江苏省南京市六合区2013年中考一模数学试题
2013年江苏省南京市中考数学模拟试卷(含答案解析)_免费.

2013年江苏省南京市中考数学模拟试卷一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)的相反数是().C6.(2分)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数为()二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)计算•(x≥0,y≥0)的结果是_________.8.(2分)计算2﹣1+()0的结果是_________.9.(2分)甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数甲=乙=8.5,则测试成绩比较稳定的是_________.(填“甲”或“乙”)10.(2分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=_________度.11.(2分)顺次连接矩形四条边的中点,所得到的四边形一定是_________形.12.(2分)如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点D的坐标是(3,4),则点B的坐标是_________.13.(2分)如图,在三角形纸片ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD,如果∠BAD=80°,则∠CBD的度数为_________°.14.(2分)已知圆锥的高是30cm,母线长是50cm,则圆锥的侧面积是_________cm2.15.(2分)已知平面直角坐标系中两点A(﹣2,3),B(﹣3,1),连接AB,平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(3,4),则点B1的坐标为_________.16.(2分)表1给出了正比例函数y1=kx的图象上部分点的坐标,表2给出了反比例函数y2=的图象上部分点的坐标.则当y1=y2时,x的值为_________.表212小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(6分)求不等式组的解集.18.(6分)计算÷(﹣).19.(6分)如图,炮台B在炮台A的正东方向1678m处.两炮台同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与炮台B的距离.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839)20.(6分)已知二次函数的关系式为y=x2+6x+8.(1)求这个二次函数图象的顶点坐标;(2)当x的取值范围是_________时,y随x的增大而减小.21.(7分)求知中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:22.(7分)小明的书包里只放了A4大小的试卷共5页,其中语文3页、数学2页.若随机地从书包中抽出2页,求抽出的试卷恰好都是数学试卷的概率.23.(7分)如图,在梯形ABCD中,AD∥BC,AC、BD是对角线.过点D作DE∥AC,交BC的延长线于点E.(1)判断四边形ACED的形状并证明;(2)若AC=DB,求证:梯形ABCD是等腰梯形.24.(7分)根据一家文具店的账目记录,某天卖出15个笔袋和5支钢笔,收入225元;另一天,以同样的价格卖出同样的3个笔袋和6支钢笔,收入285元.这个记录是否有误?请用二元一次方程组的知识说明.25.(8分)如图,某矩形相框长26cm,宽20cm,其四周相框边(图中阴影部分)的宽度相同,都是xcm,相框内部的面积(指图中较小矩形的面积)为ycm2.(1)写出y与x的函数关系式;(2)若相框内部的面积为280cm2,求相框边的宽度.26.(8分)如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.(1)判断直线CA与⊙O的位置关系,并说明理由;(2)若AB=2,求图中阴影部分的面积(结果保留π).27.(8分)(1)在遇到问题:“钟面上,如果把时针与分针看作是同一平面内的两条线段,在2:00~2:15之间,时针与分针重合的时刻是多少?”时,小明尝试运用建立函数关系的方法:①恰当选取变量x和y.小明设2点钟之后经过x min(0≤x≤15),时针、分针分别与竖轴线(即经过表示“12”和“6”的点的直线,如图1)所成的角的度数为y1°、y2°;②确定函数关系.由于时针、分针在单位时间内转动的角度不变,因此既可以直接写出y1、y2关于x的函数关系式,也可以画出它们的图象.小明选择了后者,画出了图2;③根据题目的要求,利用函数求解.本题中小明认为求出两个图象交点的横坐标就可以解决问题.请你按照小明的思路解决这个问题.(2)请运用建立函数关系的方法解决问题:钟面上,如果把时针与分针看作是同一平面内的两条线段,在7:30~8:00之间,时针与分针互相垂直的时刻是多少?28.(12分)如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD的AB边上的强相似点.(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE 与BE的数量关系并说明理由.2013年江苏省南京市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)的相反数是().C的相反数是﹣,添加一个负号即可.4.(2分)如图,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B的对称点是()5.(2分)从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()6.(2分)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数为()二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)计算•(x≥0,y≥0)的结果是6x.进行运算,然后化为最简二次根式即可.=6x.8.(2分)计算2﹣1+()0的结果是.故答案为:9.(2分)甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数甲=乙=8.5,则测试成绩比较稳定的是甲.(填“甲”或“乙”)甲10.(2分)(2008•安徽)如图,已知a∥b,∠1=70°,∠2=40°,则∠3=70度.11.(2分)顺次连接矩形四条边的中点,所得到的四边形一定是菱形.AC ACEF=HG=BD12.(2分)如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点D的坐标是(3,4),则点B的坐标是(﹣1,0).13.(2分)如图,在三角形纸片ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD,如果∠BAD=80°,则∠CBD的度数为10°.14.(2分)已知圆锥的高是30cm,母线长是50cm,则圆锥的侧面积是2000πcm2.15.(2分)已知平面直角坐标系中两点A(﹣2,3),B(﹣3,1),连接AB,平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(3,4),则点B1的坐标为(2,2).16.(2分)表1给出了正比例函数y1=kx的图象上部分点的坐标,表2给出了反比例函数y2=的图象上部分点的坐标.则当y1=y2时,x的值为1,﹣1.上,,﹣17.(6分)求不等式组的解集.,18.(6分)计算÷(﹣).()÷•(﹣)19.(6分)如图,炮台B在炮台A的正东方向1678m处.两炮台同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与炮台B的距离.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839)ACB=ACB=,20.(6分)已知二次函数的关系式为y=x2+6x+8.(1)求这个二次函数图象的顶点坐标;(2)当x的取值范围是x<﹣3时,y随x的增大而减小.21.(7分)光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:人的社会实践活动成绩的平均数是:22.(7分)小明的书包里只放了A4大小的试卷共5页,其中语文3页、数学2页.若随机地从书包中抽出2页,求抽出的试卷恰好都是数学试卷的概率.=页试卷都是数学试卷的概率为.P=23.(7分)如图,在梯形ABCD中,AD∥BC,AC、BD是对角线.过点D作DE∥AC,交BC的延长线于点E.(1)判断四边形ACED的形状并证明;(2)若AC=DB,求证:梯形ABCD是等腰梯形.24.(7分)根据一家文具店的账目记录,某天卖出15个笔袋和5支钢笔,收入225元;另一天,以同样的价格卖出同样的3个笔袋和6支钢笔,收入285元.这个记录是否有误?请用二元一次方程组的知识说明.,不符合实际情况.25.(8分)如图,某矩形相框长26cm,宽20cm,其四周相框边(图中阴影部分)的宽度相同,都是xcm,相框内部的面积(指图中较小矩形的面积)为ycm2.(1)写出y与x的函数关系式;(2)若相框内部的面积为280cm2,求相框边的宽度.26.(8分)如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.(1)判断直线CA与⊙O的位置关系,并说明理由;(2)若AB=2,求图中阴影部分的面积(结果保留π).AB=2,•=2=﹣27.(8分)(1)在遇到问题:“钟面上,如果把时针与分针看作是同一平面内的两条线段,在2:00~2:15之间,时针与分针重合的时刻是多少?”时,小明尝试运用建立函数关系的方法:①恰当选取变量x和y.小明设2点钟之后经过x min(0≤x≤15),时针、分针分别与竖轴线(即经过表示“12”和“6”的点的直线,如图1)所成的角的度数为y1°、y2°;②确定函数关系.由于时针、分针在单位时间内转动的角度不变,因此既可以直接写出y1、y2关于x的函数关系式,也可以画出它们的图象.小明选择了后者,画出了图2;③根据题目的要求,利用函数求解.本题中小明认为求出两个图象交点的横坐标就可以解决问题.请你按照小明的思路解决这个问题.(2)请运用建立函数关系的方法解决问题:钟面上,如果把时针与分针看作是同一平面内的两条线段,在7:30~8:00之间,时针与分针互相垂直的时刻是多少?=60+xx=6x..=135+x=6xx=.28.(12分)如图1,在四边形ABCD的AB边上任取一点E(点E不与点A、点B重合),分别连接ED、EC,可以把四边形ABCD分成3个三角形.如果其中有2个三角形相似,我们就把点E叫做四边形ABCD的AB边上的相似点;如果这3个三角形都相似,我们就把点E叫做四边形ABCD的AB边上的强相似点.(1)若图1中,∠A=∠B=∠DEC=50°,说明点E是四边形ABCD的AB边上的相似点;(2)①如图2,画出矩形ABCD的AB边上的一个强相似点.(要求:画图工具不限,不写画法,保留画图痕迹或有必要的说明.)②对于任意的一个矩形,是否一定存在强相似点?如果一定存在,请说明理由;如果不一定存在,请举出反例.(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,点E是梯形ABCD的AB边上的一个强相似点,判断AE 与BE的数量关系并说明理由.=,.可得= BE=DE BE=CE CEDEBE BE参与本试卷答题和审题的老师有:bjy;ZJX;zjx111;fuaisu;wdxwwzy;thx;疯跑的蜗牛;lanchong;CJX;mengcl;yangwy;lk;gbl210;sd2011;workholic;sjzx;智波;zhehe;liume。
初中数学辅导江苏2013中考一模数学试题

OyxDCBA江苏2013学年九年级第二学期数学一模测试题教案由京翰教育一对一家教辅导()整理一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求,请将正确选项前的字母代号填写在答题卡相应位置.......上)1.在实数2,722,0.101001,4中,无理数的个数是A.0个B.1个C.2个D.3个2.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是()3.下列运算中,计算正确的是A.3x2+2x2=5x4B.(-x2)3=-x6C.(2x2y)2=2x4y2D.(x+y2)2=x2+y44.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形5.如图是一个三视图,则此三视图所对应的直观图是()6.将一副三角板按图中的方式叠放,则角 等于()A.75 B.60 C.45 D.307.如图,已知△ABO的顶点A和AB边的中点C都在双曲线y=xk(x>o)的一个分支上,点B在x轴上,CD⊥OB于D,若△AOC的面积为3,则k的值为A.2B.3C.4D.23A.B.C.D.A.B.C.D.第6题8. 定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论: ( ) ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有A. ①④B. ①③④C. ①②④D. ①②③④二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 因式分解:x 3y -xy 3= .10. 中国旅游研究院发布的2011年“五一”小长假旅游人气排行报告显示,江苏接待游客总人数约为1817.1万人次,1817.1万人次用科学计数法表示为 人次. 11. 函数y =3-x x 中自变量x 的取值范围是__________.12. 函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是__________. 13.已知一个圆锥的底面直径是6cm 、母线长8cm ,求得它的表面积为 cm 2.14. 如果两个相似三角形的一组对应边分别为3cm 和5cm ,且较小三角形的周长为15cm ,则较大三角形的周长为__________cm . 15. 有一组数据如下: 3, a, 4, 6, 7. 它们的平均数是5,那么这组数据的方差_________. 16. 直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 个点.17.如图,ABC ∆内接于⊙O ,90,B AB BC ∠==,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连结AD DC AP 、、.已知4=AB ,1=CP ,Q 是线段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,且满足AP BR =,则BQQR的值为_______________.18. 如图,在△ABC 中,AB =AC ,点E 、F 分别在AB 和AC 上,CE 与BF 相交于点D ,若AE =CF ,D 为BF 的中点,则AE ∶AF 的值为 .第17题三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(6分)先化简,再求值: x x x x x 2444222+-÷⎪⎪⎭⎫ ⎝⎛-+,其中1-=x .20. (8分)在如图所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题: (1) 图中格点A B C '''△是由格点ABC △通过怎样变换得到的?(2) 如果建立直角坐标系后,点A 的坐标为(5-,2),点B 的坐标为(50)-,,请求出过A 点的正比例函数的解析式,并写出图中格点DEF △各顶点的坐标.21. (8分)如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止各班种树情况70405010203040506070801234班级种树棵数 ABDOCH后,指针所指扇形数字的所有结果;(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.22. (10分)红星中学开展了“绿化家乡,植树造林 ”活动,并对该校的甲、乙、丙、丁四个班级种树情况进行了考察,并将收集的数据绘制了图①和图②两幅尚不完整的统计图. 请根据图中提供的信息,完成下列问题:(1)这四个班共种树__________棵树. (2)请你补全两幅统计图.(3)若四个班种树的平均成活率是90%,全校共种树2000棵,请你估计这些树中,成活的树约有多少棵?23. (10分)如图,AB 为O 的直径,CD 为弦,且CD AB ⊥,垂足为H . (1)如果O 的半径为4,143CD =,求BAC ∠的度数;(2)在(1)的条件下,圆周上到直线AC 距离为3的点有多少个?并说明理由.甲 乙 丙 丁各班种树棵树的百分比 甲 35% 丁 丙乙 20%24. (10分)某住宅小区的物业管理部门为解决住户停车困难,将一条道路辟为停车场,停车位置如图所示.已知矩形ABCD是供一辆机动车停放的车位,其中AB=5.4米,BC=2.2米,∠DCF=40°.请计算停车位所占道路的宽度EF(结果精确到0.1米).参考数据:sin40°≈0.64 cos40°≈0.77tan40°≈0.84.25. (10分)某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B 地,乙车从B地直达A地,下图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图像;(3)乙车出发多长时间,两车相距150千米?26. (10分)如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3) 若点G为CB延长线上一点,其余条件不变.请画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).27. (12分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐.(填“不变”、“变大”或“变小”)(2)刘卫同学经过进一步地研究,编制了如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15°?如果存在,求出AD的长度;如果不存在,请说明理由.请你分别完成上述三个问题的解答过程.28.(12分)如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,2),∠BCO=60°,OH⊥BC于点H.动点P从点C在x轴正半轴上,点B坐标为(2,3点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)求OH的长;(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值.②探究线段OM长度的最大值是多少,直接写出结论.答案选择题:1A 2. C 3.D 4. D 5B 6. A 7.B 8. C 填空题 9 xy(x+y)(x-y) 10 1.8171710⨯ 11 x>3 12 k>1 13 33π 14 25 15 2 16 16073 17 1或1312 185+12解答题:19. 解:原式)2()2)(2(442+-+÷-+=x x x x x x x )2)(2()2()2(2-++⋅-=x x x x x x 2-=x …………………4分 当1-=x 时,321-=--=原式.…………………6分20. 1)格点△A ′B ′C ′是由格点△ABC 先绕B 点逆时针旋转90,然后向右平移13个长度单位(或格)得到的.(先平移后旋转也行)…………………3分(2)设过A 点的正比例函数解析式为y =kx , 将A (-5,2)代入上式得 2=-5k , k =-52. ∴过A 点的正比例函数的解析式为:x y 52-= …………………5分 △DEF 各顶点的坐标为:D (2,-4),E (0,-8),F (7,-7). …………………8分21.(1)ABC列表如下:树状图………………… 4分(2)数字之和分别为:2,4,7,4,6,9,7,9,12.算术平方根分别是:2,2,7,2,6,3,7,3,23 设两数字之和的算术平方根为无理数是事件A ∴5()9P A……………………………8分22. (1)200 ………………………………2分(2)如图 ………………………………8分(3)90%×2000=1800(棵) 答:成活1800棵树. ………………10分 23. 解:解:(1)∵ AB 为⊙O 的直径,CD ⊥AB ∴ CH =21CD =23 在Rt △COH 中,sin ∠COH =OC CH =23∴ ∠COH =60° ∵ OA =OC ∴∠BAC =21∠COH =30° …………………5分 (2)圆周上到直线AC 的距离为3的点有2个.各班种树棵树的百分比甲35%丁25%丙20%乙20%种树苗棵数70404050010203040506070801234班级甲 乙 丙 丁因为劣弧 AC 上的点到直线AC 的最大距离为2, ADC 上的点到直线AC 的最大距离为6,236<<,根据圆的轴对称性, A D C 到直线AC 距离为3的点有2个. …………………10分24. 解:在Rt △CDF 中,DC=5.4m∴DF=CD •sin40°≈5.4×0.64≈3.46 …………………3分 在Rt △ADE 中,AD=2.2,∠ADE=∠DCF=40°∴DE=AD •cos40°≈2.2×0.77≈1.69 …………………6分 ∴EF=DF+DE ≈5.15≈5.2(m )即车位所占街道的宽度为5.2m …………………10分 25(1)300,1.5; …………………2分 (2)由题知道:乙的速度为30602 1.5=-(千米/小时),甲乙速度和为300301801.5-=(千米/小时),所以甲速度为120千米/小时. 2小时这一时刻,甲乙相遇,在2到2.5小时,甲停乙动;2.5到3.5小时,甲乙都运动,3.5到5小时甲走完全程,乙在运动, 则D (2.5,30),E(3.5,210),F(5,300). 设CD 解析式为y kx b =+,则有202.530k b k b +=⎧⎨+=⎩,解得60120k b =⎧⎨=-⎩,60120y x ∴=-;同理可以求得:DE 解析式为180420y x =-;EF 解析式为60y x =.综上60120,(2 2.5)180420,(2.5 3.5)60,(3.55)x x y x x x x -<≤⎧⎪=-<≤⎨⎪<≤⎩. …………………6分图象如下.…………………7分(3)当0 1.5x <<时,可以求得AB 解析式为180300y x =-+, 当y=150时,得56x =小时,当2.5 3.5x <<时,代入180420y x =-得196x =小时. …………………10分26. (1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥A G∴ DA =AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE ∴ △ABF ≌ △DAE∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF …………………3分(2)EF = 2FG 理由如下:∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG∴2===FGBF BF AF BF AB ∴ AF = 2BF , BF = 2 FG 由(1)知, AE = BF ,∴ EF = BF = 2 FG …………………8分(3) DE + BF = EF …………………10分27.(1 )变小 ………………1分(2)问题一:AD=(3412-)cm问题二:设AD=x当FC 为斜边时,631=x 当AD 为斜边时,8649>=x 不合题意 当BC 为斜边 ,无解综上所述:当AD 的长是631时,以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形 …………………9分问题三:假设∠FCD=15° 作∠CFE 角平分线可求得CD=12348>+不存在这样的位置,使得∠FCD=15°…………………12分28解:(1)∵AB ∥OC∴∠OAB=∠AOC=90°在Rt △OAB 中,AB=2,AO=23∴OB=4,∠ABO=60°∴∠BOC=60°而∠BCO=60°∴△BOC 为等边三角形∴OH=OBcos30°=4×23=23; …………………2分(2)∵OP=OH-PH=2 3-t∴Xp=OPcos30°=3- 23t Yp=OPsin30°= 3-∴S= 21•OQ•Xp= •t•(3-23 t ) =t t 23432+-(o <t <23)当t=3时,S 最大=; ………………5分(3)①若△OPM 为等腰三角形,则:(i )若OM=PM ,∠MPO=∠MOP=∠POC∴PQ ∥OC∴OQ=yp 即t=3- 解得:t=332 此时S=332 (ii )若OP=OM ,∠OPM=∠OMP=75°∴∠OQP=45°过P 点作PE ⊥OA ,垂足为E ,则有:EQ=EP即t-(3 - t )=3-23t 解得:t=2此时S=33-(iii )若OP=PM ,∠POM=∠PMO=∠AOB ∴PQ ∥OA此时Q 在AB 上,不满足题意. …………………10分②线段PM 长的最大值为 . …………………12分。
2013 六合一模答案

= = .……………5分
∴当m=时,原式==.……………6分
18.(本题6分)
解:原方程整理得:x2–4x–1=0.……………2分
∴b2–4ac=(–4)2–41(–1)=20>0.……………4分
∴x==2±.∴x1=2+,x2=2–,……………6分
19.(本题7分)(1)证明:在△ACD与△ABE中,
在Rt△AQP中,根据勾股定理,得QP2=AQ2-AP2.∴QP=.
∵B′Q=QP-B′P=-1,
∴BB′=2-2,即四边形ABCD沿直线l向右平移(2-2)cm可以得到菱形AEFD.
……………………5分
②如图,当四边形ABCD沿直线l向左平移形成菱形时,过点A做AP⊥直线l,
由①知AP=.
∵四边形AEFD为菱形,∴AE=AD=6.
小明
小明、小华
小明、小亮
小华
小华、小明
小华、小亮
小亮
小亮、小明
小亮、小华
所有出现的等可能性结果共有6种,其中满足条件的结果有2种.
……………………………………………………………………………………5分
∴P(恰好选中小明、小华两位小朋友)= .……………………………7分
22.(本题7分)
解:延长BC交AD于点E,则∠AEB=90°.
在Rt△ACE中,tan∠CAE==,
∴∠CAE=30°.∴CE=5,AE=5.
在Rt△ABE中,tan∠BAE=.
∴BE=AE·tan∠BAE=5×1.5 ≈ 13.
∴BC=BE–CE=8.
答:旗杆BC的高约为8米.
23.(本题7分)
解:①当x–2≥0时,=x–2.∴由原不等式得x–2≤1.
2013中考数学一模试卷苏教版

2012–2013学年第一次模拟考试试卷九年级数学(满分:150分 ;考试时间:120分钟)说明:1.答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上。
2.选择题每小题选出答案后,请用2B 铅笔在答题卡指定区域填涂,如需改动,用橡皮擦干净后,再填涂其它答案。
非选择题请用0.5毫米的黑色签字笔在答题卡指定区域作答,在试卷或草稿纸上作答一律无效.考试结束后,请将答题卡交回. 3.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置.......上) 1.的相反数是( ▲ ). A .B .C .5 D .2.在△ABC 中,∠C=90°,AC=8,BC=6,则B 的值是(▲) A .B .C .D .3.下列计算正确的是( ▲ ) A .B . C .D .4.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ▲ )A .内切B .相交C .外切D .外离 5。
下列说法不正确...的是( ▲) A .某种彩票中奖的概率是,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据方差0.39,乙组数据方差0.27,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 6.下列命题中,真命题是( ▲ ) A .矩形的对角线相互垂直B .顺次连结四边形各边中点所得到的四边形是矩形C .等边三角形既是轴对称图形又是中心对称图形D .对角线互相垂直平分的四边形是菱形7.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( ▲ )A .①②B .②③C 。
②④D 。
③④8.某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠米,则下面所列方程正确的是(▲ ) A . B .①正方体②圆柱③圆锥④球C .D .二、填空题(本大题共有10小题,每小3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.函数中自变量的取值范围是▲.10.月球距离地球表面约为384000000米,将这个距离用科学记数法(保留两个有效数字)表示为▲米.11.一个材质均匀的正方体的六个面上分别标有字母A 、B 、C ,其展开图如图所示,随机抛掷此正方体,A 面朝上的概率是▲。
2013年江苏省南京市中考数学卷(word版有答案)

南京市2013年初中毕业生学业考试数学注意事项:1. 本试卷共6页。
全卷满分120分。
考试时间为120分钟。
考生答题全部答在答题卡上,答在本试卷上无效。
2. 请认真核对监考教师在答题卡上所黏贴条形码的姓名、考试证号是否与本人相符,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。
3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后, 再选涂其它答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置, 在其它位置答题一律无效。
4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚。
一、选择题 (本大题共6小题,每小题2分,共12分。
在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. 计算12-7⨯(-4)+8÷(-2)的结果是 (A) -24 (B) -20 (C) 6 (D) 362. 计算a 3.(1 a )2的结果是 (A) a (B) a 5 (C) a 6 (D) a 93. 设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:①a 是无理数;②a 可以 用数轴上的一个点来表示;③ 3<a <4;④a 是18的算术平方根。
其中,所有正确说法的 序号是(A) ①④ (B) ②③ (C) ①②④ (D) ①③④4. 如图,圆O 1、圆O 2的圆心O 1、O 2在直线l 上,圆O 1 的半径为2 cm ,圆O 2的半径为3 cm ,O 1O 2=8 cm 。
圆O 1以1 cm/s 的速度沿直线l 向右运动,7s 后停止 运动,在此过程中,圆O 1与圆O 2没有出现的位置关 系是 (A) 外切 (B) 相交 (C) 内切 (D) 内含5. 在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y = k 2x 的图像没有公共点,则 (A) k 1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>06. 如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂 有颜色,下列图形中,是该几何体的表面展开图的是小题,每小题2分,共20分。
南京2013年初三一模练习卷及答案

2013年九年级数学模拟练习卷(二)姓名 得分一、选择题(本大题共6小题,每小题2分,共12分)1、 )A .2B .-2C .±2D . 162、目前在建的南京地铁11号线(又称宁天城际一期)规划全长69.6 km ,这个数据用科学记 数法可以表示为( )A. m 10696.04⨯B.m 10696.05⨯C. m 1096.64⨯D.m 106.693⨯ 3、下列运算正确的是( ) A .532a a a =⋅ B .22()ab ab = C .336()a a = D .933a a a ÷=4、-18的立方根介于( ) A. -5和-4之间 B. -4与-3之间 C. -3与-2之间 D. -2与-1之间5、对于反比例函数1y x=-,下列说法正确的是( )A .图象经过点(-1,-1)B .图象位于第一、三象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而减小6、如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点, 且∠EDC =30°,弦EF ∥AB ,则EF 的长度为 ( )A .2 B. CD.二、填空题(本大题共10小题,每小题2分,共20分) 7、函数3+=x y 中,自变量x 的取值范围是_______________.8、当a =2013时,分式242+-a a 的值是 .9、分解因式:x x x 9623+-= .10、不等式组⎪⎩⎪⎨⎧->+≥--1321,4)2(3x x x x 的解集是 .11、已知关于x的一元二次方程20x k --=有两个相等的实数根,则k 的值是_______.12、如图,PA 与⊙O 相切,切点为A ,线段PO 交⌒AB于点C ,若∠ABC =31°,则∠P 的度数 为 .13、圆锥的高为12cm ,母线长为13cm ,则其侧面积是 cm 2.14.如图,在梯形ABCD 中,D C A B ∥,D A C B =.若82AB DC ==,,tan 2A =,则这个梯形的面积是______ ____.15、在平面直角坐标系中,函数图象A 与二次函数22y x x =+-的图象关于x 轴对称,而函数图象B 与图象A 关于y 轴对称,那么函数图象B 对应的函数关系式为 .16、如图,在直角坐标系中,已知点)0,3(-A ,)4,0(B ,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角 形⑧的直角顶点的坐标为_______ ___.三、解答题:17、(5分)计算:2015()3(2)3π--+--- . 18、(5分)解方程组:⎩⎨⎧=-=+.4,1943y x y x19、(7分)先化简211()1122x x x x -÷-+-,再选取一个你认为合适..的数作为x 的值代入求值. 20、(7分)如图,平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB =;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形?说明你的理由.21、(7分)为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如 右表:根据上面提供的信息,回答下列问题:(1)随机抽取学生的人数为 ;(2)统计表中b 的值为 ;(3)已知该校九年级共有500名学生,如果体育成绩达39分以上(含39分)为优 秀,请估计该校九年级学生体育成绩优 秀的总人数. 22、(8同一个项目的概率是多少,请列出表格或树状图说明理由.(第6题图)F E D CB A23、(8分)一辆汽车从甲地驶往乙地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km/h ,在高速公路上行驶的速度为100 km/h. 汽车从甲地去乙地一共行驶了2.2 h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一次函数....解决的问题,并写出解答过程.24、(8分)小明家所在居民楼的对面有一座大厦AB ,AB =60米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin 37tan37s in 48tan48541010≈≈≈≈,,,)25、(8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D , AD交⊙O 于点E . (1)求证:AC 平分∠DAB ; (2)若∠B =60°,CD =AE 的长.26、(9分)我们知道,在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,在等腰三角形中也可以建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的“正对”(sad ).如图①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时ABBC sadA==腰底边 . 容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的“正对”的定义,解下列问题:(1)sad 120°= ;(2)对于0°< A < 180°,∠A 的正对值sadA 的取值范围是 ; (3)如图②,在△ABC 中,∠ACB =90 ,sin A 513=,延长AC 到D ,使AD =AB ,求sadA 的值.27、(10分)如图,二次函数y =x 2+mx +n 的图象经过点A (3,0)、B (0,-3),点P 是直线AB 上的动点,过点P 作x 轴的垂线交二次函数图象于点M ,设点P 的横坐标为t .(1) 求出m 、n 的值及直线AB 对应的函数关系式;(2) 若点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积;(3) 是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.A2013年九年级数学模拟练习卷(二)参考答案一、选择题(每小题3分,共计18分)二、填空题(每小题2分,共计20分)7.2x ≥ 8.2011 9.2)3(-x x 10.1x ≤ 11.274- 12.28︒13.65π14.3015.22++-=x x y 16.1561255(,)三、解答题(本大题共11小题,共计82分)17.(5分)解:原式=5-9+3-1=-2. -----------------------5分 18.(5分)解:②×4得 ③ ------------1分①+③,得735x =.----------2分 解得5x =.------------3分 把5x =代入②,得1y =.------------- 4分 ∴原方程组的解是⎩⎨⎧==.1,5y x ------------- 5分19.(7分) 解:原式=)1)(1(2)1)(1()1(1-+÷-+--+x x x x x x x …………2分=xx x x x )1)(1(2)1)(1(2-+⋅-+ …………4分=4x. …………5分当x =2时,原式=2. …………7分 取值代入答案不唯一:(110x -不可取、、) 20.(7分) (1)证明:∵四边形ABCD 是平行四边形,∴CD AB CD AB =,//.∴FCE ABE CFE BAE ∠=∠∠=∠,.…2分 ∵E 为BC 的中点, ∴EC EB =∴△ABE ≌△FCE . ………3分 ∴CF AB =.………4分(2)解:当AF BC =时,四边形ABFC 是矩形.…………5分 理由如下:∵CF AB CF AB =,//,∴四边形ABFC 是平行四边形.………6分 ∵AF BC =, ∴四边形ABFC 是矩形.…………7分 21.(7分)(1)50; …………2分 (2)10; …………4分 (3)400%)60%20(500=+.…………7分答:该校九年级学生体育成绩达到优秀的总人数为400人.22、(8分)分别用A ,B 代表“篮球 14米×4往返绕杆运球”与“排球30秒双臂自垫(过头)球”,画树状图得: …………4分 ∵共有8种等可能的结果,小亮、小明和大刚从“篮球 14米×4往返绕杆运球”或“排球30秒双臂自垫(过头)球”中选择同一个测试项目的有2种情况,…………6分 ∴小亮、小明和大刚从“篮球 14米×4往返绕杆运球”或“排球30秒 双臂自垫(过头)球”中选择同一个测试项目的概率是:41 …………8分23.(8分)问题不惟一,如可以为:求汽车在普通公路上行驶的时间. .…………1分 设汽车在普通公路行驶的时间为x h. .…………2分汽车在普通公路行驶的路程为1y km ,汽车在高速公路行驶的路程为2y km ,则160yx=, 2100(2.2)y x =-. .…………4分由题意可得212y y =. 即.602)2.2(100x x ⨯=- .…………6分解得 x =1. .…………7分答:汽车在普通公路行驶的时间为1 h. …………8分 24.(8分)解:设CD = x . 在Rt △ACD 中,tan 37ADC D︒=,则34ADx=,∴34AD x =. ……………………2分在Rt △BCD 中,tan48° =BDC D ,则1110BD x =,∴1110BD x =.……………………4分∵AD +BD = AB , ∴31160410x x +=.……………………6分解得:x ≈ 32. ……………………7分答:小明家所在居民楼与大厦的距离CD 大约是32米 . ……………………8分 25、(8分)(1) 证明:如图,连接OC ,∵ CD 为⊙O 的切线,∴ OC ⊥CD ,∴ ∠OCD =90°.…………………1分 ∵ AD ⊥CD ,∴ ∠ADC =90°.∴ ∠OCD +∠ADC =180°. …………………2分 ∴ AD ∥OC ,∴ ∠1=∠2. ∵ OA =OC ,∴ ∠2=∠3. ∴ ∠1=∠3.即AC 平分∠DAB . …………………4分 (2) 如图,∵ AB 为⊙O 的直径,∴ ∠ACB =90°. 又∵ ∠B =60°,∴ ∠1=∠3=30°.…………………5分 在Rt △ACD 中,CD =3,∴ AC =2CD =23.在Rt △ABC 中,AC =23,∴ AB =ACcos ∠CAB=4.…………………7分连接OE ,∵ ∠EAO =2∠3=60°,OA =OE ,∴ △AOE 是等边三角形,∴ AE =OA =12AB =2.…………………8分26、(9分) (1 …………………2分(2)0<sad A<2; …………………4分(3)设AB 13a =,BC 5a =,则AC 12a =. …………………5分 AD=AB 13a =,CD a =. …………………6分 ∴BD =a 26. …………………7分FEDCBA第20∴sad A 13BD AD==.…………………9分27.(10分)解:(1)把A (3,0),B (0,-3)代入2y x m x n =++,得⎨⎧=-++=.3,390n n m 解得⎩⎨⎧-=-=.3,2n m …………………2分 设直线AB 对应的函数关系式是y kx b =+,把A (3,0),B (0,3-)代入y kx b =+,得 ⎩⎨⎧=-+=.3,3k 0b b 解得⎩⎨⎧-==.3,1b k 所以直线AB 对应的函数关系式是3y x =-..………4分(2)设点P 的坐标是(3p p -,),则M (p ,223p p --),因为p 在第四象限,所以PM =22(3)(23)3p p p p p ----=-+,当PM 最长时94PM =,此时3,2p =…6分AB MB P M A PS S S =+=19324⨯⨯=278. ………………………7分 (3)若存在,则可能是:① P 在第四象限:□OBMP ,PM=OB =3, PM 最长时94PM =,所以不可能. …8分②P 在第一象限:平行四边形OBPM : PM =OB =3,233p p -=,解得132p +=,232p -=(舍去),所以P 点的横坐标是32+.………9分③P 在第三象限:平行四边形OBPM :PM =OB =3,233p p -=,解得.2213,221321+=-=p p 所以P 点的横坐标是32-综上所述,P 点的横坐标是32+或32-. ………10分。
2013年江苏省南京市中考数学第一次模拟试卷及答案

2013年江苏省南京市中考数学第一次模拟试卷一、选择题(本大题共6小题,每小题2分,共计12分) ﹣. 甲=乙,S 甲2=S 乙2. 甲=乙,S 甲2>S 乙2. 甲=乙,S 甲2<S 乙2. 甲<乙,S 甲2<S 乙2. 为( ) . cm B 7.(2分)已知⊙O 1的半径为3,⊙O 2的半径为5,O 1O 2=7,则⊙O 1、⊙O 2的位置关系是 _________ . 8.(2分)校篮球队进行1分钟定点投篮测试,10名队员投中的球数由小到大排序的结果为7、8、9、9、9、10、10、10、10、12,则这组数据的中位数是 _________ . 9.(2分)不透明的袋子里装有将10个乒乓球,其中5个白色的,2个黄色的,3个红色的,这些乒乓球除颜色外全相同,从中任意摸出一个,则摸出白色乒乓球的概率是 _________ . 10.(2分)如图,一位同学将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2= _________ °.11.(2分)如图,平行四边形ABCD 中,AD=5cm ,AB ⊥BD ,点O 是两条对角线的交点,OD=2,则AB=_ cm . 12.(2分)全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是 _________ . 13.(2分)点(﹣4,3)在反比例函数图象上,则这个函数的关系式为 _________ .y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如下表:15.(2分)如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M 是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是_________.16.(2分)如图,正方形ABCD中,点E在边AB上,点G在边AD上,且∠ECG=45°,点F在边AD的延长线上,且DF=BE.则下列结论:①∠ECB是锐角;②AE<AG;③△CGE≌△CGF;④EG=BE+GD中一定成立的结论有_________(写出全部正确结论).三、解答题(本大题共12小题,共计88分)17.(6分)先化简,再求值:(﹣)÷,其中x=+1.18.(6分)解不等式组,并写出它的所有整数解.19.(6分)如图,已知,四边形ABCD为梯形,分别过点A、D作底边BC的垂线,垂足分别为点E、F.四边形ADFE是何种特殊的四边形?请写出你的理由.20.(6分)在直角坐标平面内,二次函数y=ax2+bx﹣3(a≠0)图象的顶点为A(1,﹣4).(1)求该二次函数关系式;(2)将该二次函数图象向上平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.21.(6分)某中学组织全体学生参加了“喜迎青奥,走出校门,服务社会”的活动.该中学以九年级(2)班为样本,统计了该班学生宣传青奥,打扫街道,去敬老院服务和在十字路口值勤的人数,并做了如下直方图和扇形统计图(A~宣传青奥;B~打扫街道;C~去敬老院服务;D~在十字路口值勤).(1)求去敬老院服务对应的扇形圆心角的度数;(2)若该中学共有800学生,请估计这次活动中在十字路口值勤的学生共有多少人?22.(6分)“五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.(1)该顾客至多可得到 _________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(8分)已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有_________(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”.已知:如图,_________.求证:_________.证明:_________.24.(8分)如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:≈1.41,≈1.73)25.(8分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是_________吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?26.(10分)如图直角坐标系中,已知A(﹣4,0),B(0,3),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为2,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.27.(8分)(1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太阳光去测量旗杆的高度.参考示意图1,他的测量方案如下:第一步,测量数据.测出CD=1.6米,CF=1.2米,AE=9米.第二步,计算.请你依据小明的测量方案计算出旗杆的高度.(2)如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案,以求出旗杆顶端到地面的距离.要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N对完成测量任务的影响,不需计算)你选择出的必须工具是_________;需要测量的数据是_________.28.(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.①求证:△ABP≌△ACQ;②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG 的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.2013年江苏省南京市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共计12分)﹣325次射击命中的环数如下:.甲=乙,S甲2=S乙2.甲=乙,S甲2>S乙2.,乙甲乙5.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为3cm,则圆心O到弦CD的距离为().BcmOE==二、填空题(本大题共10小题,每小题2分,共计20分)7.(2分)已知⊙O1的半径为3,⊙O2的半径为5,O1O2=7,则⊙O1、⊙O2的位置关系是 相交.8.(2分)校篮球队进行1分钟定点投篮测试,10名队员投中的球数由小到大排序的结果为7、8、9、9、9、10、10、10、10、12,则这组数据的中位数是9.5..9.(2分)不透明的袋子里装有将10个乒乓球,其中5个白色的,2个黄色的,3个红色的,这些乒乓球除颜色外全相同,从中任意摸出一个,则摸出白色乒乓球的概率是.个,摸到白色乒乓球的概率是=故答案为:=10.(2分)如图,一位同学将一块含30°的三角板叠放在直尺上.若∠1=40°,则∠2=70°.11.(2分)如图,平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2,则AB=3cm.OD=OB=BD=4=312.(2分)全国两会期间,温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套.这些住房将有力地缓解住房的压力,特别是解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是3.6×107.13.(2分)点(﹣4,3)在反比例函数图象上,则这个函数的关系式为y=﹣.,因为过(﹣y=3=.y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:的取值范围是y>﹣5..15.(2分)如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M 是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是4+4.ME=AE=AE=AB=2==2=4+4.16.(2分)如图,正方形ABCD中,点E在边AB上,点G在边AD上,且∠ECG=45°,点F在边AD的延长线上,且DF=BE.则下列结论:①∠ECB是锐角;②AE<AG;③△CGE≌△CGF;④EG=BE+GD中一定成立的结论有①③④(写出全部正确结论).三、解答题(本大题共12小题,共计88分)17.(6分)先化简,再求值:(﹣)÷,其中x=+1.++1=18.(6分)解不等式组,并写出它的所有整数解.,19.(6分)如图,已知,四边形ABCD为梯形,分别过点A、D作底边BC的垂线,垂足分别为点E、F.四边形ADFE是何种特殊的四边形?请写出你的理由.20.(6分)在直角坐标平面内,二次函数y=ax2+bx﹣3(a≠0)图象的顶点为A(1,﹣4).(1)求该二次函数关系式;(2)将该二次函数图象向上平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.)根据二次函数的顶点坐标(﹣)求出系数)由题意,得21.(6分)某中学组织全体学生参加了“喜迎青奥,走出校门,服务社会”的活动.该中学以九年级(2)班为样本,统计了该班学生宣传青奥,打扫街道,去敬老院服务和在十字路口值勤的人数,并做了如下直方图和扇形统计图(A~宣传青奥;B~打扫街道;C~去敬老院服务;D~在十字路口值勤).(1)求去敬老院服务对应的扇形圆心角的度数;(2)若该中学共有800学生,请估计这次活动中在十字路口值勤的学生共有多少人?=4%22.(6分)“五一劳动节大酬宾!”,某家具城设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满500元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费500元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(8分)已知以下基本事实:①对顶角相等;②一条直线截两条平行直线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④全等三角形的对应边、对应角分别相等.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有①②(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”.已知:如图,a∥b,直线a、b被直线c所截.求证:∠1=∠2.证明:∵a∥b,∴∠1=∠3(两直线平行,同位角相等).∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换).24.(8分)如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:≈1.41,≈1.73)x2x=725.(8分)某经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)填空:当每吨售价是240元时,此时的月销售量是60.吨;(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?45+××26.(10分)如图直角坐标系中,已知A(﹣4,0),B(0,3),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为2,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.x+3x+3y=y=a+3.的坐标为(﹣,x+3x x,所以,.的坐标为(﹣,27.(8分)(1)学习《测量建筑物的高度》后,小明带着卷尺、标杆,利用太阳光去测量旗杆的高度.参考示意图1,他的测量方案如下:第一步,测量数据.测出CD=1.6米,CF=1.2米,AE=9米.第二步,计算.请你依据小明的测量方案计算出旗杆的高度.(2)如图2,校园内旗杆周围有护栏,下面有底座.现在有卷尺、标杆、平面镜、测角仪等工具,请你选择出必须的工具,设计一个测量方案,以求出旗杆顶端到地面的距离.要求:在备用图中画出示意图,说明需要测量的数据.(注意不能到达底部点N对完成测量任务的影响,不需计算)你选择出的必须工具是卷尺、测角仪.;需要测量的数据是∠α、∠β的度数和PQ的长度..∴.∴.28.(10分)(1)如图1,已知点P在正三角形ABC的边BC上,以AP为边作正三角形APQ,连接CQ.①求证:△ABP≌△ACQ;②若AB=6,点D是AQ的中点,直接写出当点P由点B运动到点C时,点D运动路线的长.(2)已知,△EFG中,EF=EG=13,FG=10.如图2,把△EFG绕点E旋转到△EF'G'的位置,点M是边EF'与边FG 的交点,点N在边EG'上且EN=EM,连接GN.求点E到直线GN的距离.CQEH=参与本试卷答题和审题的老师有:nhx600;lk;dbz1018;cair。
南京2013年中考数学一模练习卷

8
25.解: (1)∵ y x2 2x 1 ( x 1)2 2 ,∴顶点 A 的坐标为 (1 , 2) ,对称轴为 x=1 。„„2 分 又∵二次函数 y ax2 bx 的图象经过原点,且它的顶点在二次函数 y x2 2 x 1图象的对 称轴 x =1 上,∴点 C 和点 O 关于直线 x =1 对称。∴点 C 的坐标为 (2, 0) 。„„„„„„„4 分 (2)∵四边形 AOBC 是菱形, ∴点 B 和点 A 关于直线 OC 对称。∴点 B 的坐标为 (1 , 2) 。„„„„„„„„„„„6 分
22. (8 分)小芳到同学小英家玩,小英从一个装有 2 只苹果和 2 个橘子的不透明水果盒中,随机拿 了一只招待小芳,接着,又拿了一只给自己. (1)用树状图或表格表示两人拿到水果的所有可能情况; (2)求两人拿到相同水果的概率.
3
23. (8 分) 《中华人民共和国道路交通管理条例》规定: “小汽车在城市街道公路上的行驶速度不得 超过 70km/h(即 19.44m/s) ” .如图所示,已知测速站 M 到街道公路 l 的距离为 90m,一辆小汽车在 街道公路 l 上由东向西行驶,测得此车从点 A 行驶到点 B 所用的时间为 6s,并测得 A 在 M 的北偏西 27°方向上,B 在 M 的北偏西 60°方向上.求出此车从 A 到 B 的平均速度,并判断此车是否超过 限速. (参考数据: 3 ≈1.73,sin27° ≈0.45,cos27° ≈0.89,tan27° ≈0.50) B A
(第 11 题)
14.已知一个矩形的长为 3cm,宽为 2cm,试估算它的对角线长约为
cm(结果保留两个有效
1
数字, 要求误差小于 0.2) 15.矩形 ABCD 中,AB=5,BC=12。如果分别以 A、C 为圆心的两圆相切,点 D 在圆 C 内,点 B 在 圆 C 外,那么圆 A 的半径 r 的取值范围是 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年六合区中考一模数学卷一、选择题(每小题2分,共12分)1.3的相反数为 ( ▲ )A .3B .-3C .31 D .31-2.下列运算正确的是 ( ▲ )A .a 2+a 3=a 5B .a 2•a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 83.在学雷锋活动中,我市青少年积极报名争当“助人为乐志愿者”,仅一个月就有107000人报名,将107000用科学记数法表示为 ( ) A .4107.10⨯B .51007.1⨯C .60.10710⨯D .61.0710⨯4.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,9,10,10,8,8,这组数据的众数与中位数分别为( ) A .9与8B .8与9C .8与8.5D .8.5与95.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为3和4,则b 的面积为( ) A .3 B .4 C .5 D .76. 如图,△ABC 为等腰直角三角形,∠C=90°,若在某一平面直角坐标 系中,顶点C 的坐标为(1,1),B 的坐标为(2,0).则顶点A 的坐 标是( )A.(0,0)B.(1,0)C.(–1,0)D.(0,1)二、填空题(每小题2分,共20分) 7.=+-0122 ▲ .8.函数y =x +2x -1中,自变量x 的取值范围是 ▲ .9. 如图,平面上两个正三角形与正五边形都有一条公共边,则∠a 等于 °. 10.如图,∠C =36°,∠B =72°,∠BAD =36°,AD =4,则CD = .abcl11.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外,没有任何其他区别.若从这个盒子中随机摸出一个是黄球的概率是53,则盒子中黄球的个数是 ▲ . 12.反比例函数y 1=x 4、y 2=xk(0≠k )在第一象限的图象如图,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C .若S △AOB =1,则k = .13.一项工程,乙单独完成需12天,若先由甲单独做3天,则再由甲、乙合做6天可完成任务. 设甲单独做x 天可完成任务,则可列出方程 __________________________ ___.14. 如图,一个扇形铁皮OAB. 已知OA =60cm ,∠AOB =120°,小华将OA 、OB 合拢制成了 一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为 cm.15.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论:①c =2;②b 2-4ac<0; ③当x =1时,y 的最小值为a +b +c 中,正确的有 ___________ _____16.如图,45AOB ∠=,过OA 上到点O 的距离分别为1357911,,,,,,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积 分别为1234S S S S ,,,,.观察图中的规律,第n(n 为正整数) 个黑色梯形的面积=n S .三、解答题(共88分)17. (6分)化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =2.120°O ABxy O22(第16题)18. (6分) 解方程:)1(212x x +--)(=0.19. (7分)如图, AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1) 求证:AD =AE ;(2) 连接BC ,DE ,试判断BC 与DE 的位置关系并说明理由.20. (7分)为了让学生了解“青奥”知识,我市某中学举行了一次“青奥知识竞赛”,共有1800名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分 取正整数,满分为100分)进行统计.请你根据下面的频数分布表和频数分布直方图, 解答下列问题:(1)频数分布表中a = ,b = ; (2)补全频数分布直方图,画出频数折线图;(3)若成绩在80分以上(不含80分)为优秀,则该校成绩没达到优秀的约为多少人?频数分布直方图 频数分布表21.(7分)小明、小华和小亮三位小朋友到游乐场游玩,现要从三位小朋友中随机选出两位玩跷跷板游戏.(1) 请运用树状图或列表法,求小明恰好被选中的概率; (2) 求恰好选中小明、小华两位小朋友的概率.22.(7分)如图,斜坡AC 的坡度为3:1,AC =10米.坡顶有一旗杆 BC ,旗杆顶端点B 与点A 有一条彩带AB 相连,测得∠BAD =56°,分组 频数 频率 **~60.54 ****~70.58 ****~80.512 ****~90.515 ****~100.5a b 合计试求旗杆BC 的高度.(精确到1米,3≈1.7,sin56°≈0.8,cos56°≈0.6,tan56°≈1.5)23.(7分)在解不等式||x +1>2时,我们可以采用下面的解答方法: ① 当x +1≥0时,||x +1=x +1.∴由原不等式得x +1>2.∴可得不等式组⎩⎨⎧>+≥+.21,01x x∴解得不等式组的解集为x >1. ② 当x +1<0时,||x +1=-(x +1).∴由原不等式得–(x +1)>2. ∴可得不等式组⎩⎨⎧>+-<+.2)1((,01x x∴解得不等式组的解集为x <﹣3.综上所述,原不等式的解集为x >1或x <﹣3. 请你仿照上述方法,尝试解不等式||x –2≤1.24、(7分)我们可以将一个纸片通过剪切,结合图形的平移、旋转、翻折,重新拼接成一个新的图形.如图,沿△ABC 的中位线DE 剪切,将△ADE 绕点E 顺时针旋转180°, 可得到□BCFD .请尝试解决下面问题(不写画法,保留痕迹,并作必要说明): (1)将梯形纸片剪拼成平行四边形:请在下图中画出示意图,要求用两种不同..的画法, 并简要说明如何剪拼和变换的;(2)如图,将四边形ABCD 剪拼成平行四边形.在下图中画出示意图.25. (7分)某商场以每个40元的进价购进一批篮球,如果以每个50元销售,那么每月可 售出200个.根据销售经验,售价每提高1元,销售量相应减少10个.(1)假设销售单价提高x 元,那么销售1个篮球所获得的利润是__________元;这种篮 球每月的销售量是__________个;(用含x 的代数式表示)(2)篮球的售价定为多少元时,每月销售这种篮球的利润最大?最大利润是多少?26.(8分) 如图(1),四边形ABCD 和BEFC 都是平行四边形,A 、B 、E 在一条直线上.已知,AD =EF =6,AB =BE =2,∠E = 60.如图(2)四边形ABCD 可以沿着直线l 左右 平移,移动后连接A 、E 、F 、D 形成四边形AEFD .(1)在平移过程中,四边形AEFD 是否可以形成矩形?如果可以,直接写出矩形的面 积;如果不可以,请说明理由;(2)试探究如何平移,四边形AEFD 为菱形(借助备用图,写出具体过程和结论)?27.(9分)如图1,将底面为正方形的两个完全相同......的长方体放入一圆柱形水槽内,并向 水槽内匀速注水,速度为v cm 3/s ,直至水面与长方体顶面平齐为止.水槽内的水深h (cm )与注水时间 t (s )的函数关系如图2所示.根据图象完成下列问题: (1)一个长方体的体积是_____________ cm 3; (2)求图2中线段AB 对应的函数关系式; (3)求注水速度v 和圆柱形水槽的底面积S .图(1)图(2)备用图(1)备用图(2)28.(10分)如图1,直线l垂直于x轴,垂足的坐标为(1,0),点A的坐标为(2,1),其关于直线l对称点为点B.若此时分别以点A,B为圆心,1cm为半径画圆,则此时这两个圆外切.我们称⊙A与⊙B关于直线l “对称外切”.(1)如图2若直线l是函数y= 43x的图象,⊙A是以点A为圆心,1cm为半径的圆.判断函数y= 43x图象与⊙A的位置关系,并证明你的结论;(2)请直接写出与⊙A关于函数y= 43x图象的“对称外切”的⊙B的圆心坐标.2013年六合区数学中考一模卷评分标准一、选择题(每小题2分,共计12分)题号 1 2 3 4 5 6 答案BCBCDA二、填空题(每小题2分,共计20分)7.328.x ≠1 9.132 10.4 11.6 12. 6 13..13)1121(6=++xx 14.20 15.①、③ 16.8n -4三、解答题(本大题共12小题,共计88分) 17.(本题6分)解:原式=1)1()1)(1(11222+--+-÷-+-m m m m m m m ……………1分 =111)1)(1()1(22+--+•+--m m m m m m ……………3分 =m m m m m -+•+-2111 =mm m --21……………4分 =)1(1--m m m =m 1.……………5分∴当m =2时,原式=1 2= 22.……………6分18.(本题6分)解:原方程整理得:x 2–4x –1=0. ……………2分 ∴b 2–4ac =(–4)2–4⨯1⨯(–1)=20>0. ……………4分∴x =4±252=2±5. ∴x 1=2+5, x 2=2–5, ……………6分19.(本题7分)(1)证明:在△ACD 与△ABE 中, ∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 2分 ∴ AD=AE . ……………………3分 (2) 互相平行 ……………………4分 在△ADE 与△ABC 中, ∵AD=AE ,AB=AC ,∴ ∠ADE=∠AED ,∠ABC=∠ACB ……………6分且 ∠ADE =180-∠A =∠ABC.∴ DE ∥BC . ……………7分20.(本题7分)(1)a = 11,b = 0.22 ;………………………………………………………… 2分 (2)………………………………………………………………………………… 5分(3)(4+8+12)÷50×1800=864(名).答:估计该年级共有864名学生的成绩为优秀等级.…………………………… 7分 21.(本题7分)(1)23 ………………………………………………………………………………… 2分(2)方法一:画树状图如下:所有出现的等可能性结果共有6种,其中满足条件的结果有2种. ………………… 5分 ∴P (恰好选中小明、小华两位小朋友)=13. ……………………………………… 7分 方法二:列表格如下:小明 小华 小亮小明 小明、小华 小明、小亮小华 小华、小明小华、小亮小亮小亮、小明 小亮、小华所有出现的等可能性结果共有6种,其中满足条件的结果有2种.……………………………………………………………………………………5分∴P (恰好选中小明、小华两位小朋友)=13. ……………………………7分 22.(本题7分)解:延长BC 交AD 于点E ,则∠AEB =90°.在Rt △ACE 中,tan ∠CAE =13=33,小明 小华 小亮 小亮 小华 小明 小华 小明 小亮 第一次 第二次∴∠CAE =30°. ∴CE =5,AE =5 3. 在Rt △ABE 中,tan ∠BAE =BEAE. ∴BE =AE ·tan ∠BAE =53×1.5 ≈ 13. ∴BC =BE –CE =8.答:旗杆BC 的高约为8米. 23.(本题7分)解:①当x –2≥0时,||x –2=x –2.∴由原不等式得x –2≤1. ∴可得不等式组⎩⎨⎧ x –2≥0 x –2≤1.∴解得不等式组的解集为2≤x ≤3.……………………………3分 ② 当x –2<0时,||x –2= –(x –2). ∴由原不等式得 –(x –2)≤1. ∴可得不等式组⎩⎨⎧ x –2<0 –(x –2)≤1.∴解得不等式组的解集为1≤x <2. ……………………………6分 综上所述,原不等式的解集为1≤x ≤3.……………………………7分 24.(本题7分)(1)说明:E 、F 分别为AB 、CD 的中点.…………每个图2分(2)E 、H 、F 、G 分别为AB 、BC 、CD 、AD 的中点.………………………本图3分25.(本题7分)解:(1)(10+x ),200-10x ; ……………………3分(2)设每月销售利润为w 元,w =(10+x )( 200-10x )=-10x 2+100x +2000, ……………………5分 当x =5时,w =2250元,50+5=55.答:当售价定为55元时,每月销售这种篮球的利润最大,最大利润是2250元.……………………7分 26.(本题8分)(1)123cm 2; ……………………2分(2)①如图,若四边形ABCD 沿直线l 向右平移形成菱形,过点A 做AP ⊥直线l , ∵∠AB ′P =60 ,∴∠B ′AP =30.∵AB =2,∴B ′P =12A B ′=1.在Rt △AB ′P 中,根据勾股定理,得 AP 2= AB ′2-B ′P 2, ∴AP =3. ∵四边形AEFD 为菱形,∴AE =AD =6. 根据题意有A B ′∥EB ,∴∠EBQ =∠A B ′Q . 在△A B ′Q 和△EBQ 中,∠A B ′Q =∠EBQ , ∠AQ B ′=∠EQB , AB ′=EB , ∴△A B ′Q ≌△EBQ .∴AQ =12QE =3,BQ = B ′Q =12BB ′.在Rt △AQP 中,根据勾股定理,得 QP 2= AQ 2- AP 2 . ∴QP =6. ∵B ′Q = QP -B ′P =6-1,∴BB ′=26-2,即四边形ABCD 沿直线l 向右平移(26-2)cm 可以得到菱形AEFD . ……………………5分 ②如图,当四边形ABCD 沿直线l 向左平移形成菱形时,过点A 做AP ⊥直线l , 由①知 AP =3.∵四边形AEFD 为菱形,∴AE =AD =6. 根据题意有A B ′∥EB ,∴∠EBQ =∠A B ′Q . 在△A B ′Q 和△EBQ 中,∠A B ′Q =∠EBQ , ∠AQ B ′=∠EQB , AB ′=EB , ∴△A B ′Q ≌△EBQ .∴AQ =12QE =3,BQ = B ′Q =12BB ′.在Rt △AQP 中,根据勾股定理,得 QP 2= AQ 2- AP 2 ∴QP =6.∵B ′Q = QP +B ′P =6+1,∴BB ′=26+2,即四边形ABCD 沿直线l 向左平移(26+2)cm 可以得到菱形AEFD .……………………8分27.(本题9分)(1)11200; ……………………3分(2)解:设直线AB 的函数关系式为y =kx +b ,由A (10,20),B (30,48)得,⎩⎨⎧10k +b =20,30k +b =45. 解得:⎩⎪⎨⎪⎧k =75,b =6. 所以 y =75x +6. …………………6分 (3)由题意得,⎩⎨⎧10v +11200=20s ,20v +11200=28s . 解得:⎩⎨⎧s =28003,v =22403.答:注水速度为22403cm 3/s ,底面积为28003cm 2.…………………9分 28.(本题10分)(1)设过点A 与x 轴平行的直线交y 轴于点C ,函数y = 43x 的图象与直线AC 交于点D , 过点A 作AE 垂直于直线 y = 43x ,垂足为E . 当y =1时,x =34,即CD =34,∴AD =2-34 =54. 在Rt △COD 中,根据勾股定理,得 OD 2= OC 2+CD 2=2516, 即OD =54. ∵AD =54 ,OD =54. ∴AD =OD . …………………3分在△COD 和△EAD 中,∠OCD =∠AED ,∠CDO =∠EDA ,AD =OD ,∴△COD ≌△EAD . ∴AE =CO =1. ∴直线y = 43x 与⊙A 相切. …………………6分(2)点B (25,115). …………………10分。