八上第十二章《轴对称》综合复习测试题A

合集下载

八年级数学第十二章轴对称整章水平测试(含答案)

八年级数学第十二章轴对称整章水平测试(含答案)
八年级数学第十二章轴对称整章水平测试(含答案)
八年级数学24分)
1、下列说法正确的是()
A轴对称涉及两个图形,轴对称图形涉及一个图形
B如果两条线段互相垂直平分,那幺这两条线段互为对称轴
C所有直角三角形都不是轴对称图形
D有两个内角相等的三角形不是轴对称图形
2、若等腰三角形的一边长为10,另一边长为7,则它的周长为
()
A17B24C27D24或27
3、若一个三角形的三个外角的度数之比为5∶4∶5,则这个三角形
是()
A等腰三角形,但不是等边三角形,也不是等腰直角三角形
B直角三角形,但不是等腰三角形
C等腰直角三角形
D等边三角形
4、等腰三角形底边长为5cm,一腰上的中线分其周长的两部分的差为
3cm,则腰长为()
A2cmB8cmC2cm或8cmD以上答案都不对
5、下列说法正确的个数有()
⑴等边三角形有三条对称轴⑵四边形有四条对称轴⑶等腰三角形的
一边长为4,另一边长为9,则它的周长为17或22⑷一个三角形中至少有
两个锐角
A1个B2个C3个D4个
请下载附件:
《八年级数学第十二章轴对称整章水平测试》
(本地下载)
点击下一页查看试题答案

八年级数学上册第12章《轴对称图形》单元综合检测试题(含解析)

八年级数学上册第12章《轴对称图形》单元综合检测试题(含解析)

第12章《轴对称图形》..一、选择题..1.下列标志中,可以看作是轴对称图形的是( )..2.正方形对称轴的条数是( )A.1B.1C.1D.13.点P (2,-5)关于x 轴对称的点的坐标为A.(-2, 5)B.(2,5)C.(-2,-5)D.(2,-5)4.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA =5,则线段PB 的长度为( ) A.6 B.5 C.4 D.35.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )6.如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,∠B =50°,∠A =26°,将△ABC 沿DE 折叠,点A 的对应点是点A ′,则∠AEA ′的度数是( ) A.145° B.152°C.158°D.160°7.在等腰△ABC 中,AB =AC ,其周长为20cm ,则AB 边的取值范围是( )A.1cm <AB <4cmB.5cm <AB <10cmC.4cm <AB <8cmD.4cm <AB <10cm8.从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的底角等于( )A.72°B.5407⎛⎫ ⎪⎝⎭C.144°D.72°,或5407⎛⎫ ⎪⎝⎭9.如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上.若PM =2.5cm ,PN=3cm ,MN =4cm ,则线段QR 的长为( )cm DC B A P MPAQD CBA ABCDA.4.5B.5.5C.6.5D.710.如图所示,已知△ABC 和△ADE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AG 与BD 交于点F ,连结OC 、FG ,则下列结论:①AE =BD ;②AG =BF ;③FG ∥BE ;④∠BOC =∠EOC ,其中正确的结论个数( )A.1个B.2个C.3个D.4个二、填空题11.如图,在Rt △ABC 中,∠ABC =90°,AC =10cm ,点D 为AC 的中点,则BD =___cm.12.如图,∠A =30°,∠C ′=60°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B =___.13.已知OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E ,PD =10,则PE 的长度为___.14.如图,在Rt △ABC 中,∠C =90°,D 为AB 的中点,DE ⊥AC 于点E ,∠A =30°,AB =8,则DE 的长度是___.15.如图,在等腰三角形纸片ABC 中,AB =AC ,∠A =50°,折叠该纸片,使点A 落在点B 处,折痕为DE ,则∠CBE =___.16.如图,在△ABC 中,按以下步骤作图:①分别以点B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交AB 于点D ,连接CD .若CD =AC ,∠B =B ′A ′B C A C ′ l C B AD G FO D C B A E D CB A ED CB A E25°,则∠ACB 的度数为___.17.在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B 、C 两地相距___m.18.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是___.三、解答题 19.在平面直角坐标系中,已知点A (-3,1),B (-1,0),C (-2,-1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.20.如图,△ABC 与△DEF 关于直线l 对称,请用无刻度的直尺,在下面两个图中分别作出直线l .21.如图,在等边△ABC 中,AB =2,点P 是AB 边上任意一点(点P 可以与点A 重合),过点P 作PE ⊥BC ,垂足为E ,过点E 作EF ⊥AC ,垂足为F ,过点F 作FQ ⊥AB ,垂足为Q ,求当BP 的长等于多少时,点P 与点Q 重合?22.如图,在△ABC 中,点D 在AB 上,且CD =CB ,点E 为BD的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF =12AC . (2)若∠BAC =45°,求线段AM 、DM 、BC 之间的数量关系.23.如图,O 为△ABC 内部一点,OB =312,P 、R 为O 分别以直线AB 、直线BC 为对称轴F C E B D A F C E B A (D ) C P C B AE FQA A AA CB D E F … D CB A E F M的对称点.(1)请指出当∠ABC 在什么角度时,会使得PR 的长度等于7?并完整说明PR 的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度是小于7还是会大于7?并完整说明你判断的理由.24.如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列三个条件:①∠EBO =∠DCO ;②BE =CD ;③OB =OC .(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形) (2)请选择(1)中的一种情形,写出证明过程.25.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF⊥DE ,交BC 的延长线于点F .(1)求∠F 的度数.(2)若CD =2,求DF 的长.26.如图,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD =∠BCE =90°,点M 为DE 的中点.过点E 与AD 平行的直线交射线AM 于点N. (1)当A ,B ,C 三点在同一直线上时(如图1),求证:M 为AN 的中点.(2)将如图1中△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图2),求证:△CAN 为等腰直角三角形.(3)将如图1中△BCE 绕点旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.27.如图,△ABC 中,AB =AC ,∠A =36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC )(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是___度和___度.(2)在图2中画2条线段,使图中有4个等腰三角形.(3)继续按以上操作发现:在△ABC 中画n 条线段,则图中有___个等腰三角形,AB CD E O E D C B A F D C B A E M N图1 D C B A E M N 图2 DC B A E M N 图3 A A AP R B其中有___个黄金等腰三角形.28.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连结DC ,以DC 为边在BC 上方作等边△DCF ,连结AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其它作法与(1)相同.猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在其上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何等量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 运动至等边△ABC 边BA 的延长线上运动时,其它作法与图③相同.Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.参考答案:一、1.D.点拨:A 、不是轴对称图形,不符合题意;B 、不是轴对称图形,不符合题意;C 、不是轴对称图形,不符合题意;D 、是轴对称图形,符合题意.故应选D .2.D.3.B.点拨:把点P (2,-5)的纵坐标-5改成它的相反数5,即可得到点P 关于x 轴对称点的坐标.4.B.点拨:由根据线段垂直平分线性质可以直接判断线段PA 与线段PB 的长度相等.5.B.点拨:按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到图形B .故应选B .6.B.点拨:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,∴∠ADE =∠B =50°,∵∠A =26°,∴∠ADE =180°-50°-26°=104°;再由折叠可知:∠AED =∠A ′ED =104°,∴∠AEA ′=360°-104°-104°=152°.7.B.点拨:∵在等腰△ABC 中,AB =AC ,其周长为20cm ,∴设AB =AC =x ,则BC =20-2x cm ,∴2x >20-2x ,且20-2x >0,解得5cm <x <10cm.故应选B .8.D.点拨:如图,等腰三角形ABC 中,因为AB =AC ,所以∠ABC =∠C ,设顶角为α、底角为β,则根据三角形三内角和为180°,得α+2β=180.此时,由于过B 点画直线交AC 于D ,则△ADB 与△BDC 都是等腰三角形,若AD =DB =BC ,则β=2α,α+2β=180°,解得α=36°,β=72°;若AD =DB ,BC =DC ,则β=3α,α+2β=180°,解得α=7180,F DC B A 图① FD C B A 图② F D C B A 图③ F ′ F AC F ′D 图④B DAβ=7540 .所以原等腰三角形纸片的底角等于72°,或5407⎛⎫ ⎪⎝⎭.故应选D .9.A.点拨:∵点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,∴PM =MQ ,PN =NR .∵PM =2.5cm ,PN =3cm ,MN =4cm ,∴RN =3cm ,MQ =2.5cm ,NQ =MN -MQ =4-2.5=1.5(cm ),则线段QR 的长为:RN +NQ =3+1.5=4.5(cm ).故应选A .10.D.点拨:因为BC =AC ,∠BCD =∠ACE =120°,CD =CE ,所以△BCD ≌△ACE ,从而得①AE =BD 是正确的;又因为△BCD ≌△ACE ,所以∠FBC =∠GAC ,根据BC =AC ,∠BCF =∠ACG =60°,得△BCF ≌△ACG ,所以②AG =BF 是正确的;由△BCF ≌△ACG ,得CF =CG ,而∠FCG =60°,所以∠CGF =∠CFG =∠FCG =60°,所以③FG ∥BE 是正确的;如图,过C 作CM ⊥BD 于M ,CN ⊥AE 于N ,易得△BCM ≌△CAN ,所以CM =CN ,所以④∠BOC =∠EOC 是正确的.故应选D .二、11.5. 12.90°.点拨:因为△ABC 与△A ′B ′C ′关于直线l 对称,∠C ′=60°,所以∠C ′=∠C =60°,在△ABC 中,因为∠A =30°,所以∠B =180°-30°-60°=90°.13.10.点拨:由角平分线的性质及题中已知条件可得PD =PE ,又因为PD =10,所以PE =10.14.2.点拨:∵D 为AB 的中点,AB =8,∴AD =4,∵ DE ⊥AC 于点E ,∴∠DEA =90°,∵∠A =30°,∴DE =12AD =2; 15.15°.点拨:∵折叠该纸片,使点A 落在点B 处,折痕为DE ,∴EA =EB ,∴∠EBA =∠A .又∵AB =AC ,∠A =50°,∴∠B =65°,∠EBA =50°,∴∠CBE =15°.16.105°.点拨:由①的作图可知CD =BD ,∴∠DCB =∠B =25°,∴∠ADC =50°.又∵CD =AC ,∴∠A =∠ADC =50°,∴∠ACD =80°,∴∠ACB =80°+25°=105°.17.200.点拨:由条件,得∠ABC =90°+30°=120°,∠BAC =90°-60°=30°,所以∠ACB =180°-∠ABC -∠BAC =180°-120°-30°=30°,所以∠ACB =∠BAC ,所以BC =AB =200,即B 、C 两地相距200m. 18.(12)n -1·75°.点拨:∵A 1B =CB ,∠B =30°,∴∠C =∠BA 1C =12(180°-∠B )=75°,又∵A 1A 2=A 1D ,∴∠A 1A 2D =∠A 1DA 2=12∠DA 1C =12×75°(三角形外角等于不相邻两内角之和)=2112-×75°=2112-⎛⎫ ⎪⎝⎭×75°;同样,∵A 2A 3=A 2E ,∴∠A 2A 3E =∠A 2EA 3=12∠DA 2A 1=12×12×75°=14×75°=3112-×75°=3112-⎛⎫ ⎪⎝⎭×75°;同理,∠A 3A 4F =∠A 3FA 4=12∠EA 3A 2=4112-⎛⎫ ⎪⎝⎭×75°;…第n 个三角形中以A n 为顶点的内角度数是112n -⎛⎫ ⎪⎝⎭×75°. 三、19.如图,△ABC 就是所求的三角形,A ,B ,C 三点关于y 轴的对称点分别为A ′(3,1),B ′(1,0),C ′(2,-1),△A ′B ′C ′就是△ABC 关于y 轴对称的图形. G F O D C B AE M N20.如图1和2所示中的直线l 就是分别所求作的对称轴.21.设BP =x ,在Rt △PBE 中,∠BPE =30°,所以BE =12x ,则EC =2-12x ,在Rt △EFC 中,∠FEC =30°,所以FC =12EC =1-14x ,所以AF =2-FC =2-(1-14x )=1+14x ,同理,AQ =12AF =12+18x ,当点P 与点Q 重合时,有BP +AQ =2,即x +(12+18x )=2,解得x =43,故当BP =43时,点P 与点Q 重合. 22.(1)证明:∵CD =CB ,E 为BD 的中点,∴CE ⊥BD ,∴∠AEC =90°.又∵F 为AC 的中点,∴EF =12AC .(2)∵∠BAC =45°,∠AEC =90°,∴∠ACE =∠BAC =45°,∴AE =CE .又∵F 为AC 的中点,∴EF ⊥AC ,∴EF 为AC 的垂直平分线,∴AM =CM ,∴AM +DM =CM +DM =CD .又∵CD =CB ,∴AM +DM =BC .23.(1)∠ABC =90°时,PR =7.证明:连接PB 、RB ,∵P 、R 为O 分别以直线AB 、直线BC 为对称轴的对称点,∴PB =OB =312,RB =OB =312,∵∠ABC =90°,∴∠ABP +∠CBR =∠ABO +∠CBO =∠ABC =90°,∴点P 、B 、R 三点共线,∴PR =2×312=7.(2)PR 的长度是小于7.理由:∠ABC ≠90°,则点P 、B 、R 三点不在同一直线上,∴PB +BR >PR ,∵PB +BR =2OB =2×312=7,∴PR <7. 24.(1)①②、①③.(2)选①②证明如下:在△BOE 和△COD 中,∵∠EBO =∠DCO ,∠EOB =∠DOC ,BE =CD ,∴△BOE ≌△COD (AAS ),∴BO =CO ,∠OBC =∠OCB ,∴∠EOB +∠OBC =∠DOC +∠OCB ,即∠ABC =∠ACB ,∴AB =AC ,即△ABC 是等腰三角形.25.(1)∵三角形ABC 为等边三角形,∴∠B =60°,∵DE ∥AB ,∴∠EDC =∠B =60°,∵EF ⊥DE ,∴∠DEF =90°,∴∠F =90°-∠EDC =30°.(2)∵∠ACB =60°,∠EDC =60°,∴△EDC 是等边三角形,∴ED =DC =2,∵∠DEF =90°,∠F =30°,∴DF =2DE =4.26.(1)∵点M 为DE 的中点,∴DM =ME .∵AD ∥EN ,∴∠ADM =∠NEM ,又∵∠DMA =∠EMN ,∴△DMA ≌△EMN ,∴AM =MN ,即M 为AN 的中点.(2)由(1)中△DMA ≌△EMN 可知DA =EN ,又∵DA =AB ,∴AB =NE ,∵∠ABC =∠NEC =135°,BC =CE ,∴△ABC ≌△NEC ,∴AC =CN ,∠ACB =∠NCE ,∵∠BCE =∠BCN +∠NCE =90°,∴∠BCN +∠ACB =90°,∴∠CAN =90°,∴△CAN 为等腰直角三角形.(3)由(2)可知AB =NE ,BC =CE .又∵∠ABC =360°-45°-45°-∠DBE =270°-∠DBE =270°-(180°-∠BDE -∠BED )=90°+∠BDE +∠BED =90°+∠ADM -45°+∠BED =45+∠MEN +∠BED =∠CEN ,∴△ABC ≌△NEC ,再同(2)可证△CAN 为等腰直角三角形,∴(2)中的结论是否仍然成立.27.(1)如图1所示.∵AB =AC ,∠A =36°,∴当AE =BE ,则∠A =∠ABE =36°,则∠AEB =108°,则∠EBC =36°,∴这2个等腰三角形的顶角度数分别是108度和36度.(2)画法不惟一.如,如图2所示.四个等腰三角形分别是:△ABE ,△BCE ,△BEF ,△CEF .(3)图2 F C E B D A l 图1 F C E B A (D ) l如图3所示.当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.28.(1)AF=BD.证明:因为△ABC和△DCF均是等边三角形,所以∠ACB=∠DCF,所以∠ACB-∠ACD=∠DCF-∠ACD,即∠BCD=∠ACF.在△BDC和△AFC中,BC=AC,∠BCD=∠ACF,DC=FC,所以△BDC≌△AFC,所以AF=BD.(2)仍然成立.证法同(1).(3)Ⅰ:AF+BF′=AB.证明:由(1)可证AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,所以AF+BF′=AB.Ⅱ.在Ⅰ中的结论不成立,新结论是:AF-BF′=AB.证明:同(1)可证△BDC≌△AFC,所以AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,因为BD-AD=AB,所以AF-BF′=AB.。

人教版八年级上册数学《轴对称》单元综合检测(附答案)

人教版八年级上册数学《轴对称》单元综合检测(附答案)
详解:由点A(m+3,2)与点B(1,n−1)关于x轴对称,得:
m+3=1,n−1=−2,
解得m=−2,n=−1,
点睛:本题考查了关于x轴对称的点的坐标;容易与关于y轴对称的点的坐标混淆.
A. 16cmB. 20cmC. 24cmD. 26cm
6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为
A 40海里B. 60海里C. 70海里D. 80海里
7.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE,若∠A=30°,AB=AC,则∠BDE的度数为()
(2)经过多少秒,△BMN 直角三角形.
一、选择题(本题共12小题,每小题3分,共36分)
1.下列四个交通标志图中为轴对称图形的是( )
A.AB.BC.CD.D
【答案】D
【解析】
解:A、B、C不是轴对称图形,D是轴对称图形.故选D.
2.在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标是()
【答案】3
【解析】
试题解析:∵等边△ABC中,AB=8,
∴AB=BC=6.
∵AD⊥BC,
故答案为3.
14.已知点A(m+3,2)与点B(1,n-1)关于x轴对称,则m=________,n=________.
【答案】(1).-2(2).-1
【解析】
分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.
A.45B.52.5C.67.5D.75
【答案】C
【解析】
试题分析:根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数:

八年级数学上册轴对称解答题综合测试卷(word含答案)

八年级数学上册轴对称解答题综合测试卷(word含答案)

八年级数学上册轴对称解答题综合测试卷(word含答案)一、八年级数学轴对称解答题压轴题(难)1.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.【答案】(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析.【解析】【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【详解】(1)如图(2),连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE.∵MD=ME,∴∠MAD=∠MAE,∴∠MAD-∠BAD=∠MAE-∠CAE,即∠BAM=∠CAM.在△ABM和△ACM中,AB=AC,∠BAM=∠CAM,AM=AM,∴△ABM≌△ACM(SAS),∴MB=MC.(2)MB=MC.理由如下:如图(3),延长CM交DB于F,延长BM到G,使得MG=BM,连接CG.∵CE∥BD,∴∠MEC=∠MDF,∠MCE=∠MFD.∵M是ED的中点,∴MD=ME.在△MCE和△MFD中,∠MCE=∠MFD,∠MEC=∠MDF,MD=ME,∴△MCE≌△MFD(AAS).∴MF=MC.∴在△MFB和△MCG中,MF=MC,∠FMB=∠CMG,BM=MG,∴△MFB≌△MCG(SAS).∴FB=GC,∠MFB=∠MCG,∴CG∥BD,即G、C、E在同一条直线上.∴∠GCB=90°.在△FBC和△GCB中,FB=GC,∠FBC=∠GCB,BC=CB,∴△FBC≌△GCB(SAS).∴FC=GB.∴MB=12GB=12FC=MC.(3)MB=MC还成立.如图(4),延长BM交CE于F,延长CM到G,使得MG=CM,连接BG.∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE.又∵M是DE的中点,∴MD=ME.在△MDB和△MEF中,∠MDB=∠MEF,∠MBD=∠MFE,MD=ME,∴△MDB≌△MEF(AAS),∴MB=MF.∵CE∥BD,∴∠FCM=∠BGM.在△FCM和△BGM中,CM=MG,∠CMF=∠GMB,MF=MB,∴△FCM≌△BGM(SAS).∴CF=BG,∠FCM=∠BGM.∴CF//BG,即D、B、G在同一条直线上.在△CFB和△BGC中,CF=BG,∠FCB=∠GBC,CB=BC,∴△CFB≌△BGC(SAS).∴BF=CG.∴MC=12CG=12BF=MB.【点睛】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.2.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y xy xααβ=+⎧⎨=-+⎩①②-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴+y xy xααβ=+⎧⎨=+⎩①②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y xy xαβα-++=⎧⎨++=⎩①②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.3.再读教材:宽与长的比是5-1约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形 BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【答案】(1)5;(2)见解析;(3)见解析; (4) 见解析.【解析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB=22+=22AC BC+=5.12故答案为5.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=5.AN=AC=1,CD=AD﹣AC=5﹣1.∵BC=2,∴CDBC=512-,∴矩形BCDE是黄金矩形.∵MNDN=215+=512-,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH=5﹣1,宽HE=3﹣5.点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.4.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.5.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA ≌△QBD ,根据全等三角形的性质得到∠BDQ =∠BAC =60°,求出 CD ,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.6.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩,∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.7.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示:(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.8.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.9.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC中,当B只有一个度数时,A∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC中,∠A=100°,∴∠A为顶角,∠B为底角,∴∠B=1801002-=40°;变式2: ∵等腰三角形ABC中,∠A= 45°,∴当AB=BC 时,∠B =90°,当AB=AC 时,∠B =67.5°,当BC=AC时∠B =45°;(2)等腰三角形ABC中,设A x∠=,当90°≤x<180°,∠A为顶角,此时,B只有一个度数,当x=60°时,三角形ABC是等边三角形,此时,B只有一个度数,综上所述:90°≤x<180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=B D.连接AE,根据∠BAC+∠BDC=180°,可证∠ABD =∠ACE,易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是___________(拓展延伸)(2)如图2,在Rt△ABC中,∠BAC=90°,AB=A C.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)7276+ 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠= ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(22DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠= ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠= 222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴== 根据勾股定理得222214714773MQ MN QN =-=-==由(22PQ QN QM =+773727622PQ ++∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.。

新人教版八年级数学上册第十二章轴对称测试题及答案ABC卷

新人教版八年级数学上册第十二章轴对称测试题及答案ABC卷

课标人教版八年级(上)数学检测试卷轴对称 A 卷(考试时间为60分钟,满分100分)姓名:______________一、填空题(每小题3分,共30分) 1.长方形的对称轴有___________条. 2.等腰直角三角形的底角为_____________.3.等边三角形的边长为a ,则它的周长为_____________. 4.(-2,1)点关于x 轴对称的点坐标为__________.5.如图,∠A =36°,∠DBC =36°,∠C =72°,则图中等腰三角形有_______个. 6.如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为____________.7.△ABC 中,AB 边上的中线CD 将△ABC 分成两个等腰三角形,则∠ACB =_______度. 8.等腰三角形的顶角为x 度,则一腰上的高线与底边的夹角是___________度.9.在“线段,角,半圆,长方形,梯形,三角形,等边三角形”这七个图形中,是轴对称的图形有_______个.10.如图,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC ,有下列结论:①AB ∥CD ;②AB =CD ;③AB ⊥BC ;④AO =OC 其中正确的结论是_______________. (把你认为正确的结论的序号都填上)二、选择题(每小题3分,共30分)11.下列平面图形中,不是轴对称图形的是( )12.下列英文字母属于轴对称图形的是( )(A )(B )(C )(D )ABC D第5题第6题ABDCE第10题ABCDl O(A ) N (B ) S (C ) H (D ) K13.下列图形中对称轴最多的是( )(A )圆 (B )正方形 (C )等腰三角形 (D )线段14.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )(A )∠B =∠C (B )AD ⊥BC (C )AD 平分∠BAC (D )AB =2BD15.△ABC 中,AB =AC .外角∠CAD =100°,则∠B 的度数( )(A )80° (B )50° (C )40° (D )30°16.等腰三角形的一个角是80°,则它的底角是( )(A )50° (B ) 80° (C ) 50°或80° (D ) 20°或80°17.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.18.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,AB =8m ,∠A =30°,则DE 等于( )(A )1m (B ) 2m (C )3m (D ) 4m19.以下叙述中不正确的是( )A 、等边三角形的每条高线都是角平分线和中线B 、有一内角为 60的等腰三角形是等边三角形C 、等腰三角形一定是锐角三角形D 、在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等。

人教版八年级数学上册第十二章《轴对称》综合检测

人教版八年级数学上册第十二章《轴对称》综合检测

《轴对称》综合检测一、训练平台1.等腰三角形的一边等于5,一边等于12,则它的周长为( )A.22B.29C.22或29D.172.如图14-110所示,图中不是轴对称图形的是( )3.在△ABC中,∠A和∠B的度数如下,其中能判定△ABC是等腰三角形的是( )A.∠A=50°,∠B=70°B.∠A=70°,∠B=40°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°4.如图14-111所示,在△ABC中,AB=AC,BD是角平分线,若∠BDC=69°,则∠A等于( )A.32°B.36°C.48°D.52°5.成轴对称的两个图形的对应角,对应线段 .6.等边三角形是轴对称图形,它有条对称轴.7.等腰三角形顶角的与底边上的、重合,称三线合一.8.(1)等腰三角形的一个内角等于130°,则其余两个角分别为;(2)等腰三角形的一个内角等于70°,则其余两个角分别为 .9.如图14-112所示,△ABC是等边三角形,∠1=∠2=∠3,求∠BEC的度数.10.如图14-113所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD 是高,试判断EF与BC的位置关系,并说明理由.11.如图14-114所示,在△ABC 中,点E 在AC 上,点N 在BC 上,在AB 上找一点F ,使△ENF 的周长最小,试说明理由.二、探究平台1.如图14-115所示,设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,能表示它们之间关系的是( )2.等腰三角形ABC 的底边BC=8cm ,且BC AC −=2Cm ,则腰AC 的长为( )A.10cm 或6cmB.10cmC.6cmD.8cm 或6cm3.已知等腰三角形的两边a ,b ,满足532+−b a +(2a +3b-13)2=0,则此等腰三角形的周长为( )A.7或8B.6或10C.6或7D.7或104.如图14-116所示,∠A=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A.90°B.75°C.70°D.60°5.等腰三角形的两边长分别为4cm 和9cm ,则它的周长为 .6.等腰三角形一腰上的高与底边的夹角为35°,则这个三角形的顶角为 .7.在△ABC 中,AB=AC ,∠A+∠B=140°,则∠A= .8.如果等腰三角形的两个角的比是2∶5,那么底角的度数为 .9.如图14-117所示,在△ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,CD=3,BD=5,则点D 到AB 的距离为 .10.如图14-118所示,在△ABC中,AB=AC,∠A=60°,BE⊥AC于E,延长BC到D,使CD=CE,连接DE,若△ABC的周长是24,BE=a,则△BDE的周长是 .11.如图14-119所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间.12.如图14-120所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E点,使BE=BD,过点D,E引直线交AC于点F,则有AF=FC,为什么?三、交流平台小明、小亮对于等腰三角形都很感兴趣,小明说:“我知道有一种等腰三角形,过它的顶点作一条直线可以将原来的等腰三角形分为两个等腰三角形.”小亮说:“你才知道一种啊!我知道好几种呢!”聪明的你知道几种呢?(要求最少画出两种,标明角度,不要求证明)参考答案一、1.B 2.C 3.B 4.A [提示:∵AB=AC ,∴∠ABC=∠C.又∵BD 是∠ABC的平分线,∴∠DBC=21∠ABC=21∠C.又∵∠BDC=69°,∴21∠C+∠C+∠BDC=180°,即23∠C+69°=180°,∴∠C=111°×32=74°.∴∠A=180°-74°×2=180°-148°=32°.∴∠A=32°.]5.相等 相等6.37.平分线 中线 高8.(1)25°,25° (2)55°,55°或70°,40°9.解:∵△ABC 是等边三角形,∴AB=BC=CA ,∠ABC=∠BCA=∠CAB=60°.又∵∠1=∠2=∠3,∴∠BAC-∠1=∠ABC-∠2=∠BCA-∠3,即∠CAF=∠ABD=∠BCE.在△ABD 和△BCE 和△CAF 中,∴△ABD ≌△BCE ≌△CAF (ASA ).∴AD=BE=CF ,BD=CE=AF.∴AD-AF=BE-BD=CF-CE ,即FD=DE=EF.∴△DEF 是等边三角形.∴∠FED=60°.∴∠BEC=180°-∠FED=180°-60°=120°,∴∠BEC=120°.10.解:EF 与BC 的位置关系是:EF ⊥BC.理由如下:∵AB=AC ,AD ⊥BC ,∴∠BAD=21∠BAC. 又∵AE=AF ,∴∠E=∠AFE.又∵∠BAC=∠E+∠AFE=2∠AFE ,∠AFE=21∠BAC. ∴∠BAD=∠AFE.∴EF ∥AD.又∵AD ⊥BC ,∴EF ⊥BC.11.提示:图略.因为欲使△ENF 的周长最小,即EN+NF+EF 最小,而EN 为定长,则必有NF+EF 最小,又因为点F 在AB 上,且E ,N 在AB 的同侧,由轴对称的性质,可作点E 关于直线AB 的对称点E ′,连接E ′N 与AB 的交点即为点F ,此时,FE+FN 最小,即△EFN 的周长最小.二、1.A 2.AC [提示:∵BC=8cm 是底边,∴AB=AC.又∵BC AC −=2cm ,∴8−AC =2cm..∴AC=10cm 或6cm.当AC=10cm 时,三角形三边为10cm ,10cm ,8cm ,满足三角形三边关系,同理,当AC=6cm 时,也满足三角形三边关系.∴AC=10cm 或6cm.]3.A [提示:由绝对值和平方的非负性可知,⎩⎨⎧=−+=+−,01332,0532b a b a 解得⎩⎨⎧==.3,2b a 分两种情况讨论:①当2为底边时,等腰三角形边为2,3,3,2+3>3,满足三角形三边关系,此时三角形周长为2+3+3=8;②当3为底边时,等腰三角形三边为3,2,2,2+2>3,满足三角形三边关系,此时,三角形周长为3+2+2=7.∴这个等腰三角形的周长为7或8.]4.D5.22cm6.70°7.100°8.75°或40°[提示:若设等腰三角形的顶角为2α,则底角为5α,由三角形的内角和可知,2α+5α+5α=180°,∴α=15°.∴5α=75°;若设等腰三角形的底角为2α,则顶角为5α,则有2α+2α+5α=180°,∴α=20°.∴2α=40°.∴等腰三角形的底角度数为75°或40°] 9.3 10.12+2a11.解:∵∠BCD=60°,∠BAC=30°,∠BCD=∠BAC+∠CBA ,∴60°=30°+∠CBA.∴∠CBA=30°.∴∠BAC=∠CBA.∴CA=CB.又∵∠BCD=∠BDC=60°,∴△BCD 是等边三角形.∴CD=BC.∴AC=CD=BC.又∵BC=20海里,∴AC=CD=20海里.∴20÷10=2(时),40÷10=4(时).∴轮船到C 处的时间是11∶30+2∶00=13∶30,即下午1时30分.轮船到D 处的时间是11∶30+4∶00=15∶30,即下午3时30分.答:轮船到达C 处和D 处的时间分别为下午1时30分和下午3时30分.12.解:如图14-121所示.∵BD=BE,∴∠E=∠1.又∵∠ABC=∠E+∠1=2∠1,且∠ABC=2∠C,∴2∠1=2∠C,∴∠1=∠C.又∵∠1=∠2,∴∠C=∠2.∴FD=FC.又∵AD⊥BC,∴∠ADC=90°.∴∠3=90°-∠2,∠4=90°-∠C. ∴∠3=∠4.∴AF=FD.∴AF=FC.三、解:举例如下,如图14-122所示(1)AC=BC,∠ACB=90°,CD=AD=DB;(2)AB=AC=CD,BD=AD;(3)AB=AC,AD=CD=BC;(4)AB=AC,AD=CD,BD=BC.。

初中数学八年级数学上册 第十二章《轴对称》测考试题 新部编版

初中数学八年级数学上册 第十二章《轴对称》测考试题 新部编版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A:B: C: D:试题2:点M(1,2)关于x轴对称的点的坐标为()A:(-1,-2)B:(-1,2) C:(1,-2)D:(2,-1)试题3:已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为()A:2 ㎝B:4 ㎝C:6 ㎝D:8㎝试题4:若等腰三角形的周长为26cm,一边为11cm,则腰长为()A:11cm B:7.5cm C:11cm或7.5cm D:以上都不对试题5:如图,DE是ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则EBC的周长为()厘米评卷人得分A:16 B:18 C:26 D:28试题6:如图,是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC 其中正确的结论有()A:1个 B:2个 C:3个 D:4个试题7:等腰三角形的一边长是6,另一边长是3,则周长为 ________________;试题8:等腰三角形的一内角等于50°,则其它两个内角各为;试题9:如图,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12㎝,则AB= ㎝;试题10:1如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________;试题11:点E(a,-5)与点F(-2,b)关于y轴对称,则a= ,b= ;试题12:如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8m,∠A=30°,则DE等于;试题13:如图,某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。

数学八年级上册《轴对称》单元综合测试题(含答案)

数学八年级上册《轴对称》单元综合测试题(含答案)
故答案为100°.
[点睛]此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
12.如图所示,分别作出点P关于OA,OB的对称点P1、P2,连接P1,P2,分别交OA、OB于点M、N,若P1P2=5Cm,则△PMN的周长为______________.
[答案]5
A -4031B. -1C. 1D. 4031
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 90°B. 95°C. 105°D. 110°
∴A=2016,B=-2015,
∴A+B=2016-2015=1,
故选C.
[点睛]此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 4B. 5C. 6D. 7
[答案]C
[解析]
试题分析:根据对称图形的性质可得:PM= M,PN= N,
则△PMN的周长=PM+MN+PN= M+MN+ N= =6.
考点:对称的性质
7.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△A DH中( )
[详解]解:关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八上第十二章《轴对称》综合复习测试题A
一、选择题(每小题3分,共24分)
1.下列图形,关于直线m对称的是()
2.下列图案都是轴对称图形,对称轴的条数最多的是()
3.下列叙述正确的语句是( )
A.等腰三角形两腰上的高相等
B.等腰三角形的高、中线、角平分线互相重合
C.顶角相等的两个等腰三角形全等
D.两腰相等的两个等腰三角形全等
4.如图,如果M点在∠ANB的角平分线上,AM⊥AN,BM⊥BN,那么和AM相等的线段一定是()
A.BM B.BN C.MN D.AN
5.等腰三角形两条边长分别为12、15,则这个三角形的周长为()
A.27 B.39 C.42 D.39或42
6.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()
A.40° B.50° C.60° D.30°
7.将一张正方形的纸片按下图方式三次折叠,沿MN裁剪,则可得( ).
A.多个等腰直角三角形 B.一个等腰直角三角形和一个正方形 C.四个相同的正方形 D.两个相同的正方形
8.如图,在△ABC中,AB=AC,D为BC的中点,E为AC边上一点,
且有AE=AD,∠EDC=18°,则∠B的度数是(). A.36° B.46° C.54° D.72°
二、填空题(每小题3分,共24分)
1.如图1,若□ABCD与□EBCF关于BC所在直线对称,∠ABE=90°,则∠F=°
2.如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA于D点,PD=6,则P到OB的距离为__________cm.
B
1
已知:如图,△ABC中,AB=AC.
求证:∠B=∠C.
2
(1)
A A
C
C
D
A B C D
A B C D
m m m m
A
C
D
第8题图
B
E
A
F
D
C
A B
M
N
第4题图
3.如图3,已知:
在ABC ∆中,CD 是角平分线,BC DE
//交AC 于E ,若cm DE 7=,cm AE 5=,则=AC _______cm .
4.一辆汽车沿︒30角的山坡从山底开到山顶,共走了4000m ,那么此山的高度是_____m.
5.在等腰三角形ABC
中,若∠A=70°,则∠B= 。

6、等腰三角形的两边a 、b 满足
()2
250a b -+-=,那么这个三角形的周长是 。

7.如图4,两个四边形关于某条直线对称,根据图中提供的条件则x= ,y= 。

8.如图5,是由大小一样的小正方形组成的网格,△ABC 的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落
在小正方形的顶点上,且与△ABC 成轴对称的三角形
共 个。

三、解答题(共38分)
1、把下图补成以l 为对称轴的轴对称图形。

(保留作图痕迹,不写作法)
2.小明把一张长方形纸片对折两次,画上一个四边形,再剪去这个图形(镂空),展开长方形纸,得到如下的图案,设折痕为l 1、l 2、l 3,观察图并填空: .
(1)图10中有 条对称轴;
(2)四边形①与四边形②关于 成轴对称,折痕l 2既是 与 的对称轴,又是 与 的对称轴,整体上看也是 与 的对称轴;
(3)若小明把纸片对折三次,展开后,得到的四边形有几个,有几条对称轴?
3. “西气东输”是造福子孙后代的创世工程,如图所示, 现有两条高速公路l 1、l 2和两个城镇A 、B ,准备建一个燃 气控制中心站P ,使中心站到两条公路距离相等,并且到两 个城镇等距离,请你画出中心站的位置。



图5
H
E
G
H
100°
120°
x
y
4、如图所示,△ ABC 中,∠BAC 的平分线与BC 的垂直平分线相交于点E ,EF ⊥AB ,EG ⊥AC ,垂足分别为F 、G ,则BF=CG 吗?说明理由。

四、探索互动
1、现有一张矩形纸片,ABCD (如图),其中AB=4cm ,BC=6cm ,点E 是BC 的中点,实施操作:将纸片沿AE 折叠,使点B 落在梯形AECD 内,记为点F 。

(1)请用尺规,在图中作出△AEF (保留作图痕迹); (2)试求B 、F 两点之间的距离。

2、(1)如图,在△BAC 中,∠BAC=90° AB=AC ,点D 在BC 上,且BD=BA ,点E 在BC 的延长线上,且CE=CA 。

试求∠DAE 的度数.
⑵如果把第(1)题中“AB=AC ”的条件去掉,其余条件不变,那么∠DAE 的度数会改变吗?
(3)如果把第(1)题中“∠BAC=90°的条件改为”∠BAC >90°,其余条件不变,请直接写出∠DAE 与∠BAC 有怎样的数量关系?
A
B E F
G
C
D
A
B
D
参考答案A :
一、1、D 2、D 3、A 4、A 5、D 6、A 7、C 8、A
二、1、45 2、6 3、12 4、2000 5、70°或55°或40° 6、12 7、5,70° 8、4 三、1、解:图略 2、解:(1)3;
(2)l 1,②与③,①与④,①②与③④;
(3)若小明把纸片对折三次,展开后得到的四边形有八个,有7条对称轴。

3、解:图略;
作法:(1)连结AB ,作AB 的垂直平分线EF ; (2)作l 1、l 2所夹锐角的角平分线MN ;
(3)直线MN 和EF 的交点P 即为所求中心站的位置。

4、解:BF=CG ;
理由如下:连结BE 、CE , 因为点E 在BC 的垂直平分线上, 所以BE=CE 。

因为点E 在∠BAC 的角平分线上,且EF ⊥AB ,EG ⊥AC , 所以EF=EG ,
在Rt △EFB 和Rt △EGC 中, 因为BE=CE ,EF=EG ,
所以Rt △EFB ≌Rt △EGC (HL )。

所以BF=CG 。

四、
1、解:(1)图略; (2)连结BF 交AE 于点O , 因为BC=6cm ,点E 是BC 的中点, 所以BE=3cm 。

又因为AB=4cm ,AB ⊥BE , 由勾股定理得,AE=5cm 。

因为B 、F 关于AE 对称, 所以BF ⊥AE ,
根据三角形面积相等可得BO=2.4cm , 所以BF=4.8cm 。

2、解:(1)因为∠BAC=90°,AB=AC ,
所以∠B=∠ACB=45°。

又因为BD=BA ,
所以∠BAD=∠BDA=67.5°。

所以∠CAD=22.5°,
因为CE=CA ,所以∠CAE=∠E 。

又因为∠ACB=∠CAE+∠E ,
所以∠CAE=22.5°。

所以∠DAE=45°。

(2)不变;因为BD=BA ,所以∠BAD=∠BDA 。

因为CE=CA ,所以∠CAE=∠E 。

所以∠DAE=∠ADB-∠ACB +
2
1
∠ACB=∠ADB-
2
1∠ACB 。

又因为∠ADB-∠ACB=∠CAD=90°-∠BAD=90°-∠ADB ,。

相关文档
最新文档