。
乙类放大器的优点是效率高,缺点是会产生交越失真。
甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。
甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。
丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。
许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。
这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。
按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。
单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。
集成功率放大器
散热结构
散热片、散热器、导热材料等。
04
集成功率放大器的性能 指标
增益
增益
放大器的放大能力,通常以分贝(dB) 为单位表示。增益越大,输出信号的 幅度越大。
增益平坦度
增益压缩
当输入信号幅度增大时,放大器增益 下降的现象。压缩越小,放大器动态 范围越大。
在一定频率范围内,放大器增益的变 化量。平坦度越小,增益稳定性越好。
02
集成功率放大器的应用
通信系统
无线通信
集成功率放大器广泛应用于无线通信系统,如移动通信基站和无线网络设备,用于放大射频信号,确 保信号覆盖范围和传输质量。
有线通信
在有线通信领域,集成功率放大器也被用于光纤通信和宽带网络中,提高信号传输的稳定性和距离。
音频处理
音响系统
集成功率放大器在音响系统中用于驱动扬声器,提供足够的功率以产生清晰、 动态的音频效果。
05
集成功率放大器的挑战 与解决方案
噪声与失真
总结词
噪声和失真是集成功率放大器面临的常见问 题,它们会影响信号的质量和性能。
详细描述
噪声通常是由放大器内部的热噪声、散弹噪 声和闪烁噪声等引起的,失真则主要是由于 放大器非线性引起的。为了降低噪声和失真, 可以采用低噪声器件、优化电路设计、使用 负反馈等技术。
06
集成功率放大器的发展 趋势与未来展望
高效率与低功耗技术
发展趋势
随着能源节约和环保意识的提高,高效率与低功耗已成为集成功率 放大器的重要发展方向。
技术挑战
如何实现高效率与低功耗的同时,保持性能稳定和可靠性是技术上 的挑战。
解决方案
采用先进的半导体工艺和电路设计,优化晶体管的工作状态,降低功 耗损失。
功放电路性能指标及测试方法
1. 功放电路性能指标及测试方法功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、效率、频率响应、输入灵敏度、信噪比等项目指标为主。
配备必要的仪器仪表主要有:音频信号发生器、音频毫伏表、示波器、失真度测量仪等。
(1)输出功率是指功放输送给负载的功率,以瓦(W )为基本单位。
功放在放大倍数和负载一定的情况下,输出功率的大小由输入信号的大小决定,包括最大输出功率和额定输出功率两种。
额定输出功率:指在一定的谐波失真指标内,功放输出的最大功率。
应该注意,功放的负载和谐波失真指标不同,额定输出功率也随之不同。
通常规定的谐波失真指标有1%和10%。
由于输出功率的大小与输入信号有关,通常测量时给功放输入频率为1KHz 的正弦信号,测出等阻负载电阻上的电压有效值o U ,此时功放的输出功率o P 可表示为 :2o o=LU P R (4-1-4) 式中L R 为等效负载的阻抗。
这样得到的输出功率,实际上为平均功率OAV P 。
当输入信号幅度逐渐增大时,功放开始过载,波形削顶,谐波失真加大。
谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。
最大输出功率:在上述情况下不考虑失真的大小,给功放输入足够大的信号,功放所能输出的最大功率称为最大输出功率。
额定输出功率和最大输出功率是我国早期功放产品说明书上常用的两种功率。
通常最大输出功率是额定功率的2倍。
2LUom Pom R (4-1-5) 其中,Uom 为放大器的最大输出电压有效值。
功放电路功率测量线路如图4-1-4所示,示波器用于监视波形失真之用,MV 表示音频毫伏表,L R 是负载电阻,O U 、I U 分别表示输出和输入信号电压。
图4-1-4 输出功率测试电路测量过程:由信号发生器输出一个0.755V(0DB)的1KHZ 正弦信号,送入功放的线路输入口;或由音频信号发生器输出一个0.35V(-67DB)的1KHZ 正弦信号,送入功放的话筒口,缓慢开大功放的相应音量旋钮,观察示波器的输出波形刚好不失真时,停止调节音量钮。
放大电路的主要性能指标
15
7、最大输出功率Pomax和效率η
三极管是一个能量控制器件,它能通过三极管的 控制作用,把直流电源提供的能量转换成交流电能输 出。所以,放大电路的最大输出功率,就是在输出信 号不失真时,放大电路向负载提供的最大交流功率, 用Pomax来表示。 规定放大器的最大输出功率与直流电源提供的 功率之比叫做放大器的效率η。效率越高.在交流输 入信号的控制下,能量转换能力就越强。
RL ' Uo RL ro
11
实验分析时,在保持输人信号不变的前提下,分别测出放
),输出电 '和 U 大电路输出端开路和加载(接时的电压 U
o
阻可由下式来决定
3、最大输出幅度
U ro 。o 1 RL Uo
在不失真情况下,放大电路的最大输出电压或电流的大
2.1.2 放大电路的主要指标
放大电路的性能指标可以衡量一个放大器性能 的好坏和特点。性能指标主要包括放大倍数(或 增益)、输人电阻、输出电阻、通频带等。 由于放大电路可以看成是一个有源四端双口网 络,为讨论放大电路的性能指标,将放大电路的 等效网络重画于图2—2中,并按双口网络的一般 约定画出了电流的方向和电压的极性,同时假定 输入信号为正弦波,图中的电流和电压均采用向 量表示。这样,我们就可以由这个网络的端口特 性来描述放大电路的性能指标。
4
图2-2 放大电路示意图
5
1、放大倍数(或增益)
为衡量放大电路的放大能力,规定不失真时的输出量与 ,或称为增益, 输入量的比值叫做放大电路的放大倍数 A 即:
X o A X i
根据输入量和输出量的不同.可以有以下四种增益的定 义方法。 1) 电压放大倍数
U A o A uu u U i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率放大器的性能指标有哪些?
功率放大器的性能指标很多,有输出功率、频率响应、失真度、信噪比、输出阻抗、阻尼系数等,其中以输出功率、频率响应、失真度三项指标为主。
1.输出功率
输出功率是指功放输送给负载的功率,以瓦(W)为基本单位。
功放在放大量和负载一定的情况下,输出功率的大小由输入信号的大小决定。
过去,人们用额定输出功率来衡量输出功率,现在由于高保真度的追求和对音质的评价不一样,采用的测量方法不同,因此形成了许多名目的功率称呼,应当注意。
(1) 额定输出功率(RMS)
额定输出功率是指在一定的谐波失真指标内,功放输出的最大功率。
应该注意,功放的的负载和谐波失真指标不同,额定输出功率也随之不同。
通常规定的谐波失真指标有1%和10%。
由于输出功率的大小与输入信号有关,为了测量方便,一般采用连续正弦波作为测量信号来测量音响设备的输出功率。
通常测量时给功放输入频率为1000Hz的正弦信号,测出等阻负载电阻上的电压有效值(V),此时功放的输出功率(P)可表为
P=V2/RL
式中:RL为扬声器的阻抗
这样得到的输出功率,实际上为平均功率。
当音量逐渐开大时,功放开始过载,波形削顶,谐波失真加大。
谐波失真度为10%时的平均功率,称为额定输出功率,亦称最大有用功率或不失真功率。
(2)最大输出功率
在上述情况下不考虑失真的大小,给功放输入足够大的信号,并将音量和音调电位器调到最大时,功放所能输出的最大功率称为最大输出功率。
额定输出功率和最大输出功率是我国早期音响产品说明书上常用的两种功率。
通常最大输出功率是额定功率的2倍。
但是,在放音时却有这样的情况,两台最大有用功率及扬声器灵敏度都差不多的功放在试听交响乐节目时,当一段音乐从低潮过去以后突然来一突发性打击乐器声,可能一台功放能在瞬间给出相当大的功率,给人以力度感,另一台功放却显得底气不足。
为了标志功放这种瞬间的突发输出功率的能力,除了测量上述的最大有用功率和最大输出功率之外,有必要测量功放的音乐输出功率和峰值输出功率。
才能全面地反映功放的输出能力。
(3)音乐输出功率(MPO)
音乐输出功率(Music Power Output)是指功放工作于音乐信号时的输出功率,亦即在输出失真度不超过规定值的条件下,功放对音乐信号的瞬间最大输出功率。
国际上还没有统一的输出功率(MPO)和峰值音乐输出功率(PMPO)的测量标准,国外各厂家一般都有各自的测量方法。
通常音乐输出功率为额定功率的4倍。
(4)峰值音乐输出功率(PMPO)
它通常是指在不计失真的条件下,将功放的音量和音调电位器调至最大时,功放所能输出的最大音乐功率。
峰值音乐功率不仅反映了功放的性能,而且能反映功放直流电源的供电能力。
一般来说,某一功放的上述几个输出功率有如下关系:峰值音乐输出功率>音乐输出功率>最大输出功率>额定输出功率。
通常,峰值音乐输出功率是额定输出功率的8-10倍,但无统一定论。
2.频率响应
频率响应是指功率放大器对声频信号各频率分量的均匀放大能力。
频率响应一般可分为幅度频率响应和相位频率响应。
幅度频率响应表征了功放的工作频率范围,以及在工作频率范围内的幅度是否均匀和不均匀的程度。
所谓工作频率范围是指幅度频率响应的输出信号电平相对于1000Hz信号电平下降3dB处的上限频率与下限频率之间的频率范围。
在工作频率范围内,衡量频率响应曲线是否平坦,或者称不均匀度一般用dB表示。
例如某一功放的工作频率范围及其不均匀度表示为:20Hz-20kHz,+-1dB。
相位频率响应是指功放输出信号与原有信号中个频率之间相互的相位关系,也就是说有没有产生相位畸变。
通常,相位畸变对功放来说并不很重要,这是因为人耳对相位失真反应不很灵敏的缘故。
所以,一般功放所说的频率响应就是指幅度频率响应。
目前,一般功率放大器的工作频率范围为20Hz-20kHz。
3.失真
失真是指重放的声频信号波形发生了不应有的变化。
失真有谐波失真、互调失真、交叉失真、削波失真、相位失真和瞬态失真等。
(1)谐波失真
谐波失真是由功率放大器中的非线性元件引起的,这种非线性会使声频信号产生许多新的谐波成分。
其失真大小是以输出信号中所有谐波的有效值与基波电压的有效值之比百分数来表示。
谐波失真度越小越好。
谐波失真与频率有关。
通常在1000Hz附近,谐波失真量较小,在频响的高、低端,谐波失真量较大。
谐波失真还与功放的输出功率有关,当接近于额定最大输出功率时,谐波
失真急剧增大。
目前,优质放大器在整个音频范围内的总谐波失真一般小于0.1%;优秀功放谐波失真值大多在0.03%-0.05%之间。
(2)互调失真
当功放同时输入两种或两种以上频率的信号时,由于放大器的非线性,在输出端会产生各频率以及谐频之间的和频和差频信号。
例如,200Hz信号和600Hz的信号和在一起,就产生400Hz(差信号)和800Hz(和信号)这两个微弱的互调失真信号。
由于互调信号与自然信号没有相似之处,因此容易使人察觉,在比较小的互调失真度时就可以听出来,令人生厌。
因此,降低互调失真是提高音响音质的关键之一。
(3)交叉失真和削波失真
交叉失真又称交越失真,是由于功率放大器的乙类推挽放大器功放管的起始导通的非线性造成的,它也是造成互调失真的原因之一。
削波失真是功放管饱和时,信号被削波,输出信号幅度不能进一步增大而引起的一种非线性失真。
削波失真会使声音变得模糊而且抖动。
削波失真是无法消除的,只有在聆听音乐时注意不要使放大器达到满功率极限。
(4)瞬态失真和瞬态互调失真
瞬态失真又称瞬态响应,它是指功放瞬态信号的跟随能力。
当瞬态信号加到放大器时,若放大器的瞬态响应差,放大器的输出就跟不上瞬态信号的变化,从而产生瞬态失真。
功放的瞬态响应主要决定于放大器的频率范围,这就是高保真放大器将频率范围做得很宽的主要原因之一。
瞬态互调失真是现代声频领域里的一个重要技术指标。
由于功率放大器往往加入大环路深度负反馈,而且在其中一般都加入相位滞后补偿电容,因此在输入瞬态信号时,造成输出端不能立即达到最大值,使输入级得不到应有的负反馈电压而出现瞬态过载,产生很多新的互调失真量。
由于这些失真量是在瞬态产生的,所以叫做瞬态互调失真。
瞬态互调失真是晶体管功放电路和集成功放电路产生所谓“晶体管声”、使其音质不及电子管功放的重要原因。
4.信噪比
信噪比是指功放输出的各种噪声(如交流声、白噪声)电平与输出信号电平的比值的分贝数。
信噪比的分贝值越高,说明功放的噪声越小,性能越好。
一般要求在50dB以上,优质功放的信噪比大于72dB。
5.输出阻抗和阻尼系数
功放输出端对负载(扬声器)所呈现的等效内阻抗,称为输出阻抗,阻尼系数则是指功放给扬声器的电阻尼的大小。
由于功放电路的输出阻抗是扬声器并联的,相当于在扬声器音圈两端并联一个很小的电阻,它会使扬声器纸盘的惯性振荡受到阻尼。
功放的输出阻抗越小,对扬声器的阻尼越大,因此常用阻尼系数来描述功放电路对扬声器的阻尼程度。
阻尼系数定义为扬声器阻抗与功放输出阻抗(含音箱线电阻)之比,即DF越大,表示功放使扬声器不能作自由振荡的制动能力(即阻尼能力)越强。
但是阻尼系数也并不是越大越好,从听感上说,阻尼系数太大,会使声音发干;而阻尼系数太小(成为欠阻尼或阻尼不足),因振荡拖尾较长,会使低音变得混浊不清,失真增大。
一般来说,对于民用功放来说,阻尼系数取15-100为宜。
对于专业用功放,阻尼系数宜在200-400或更高。