十五轴对称单元测试题及答案

合集下载

2020年沪科版八年级数学上册第15章轴对称图形与等腰三角形单元测试题(含答案)

2020年沪科版八年级数学上册第15章轴对称图形与等腰三角形单元测试题(含答案)

《第15章轴对称图形与等腰三角形》单元测试卷一.选择题(共10小题)1.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.62.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.4.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个5.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC 的最大值为()A.40B.28C.20D.106.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格7.如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.8.一平面镜以与水平面成45°角固定在水平面上,如图所示,一个小球以1m/s的速度沿桌面向点O匀速滚去,则小球在平面镜中的像是()A.以1m/s的速度,做竖直向上运动B.以1m/s的速度,做竖直向下运动C.以m/s的速度运动,且运动路线与地面成45°角D.以2m/s的速度,做竖直向下运动9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.10.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C 在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18二.填空题(共8小题)11.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为.12.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=.14.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=时,满足条件的点C恰有三个.15.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.16.如图,在△ABC中,∠A=75°,∠C=45°,BC=4,点M是AC边上的动点,点M 关于直线AB、BC的对称点分别为P、Q,则线段PQ长的取值范围是.17.如图所示的商标有条对称轴.18.小明从镜子里看到镜子对面的钟表里的时间是2点30分,实际时间为点分.三.解答题(共8小题)19.已知:如图,△ABC中,AD平分∠BAC,DE∥AB分别交BC、AC于D、C两点,CE =6,DE=5.过D作DF⊥AB于F.DF=4.(1)求AE的长;(2)求△ACD的面积.20.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.21.如图,等腰△ABC中,AB=AC,∠ABC=35°,E是BC边上一点且AE=CE,D是BC边上的中点,连接AD,AE.(1)求∠DAE的度数;(2)若BD上存在点F,且∠AFE=∠AEF,求证:BF=CE.22.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.23.(1)当a=时,代数式2a+5的值为3;(2)等边三角形有条对称轴.24.已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.25.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.26.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题)1.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.6【分析】根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE =15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半,即可得到EF的长,进而得出OF的长.【解答】解:∵∠AOE=∠BOE=15°,EC⊥OB于点C,EG⊥OA于点G,∴CE=EG=3,∵EF∥OB,∴∠COE=∠OEF=15°∴∠EFG=15°+15°=30°,∠EOF=∠OEF,∴OF=EF=2EG=2×3=6.故选:D.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.2.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.【分析】由等腰三角形的性质得出∠ABC=∠ACB=72°,由三角形内角和定理得出∠A =36°,由作图得出BC=BD,得出∠BDC=∠C=72°,证出∠A=∠ABD,得出AD =BD=BC即可.【解答】解:∵AB=AC,∠C=72°,∴∠ABC=∠ACB=72°,∴∠A=180°﹣72°﹣72°=36°,∵以点B为圆心,BC为半径画弧,交AC于点D,∴BC=BD,∴∠BDC=∠C=72°,∴∠CBD=180°﹣72°﹣72°=36°,∴∠ABD=72°﹣36°=36°,∴∠A=∠ABD,∴AD=BD=BC=;故选:C.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理等知识;熟练掌握等腰三角形的判定与性质,证出AD=BD=BC是解题的关键.4.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个【分析】根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.【解答】解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选:D.【点评】本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.5.如图,△ABC 中,BC =10,AC ﹣AB =4,AD 是∠BAC 的角平分线,CD ⊥AD ,则S △BDC 的最大值为( )A .40B .28C .20D .10【分析】延长AB ,CD 交点于E ,可证△ADE ≌△ADC (ASA ),得出AC =AE ,DE =CD ,则S △BDC =S △BCE ,当BE ⊥BC 时,S △BEC 最大面积为20,即S △BDC 最大面积为10.【解答】解:如图:延长AB ,CD 交点于E ,∵AD 平分∠BAC ,∴∠CAD =∠EAD ,∵CD ⊥AD ,∴∠ADC =∠ADE =90°,在△ADE 和△ADC 中,,∴△ADE ≌△ADC (ASA ),∴AC =AE ,DE =CD ;∵AC ﹣AB =4,∴AE ﹣AB =4,即BE =4;∵DE =DC ,∴S △BDC =S △BEC ,∴当BE ⊥BC 时,S △BDC 面积最大,即S △BDC 最大面积=××10×4=10.故选:D .【点评】本题考查了角平分线定义、全等三角形的判定与性质、等腰三角形的性质等知识;利用三角形中线的性质得到S △BDC =S △BEC 是解题的关键.6.如图的方格纸中,左边图形到右边图形的变换是( )A .向右平移7格B .以AB 的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C .绕AB 的中点旋转180°,再以AB 为对称轴作轴对称D .以AB 为对称轴作轴对称,再向右平移7格【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB 为对称轴作轴对称,再向右平移7格.故选:D .【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.7.如图,在△ABC 中,∠C =90°,点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,则△ABC 与△A ′B ′C ′的面积之比为( )A .B .C .D .【分析】连接CC '并延长交A 'B '于D ,连接CB ',CA ',依据AC =A 'C ,BC =B 'C ,∠ACB =∠A 'CB ',可得△ABC ≌△A 'B 'C ,进而得出S △ABC =S △A 'B 'C ,再根据CD =CE =EC ',可得S △A 'B 'C =S △A 'B 'C ',进而得到S △ABC =S △A 'B 'C '.【解答】解:如图,连接CC '并延长交A 'B '于D ,连接CB ',CA ',∵点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,∴AC =A 'C ,BC =B 'C ,∠ACB =∠A 'CB ',AB 垂直平分CC ',∴△ABC ≌△A 'B 'C (SAS ),∴S △ABC =S △A 'B 'C ,∠A =∠AA 'B ',AB =A 'B ',∴AB ∥A 'B ',∴CD ⊥A 'B ',∴根据全等三角形对应边上的高相等,可得CD =CE ,∴CD =CE =EC ',∴S △A 'B 'C =S △A 'B 'C ',∴S △ABC =S △A 'B 'C ',∴△ABC 与△A ′B ′C ′的面积之比为,故选:B .【点评】本题考查的是轴对称的性质、三角形的面积及等积变换,解答此题的关键是熟知对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.8.一平面镜以与水平面成45°角固定在水平面上,如图所示,一个小球以1m/s的速度沿桌面向点O匀速滚去,则小球在平面镜中的像是()A.以1m/s的速度,做竖直向上运动B.以1m/s的速度,做竖直向下运动C.以m/s的速度运动,且运动路线与地面成45°角D.以2m/s的速度,做竖直向下运动【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,在平面镜中的顺序与现实中的恰好相反,且关于镜面对称,则小球在平面镜中的像是以1m/s的速度,做竖直向下运动.故选:B.【点评】本题考查了镜面反射的原理与性质.解决此类题应认真观察,注意技巧,充分发挥想象能力.9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.【分析】严格按照所给方法向下对折,再向右对折,向右下对折,剪去上部分的等腰直角三角形,展开得到答案.【解答】解:易得剪去的4个小正方形正好两两位于原正方形一组对边的中间.故选:C.【点评】主要考查了剪纸问题;学生空间想象能力,动手操作能力是比较重要的,做题时,要注意培养.10.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C 在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18【分析】过A作AH⊥OB于H,连接AD,根据MN垂直平分AB,即可得到AD=BD,当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,根据勾股定理求得AC的长,即可得到△BCD周长的最小值为13+5=18.【解答】解:如图,过A作AH⊥OB于H,连接AD,∵点A坐标为(10,12),AO=AB,∴OH=BH=10,AH=12,又∵OC=3BC,∴BC=5,CO=15,∴CH=15﹣10=5,∵MN垂直平分AB,∴AD=BD,∴BD+CD=AD+CD,∴当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,此时,Rt△ACH中,AC===13,∴△BCD周长的最小值=13+5=18,故选:D.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二.填空题(共8小题)11.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为4.【分析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE =PD,再根据两直线平行,内错角相等可得∠POD=∠OPC,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=∠AOB,再根据直角三角形30°角所对的直角边等于斜边的一半得出PE=PC=4,根据角平分线的性质得到答案.【解答】解:作PE⊥OA于E,∵P是∠AOB平分线上一点,∴∠AOP=∠BOP=15°,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=PC=4,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=4,故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造含30°角的直角三角形是解题的关键.12.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为100°.【分析】根据线段的垂直平分线的性质得到BE=BA,得到∠E=∠A=50°,根据三角形的外角的性质计算即可.【解答】解:∵BD垂直平分AE,∴BE=BA,∴∠E=∠A=50°,∴∠EBC=∠E+∠A=100°,故答案为:100°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=15°.【分析】根据线段垂直平分线的概念得到∠AED=90°,进一步求出∠ABD=∠A=50°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∵∠ADE=40°,∴∠ABD=∠A=50°,又∵AB=AC,∴∠ABC=65°,∴∠DBC=15°.故答案为:15°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.14.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=或2时,满足条件的点C恰有三个.【分析】分别以A,B为圆心,AB长为半径作圆,两圆相交于点C1,过点C1作直线l ∥AB,分别交两圆于点C2,C3;分别以A,B为圆心,AB长为半径作圆,在两圆上方作直线l∥AB,与两圆分别相切于点C2,C3,再根据三角形的面积公式计算即可.【解答】解:(1)如图所示:分别以A,B为圆心,AB长为半径作圆,两圆相交于点C1,过点C1作直线l∥AB,分别交两圆于点C2,C3,此时满足条件的点C恰好有3个,△ABC1为边长为2的等边三角形,其高为∴S=×2×=(2)如图所示:分别以A,B为圆心,AB长为半径作圆,在两圆上方作直线l∥AB,与两圆分别相切于点C2,C3,点C1为l与线段AB的垂直平分线的交点,此时满足条件的点C恰好有3个,△ABC2和△ABC3均为腰长为2的等腰直角三角形,△ABC1为底边为2,高为2的等腰三角形∴S=×2×2=2故答案为:或2.【点评】本题考查了等腰三角形的判定,构造圆,结合圆的切线性质及平行线的性质分类讨论,是解题的关键.15.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为3步.【分析】根据题意:分别计算出两种跳法所需要的步数,比较就可以了.【解答】解:如图中红棋子所示,根据规则:①点A从右边通过3次轴对称后,位于阴影部分内;②点A从左边通过4次轴对称后,位于阴影部分内.所以跳行的最少步数为3步.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分.16.如图,在△ABC中,∠A=75°,∠C=45°,BC=4,点M是AC边上的动点,点M 关于直线AB、BC的对称点分别为P、Q,则线段PQ长的取值范围是.【分析】连接BP、BQ、BM,过点B作BD⊥PQ于点D,由对称性可知PB=BM=BQ、△PBQ等腰三角形,进而即可得出PD=PB,再根据BM的取值范围即可得出线段PQ长的取值范围.【解答】解:∵∠A=75°,∠C=45°,∴∠ABC=180°﹣75°﹣45°=60°,连接BP、BQ、BM,过点B作BD⊥PQ于点D,如图所示.∵点M关于直线AB、BC的对称点分别为P、Q,∴BP=BQ=BM,∠PBA=∠MBA,∠MBC=∠QBC,∴∠PBQ=120°,∵PB=BQ,∴∠BPQ=∠BQP=30°,∴cos30°==,∴PD=PB,∵BC=4,∠C=45°,∴2≤BM≤4,∵BM=PB,∴2≤PB≤4,∴2≤PD≤4×,即≤PD≤2,∵PQ=2PD,∴2≤PQ≤4.故答案为:2≤PQ≤4.【点评】本题考查了轴对称的性质,等腰三角形的判定和性质,直角三角形30度角的性质和三角函数,解题的关键是证得△BPQ是等腰三角形.17.如图所示的商标有两条对称轴.【分析】根据轴对称图形的对称轴的意义结合图形画出,即可得出答案.【解答】解:有两条对称轴,如图所示:直线AB和直线CD.故答案为:两.【点评】本题考查了对轴对称图形的应用,注意:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形图形叫做轴对称图形轴对称图形,这条直线叫对称轴.18.小明从镜子里看到镜子对面的钟表里的时间是2点30分,实际时间为9点30分.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称,分析可得答案.【解答】解:2:30时,分针竖直向下,时针指23之间,根据对称性可得:与9:30时的指针指向成轴对称,故实际时间是9:30.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.三.解答题(共8小题)19.已知:如图,△ABC中,AD平分∠BAC,DE∥AB分别交BC、AC于D、C两点,CE =6,DE=5.过D作DF⊥AB于F.DF=4.(1)求AE的长;(2)求△ACD的面积.【分析】(1)依据角平分线的定义以及平行线的性质,即可得到∠DAE=∠ADE,进而得出AE=DE=5;(2)过D作DG⊥AC于G,依据角平分线的性质以及三角形面积公式,即可得到△ACD 的面积.【解答】解:(1)∵AD平分∠BAC,∴∠DAB=∠DAC,∵DE∥AB,∴∠ADE=∠DAB,∴∠DAE=∠ADE,∴AE=DE=5;(2)如图,过D作DG⊥AC于G,又∵DF⊥AB,AD平分∠BAC,∴DG=DF=4,∵CE=6,∴AC=AE+CE=5+6=11,∴△ACD的面积=×AC×DG=×11×4=22.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.20.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.【分析】连接BD,根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:连接BD,∵E为AB的中点,DE⊥AB于点E,∴AD=BD,∴∠DBA=∠A,∴∠DBA=66°,∵∠ABC=90°,∴∠DBC=∠ABC﹣∠ABD=24°∵AD=BC,∴BD=BC,∴∠C=∠BDC,∴∠C==78°.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.21.如图,等腰△ABC中,AB=AC,∠ABC=35°,E是BC边上一点且AE=CE,D是BC边上的中点,连接AD,AE.(1)求∠DAE的度数;(2)若BD上存在点F,且∠AFE=∠AEF,求证:BF=CE.【分析】(1)根据等腰三角形的性质可求∠C,再根据等腰三角形的性质可求∠CAE,根据等腰三角形三线合一的性质和三角形内角和定理可求∠CAD,再根据角的和差关系可求∠DAE的度数;(2)等腰三角形三线合一的性质可得BD=CD,FD=ED,再根据线段的和差关系即可求解.【解答】解:(1)∵AB=AC,∠ABC=35°,∴∠C=35°,∴∠CAE=35°,∵D是BC边上的中点,∴AD⊥BC,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣35°=55°,∴∠DAE=∠DAC﹣∠C=55°﹣35°=20°;(2)证明:∵D是BC边上的中点,∴BD=CD,∵∠AFE=∠AEF,∴AF=AE,∵AD⊥BC,∴D是EF边上的中点,∴FD=ED,∴BD﹣FD=CD﹣ED,即BF=CE.【点评】考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等;③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.22.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.【分析】(1)当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,依据点P运动的路程为6.5cm,即可得到x的值以及CP的长;(2)△ABP为等腰三角形,点P只能在AC上且PA=PB.设CP=x,则AP=BP=4﹣x,依据勾股定理即可得到x的值.【解答】解:(1)∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,∴点P运动的路程为6.5cm,∴x=6.5÷1=,此时CP=AB=cm;故答案为:,;(2)△ABP为等腰三角形,点P只能在AC上且PA=PB.设CP=x,则AP=BP=4﹣x,在Rt△BCP中,BC2+CP2=BP2,即32+x2=(4﹣x)2,解之得:x=,∴当x为时,△ABP为等腰三角形.【点评】本题考查了等腰三角形的判定与性质、勾股定理的应用,熟练掌握等腰三角形的判定与性质,利用勾股定理列方程是解决问题的关键.23.(1)当a=﹣1时,代数式2a+5的值为3;(2)等边三角形有3条对称轴.【分析】(1)根据题意得2a+5=3,解方程即可;(2)轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:(1)由题意得:2a+5=3,解得:a=﹣1,故当a=﹣1时,代数式2a+5的值为3;(2)等边三角形有3条对称轴.故答案为:﹣1,3.【点评】本题考查了轴对称的性质及解一元一次方程的知识,正确理解轴对称图形的定义是解决本题的关键,是一个基础题.24.已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.【分析】(1)根据轴对称变换的性质作图;(2)根据关于y轴对称的点的坐标特点解答;(3)根据矩形的面积公式和三角形的面积公式计算.【解答】解:(1)所作图形如图所示;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.(3)S△ABC【点评】本题考查的是轴对称变换的性质,掌握轴对称变换中坐标的变化特点是解题的关键,注意坐标系中不规则图形的面积的求法.25.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.【分析】本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.【解答】解:如图所示;【点评】本题主要考查的是利用轴对称设计图案,掌握轴对称图形的性质是解题的解题的关键.26.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P、A'、B在同一直线上(如图2)设直线A'B的解析式为:y=k'x+b'解得:∴直线A'B:y=﹣x﹣1当﹣x﹣1=0时,得:x=﹣2∴点P坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA'交x轴于点C,过B作BD⊥直线AA'于点D(如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或 解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB :y =﹣x +7再向上平移12个单位得直线AB :y =﹣x +19∴Q (0,19)综上所述,y 轴上存在点Q 使得△QAB 的面积等于△PAB 的面积,Q 的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.1、天下兴亡,匹夫有责。

轴对称练习题(含答案)

轴对称练习题(含答案)

轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。

轴对称练习题及答案

轴对称练习题及答案

轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。

2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。

3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。

三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。

2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。

3. 已知点C(1,-1),求点C关于原点的对称点的坐标。

四、判断题1. 所有矩形都是轴对称图形。

()2. 所有等腰三角形都是轴对称图形。

()3. 所有等边三角形都是轴对称图形。

()4. 所有平行四边形都是轴对称图形。

()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。

2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。

3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。

答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。

轴对称单元测试题及答案

轴对称单元测试题及答案

轴对称单元测试题及答案一、选择题(每题2分,共20分)1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 中心线C. 垂直线D. 平行线3. 一个图形的轴对称图形与其本身是否完全重合?A. 是B. 否C. 有时是D. 不确定4. 轴对称图形的对称轴可以有多少条?A. 只有一条B. 至少一条C. 无数条D. 没有5. 下列哪个图形不是轴对称图形?A. 等边三角形B. 等腰梯形C. 矩形D. 正五边形二、填空题(每空1分,共10分)6. 轴对称图形的对称轴是________。

7. 如果一个图形关于点O对称,那么这个点O被称为该图形的________。

8. 一个轴对称图形的对称轴可以是一条________或多条________。

9. 轴对称图形的对称轴将图形分成两个完全________的部分。

10. 轴对称图形的对称轴是图形上所有点到________的距离相等的直线。

三、判断题(每题1分,共10分)11. 所有圆形都是轴对称图形。

()12. 轴对称图形的对称轴可以是曲线。

()13. 轴对称图形的对称轴一定经过图形的中心。

()14. 一个图形的轴对称图形与原图形是完全相同的。

()15. 轴对称图形的对称轴是唯一的。

()四、简答题(每题5分,共10分)16. 请解释什么是轴对称图形,并给出一个例子。

17. 描述如何确定一个图形是否是轴对称图形。

五、应用题(每题5分,共10分)18. 给定一个矩形,如果将其沿一条对角线折叠,这条对角线是否是该矩形的对称轴?为什么?19. 如果一个图形关于某条直线对称,那么这条直线上的所有点是否也是对称的?请解释。

六、解答题(每题5分,共10分)20. 给定一个等边三角形ABC,如果点A关于对称轴l对称到点A',求证点B和点C也关于对称轴l对称。

答案一、选择题1. A2. A3. A4. B5. D二、填空题6. 对称轴7. 对称中心8. 直线,直线9. 重合10. 对称轴三、判断题11. √12. ×13. ×14. √15. ×四、简答题16. 轴对称图形是指一个图形关于某条直线(对称轴)对称,这条直线将图形分成两个完全相同的部分。

沪科版八年级上册数学第15章 轴对称图形和等腰三角形含答案

沪科版八年级上册数学第15章 轴对称图形和等腰三角形含答案

沪科版八年级上册数学第15章轴对称图形和等腰三角形含答案一、单选题(共15题,共计45分)1、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.2、下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△DEF成轴对称,则△ABC一定与△DEF全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )A.2B.3C.4D.53、在联欢会上,有A,B,C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中垂线的交点B.三边中线的交点C.三条角平分线的交点 D.三边上高的交点4、若等腰三角形的底角为54°,则顶角为( )A.108°B.72°C.54°D.36°5、以下图形既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.平行四边形C.矩形D.等腰梯形6、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1, S2,则S1+S2的值为()A.16B.17C.18D.197、下列图形,既是轴对称图形又是中心对称图形的是()A.正三角形B.正五边形C.等腰直角三角形D.矩形8、观察如图,把边长为3的两个正方形沿其对角线长剪开,可得4个直角三角形,这4个直角三角形可拼成一个新的正方形,则新正方形的边长为()A.3B.6C.D.189、如图,在中,,边上的垂直平分线分别交、于点、,若的周长是11,则()A.28B.18C.10D.710、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④BD=2CD.A.4B.3C.2D.111、利用圆内接正多边形,可以设计出非常有趣的图案.下列图案中,是中心对称图形,但不是轴对称图形的是( )A. B. C.D.12、下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.13、如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BCB.CEC.ADD.AC14、如图,扇形OAB中,∠AOB=90°,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则的值为()A. B. C. D.15、平行四边形、矩形、菱形、正方形中是轴对称图形的有()个.A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为________.17、若□ABCD中一内角平分线和某边相交把这条边分成1cm、2cm的两条线段,则口ABCD的周长是________18、矩形的一个内角平分线把矩形一条边分成3 cm和5 cm两部分,则矩形的周长为________.19、如图,中,,于点,于点,于点,,则________ .20、如图,正方形ABCD中,点E,F分别在BC,CD上,三角形AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②AG=2GC,③BE+DF=EF,④S△CEF =2S△ABE正确的有________(只填序号).21、等腰△ABC中,当顶角A的大小确定时,它的对边BC与邻边(腰AB或AC)的比值确定,记为f(A),易得f(60°)=1.若α是等腰三角形的顶角,则f(α)的取值范围是________.22、在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距________cm.23、如图,D为等边内的一点,,,若,则的度数是________.24、如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B =________度.25、等腰三角形的两边长为3和6,则这个等腰三角形的周长是 ________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;(2)若AC=3cm,求DE的长.28、设等腰三角形顶角为α,一腰上的高线与底边所夹的角为β,是否存在α和β之间的必然关系?若存在,则把它找出来;若不存在,则说明理由。

2020-2021学年沪科版八年级数学第一徐诶第15章轴对称图形与等腰三角形单元测试卷(含答案)

2020-2021学年沪科版八年级数学第一徐诶第15章轴对称图形与等腰三角形单元测试卷(含答案)

《第15章轴对称图形与等腰三角形》单元测试卷一.选择题(共10小题)1.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.62.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.4.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个5.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC 的最大值为()A.40B.28C.20D.106.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格7.如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.8.一平面镜以与水平面成45°角固定在水平面上,如图所示,一个小球以1m/s的速度沿桌面向点O匀速滚去,则小球在平面镜中的像是()A.以1m/s的速度,做竖直向上运动B.以1m/s的速度,做竖直向下运动C.以m/s的速度运动,且运动路线与地面成45°角D.以2m/s的速度,做竖直向下运动9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.10.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C 在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18二.填空题(共8小题)11.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为.12.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=.14.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=时,满足条件的点C恰有三个.15.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.16.如图,在△ABC中,∠A=75°,∠C=45°,BC=4,点M是AC边上的动点,点M 关于直线AB、BC的对称点分别为P、Q,则线段PQ长的取值范围是.17.如图所示的商标有条对称轴.18.小明从镜子里看到镜子对面的钟表里的时间是2点30分,实际时间为点分.三.解答题(共8小题)19.已知:如图,△ABC中,AD平分∠BAC,DE∥AB分别交BC、AC于D、C两点,CE =6,DE=5.过D作DF⊥AB于F.DF=4.(1)求AE的长;(2)求△ACD的面积.20.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.21.如图,等腰△ABC中,AB=AC,∠ABC=35°,E是BC边上一点且AE=CE,D是BC边上的中点,连接AD,AE.(1)求∠DAE的度数;(2)若BD上存在点F,且∠AFE=∠AEF,求证:BF=CE.22.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.23.(1)当a=时,代数式2a+5的值为3;(2)等边三角形有条对称轴.24.已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.25.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.26.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题)1.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.6【分析】根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE =15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半,即可得到EF的长,进而得出OF的长.【解答】解:∵∠AOE=∠BOE=15°,EC⊥OB于点C,EG⊥OA于点G,∴CE=EG=3,∵EF∥OB,∴∠COE=∠OEF=15°∴∠EFG=15°+15°=30°,∠EOF=∠OEF,∴OF=EF=2EG=2×3=6.故选:D.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.2.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.【分析】由等腰三角形的性质得出∠ABC=∠ACB=72°,由三角形内角和定理得出∠A =36°,由作图得出BC=BD,得出∠BDC=∠C=72°,证出∠A=∠ABD,得出AD =BD=BC即可.【解答】解:∵AB=AC,∠C=72°,∴∠ABC=∠ACB=72°,∴∠A=180°﹣72°﹣72°=36°,∵以点B为圆心,BC为半径画弧,交AC于点D,∴BC=BD,∴∠BDC=∠C=72°,∴∠CBD=180°﹣72°﹣72°=36°,∴∠ABD=72°﹣36°=36°,∴∠A=∠ABD,∴AD=BD=BC=;故选:C.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理等知识;熟练掌握等腰三角形的判定与性质,证出AD=BD=BC是解题的关键.4.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个【分析】根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.【解答】解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选:D.【点评】本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.5.如图,△ABC 中,BC =10,AC ﹣AB =4,AD 是∠BAC 的角平分线,CD ⊥AD ,则S △BDC 的最大值为( )A .40B .28C .20D .10【分析】延长AB ,CD 交点于E ,可证△ADE ≌△ADC (ASA ),得出AC =AE ,DE =CD ,则S △BDC =S △BCE ,当BE ⊥BC 时,S △BEC 最大面积为20,即S △BDC 最大面积为10.【解答】解:如图:延长AB ,CD 交点于E ,∵AD 平分∠BAC ,∴∠CAD =∠EAD ,∵CD ⊥AD ,∴∠ADC =∠ADE =90°,在△ADE 和△ADC 中,,∴△ADE ≌△ADC (ASA ),∴AC =AE ,DE =CD ;∵AC ﹣AB =4,∴AE ﹣AB =4,即BE =4;∵DE =DC ,∴S △BDC =S △BEC ,∴当BE ⊥BC 时,S △BDC 面积最大,即S △BDC 最大面积=××10×4=10.故选:D .【点评】本题考查了角平分线定义、全等三角形的判定与性质、等腰三角形的性质等知识;利用三角形中线的性质得到S △BDC =S △BEC 是解题的关键.6.如图的方格纸中,左边图形到右边图形的变换是( )A .向右平移7格B .以AB 的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C .绕AB 的中点旋转180°,再以AB 为对称轴作轴对称D .以AB 为对称轴作轴对称,再向右平移7格【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB 为对称轴作轴对称,再向右平移7格.故选:D .【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.7.如图,在△ABC 中,∠C =90°,点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,则△ABC 与△A ′B ′C ′的面积之比为( )A .B .C .D .【分析】连接CC '并延长交A 'B '于D ,连接CB ',CA ',依据AC =A 'C ,BC =B 'C ,∠ACB =∠A 'CB ',可得△ABC ≌△A 'B 'C ,进而得出S △ABC =S △A 'B 'C ,再根据CD =CE =EC ',可得S △A 'B 'C =S △A 'B 'C ',进而得到S △ABC =S △A 'B 'C '.【解答】解:如图,连接CC '并延长交A 'B '于D ,连接CB ',CA ',∵点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,∴AC =A 'C ,BC =B 'C ,∠ACB =∠A 'CB ',AB 垂直平分CC ',∴△ABC ≌△A 'B 'C (SAS ),∴S △ABC =S △A 'B 'C ,∠A =∠AA 'B ',AB =A 'B ',∴AB ∥A 'B ',∴CD ⊥A 'B ',∴根据全等三角形对应边上的高相等,可得CD =CE ,∴CD =CE =EC ',∴S △A 'B 'C =S △A 'B 'C ',∴S △ABC =S △A 'B 'C ',∴△ABC 与△A ′B ′C ′的面积之比为,故选:B .【点评】本题考查的是轴对称的性质、三角形的面积及等积变换,解答此题的关键是熟知对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.8.一平面镜以与水平面成45°角固定在水平面上,如图所示,一个小球以1m/s的速度沿桌面向点O匀速滚去,则小球在平面镜中的像是()A.以1m/s的速度,做竖直向上运动B.以1m/s的速度,做竖直向下运动C.以m/s的速度运动,且运动路线与地面成45°角D.以2m/s的速度,做竖直向下运动【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,在平面镜中的顺序与现实中的恰好相反,且关于镜面对称,则小球在平面镜中的像是以1m/s的速度,做竖直向下运动.故选:B.【点评】本题考查了镜面反射的原理与性质.解决此类题应认真观察,注意技巧,充分发挥想象能力.9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.【分析】严格按照所给方法向下对折,再向右对折,向右下对折,剪去上部分的等腰直角三角形,展开得到答案.【解答】解:易得剪去的4个小正方形正好两两位于原正方形一组对边的中间.故选:C.【点评】主要考查了剪纸问题;学生空间想象能力,动手操作能力是比较重要的,做题时,要注意培养.10.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C 在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18【分析】过A作AH⊥OB于H,连接AD,根据MN垂直平分AB,即可得到AD=BD,当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,根据勾股定理求得AC的长,即可得到△BCD周长的最小值为13+5=18.【解答】解:如图,过A作AH⊥OB于H,连接AD,∵点A坐标为(10,12),AO=AB,∴OH=BH=10,AH=12,又∵OC=3BC,∴BC=5,CO=15,∴CH=15﹣10=5,∵MN垂直平分AB,∴AD=BD,∴BD+CD=AD+CD,∴当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,此时,Rt△ACH中,AC===13,∴△BCD周长的最小值=13+5=18,故选:D.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二.填空题(共8小题)11.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为4.【分析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE =PD,再根据两直线平行,内错角相等可得∠POD=∠OPC,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=∠AOB,再根据直角三角形30°角所对的直角边等于斜边的一半得出PE=PC=4,根据角平分线的性质得到答案.【解答】解:作PE⊥OA于E,∵P是∠AOB平分线上一点,∴∠AOP=∠BOP=15°,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=PC=4,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=4,故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造含30°角的直角三角形是解题的关键.12.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为100°.【分析】根据线段的垂直平分线的性质得到BE=BA,得到∠E=∠A=50°,根据三角形的外角的性质计算即可.【解答】解:∵BD垂直平分AE,∴BE=BA,∴∠E=∠A=50°,∴∠EBC=∠E+∠A=100°,故答案为:100°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=15°.【分析】根据线段垂直平分线的概念得到∠AED=90°,进一步求出∠ABD=∠A=50°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∵∠ADE=40°,∴∠ABD=∠A=50°,又∵AB=AC,∴∠ABC=65°,∴∠DBC=15°.故答案为:15°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.14.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=或2时,满足条件的点C恰有三个.【分析】分别以A,B为圆心,AB长为半径作圆,两圆相交于点C1,过点C1作直线l ∥AB,分别交两圆于点C2,C3;分别以A,B为圆心,AB长为半径作圆,在两圆上方作直线l∥AB,与两圆分别相切于点C2,C3,再根据三角形的面积公式计算即可.【解答】解:(1)如图所示:分别以A,B为圆心,AB长为半径作圆,两圆相交于点C1,过点C1作直线l∥AB,分别交两圆于点C2,C3,此时满足条件的点C恰好有3个,△ABC1为边长为2的等边三角形,其高为∴S=×2×=(2)如图所示:分别以A,B为圆心,AB长为半径作圆,在两圆上方作直线l∥AB,与两圆分别相切于点C2,C3,点C1为l与线段AB的垂直平分线的交点,此时满足条件的点C恰好有3个,△ABC2和△ABC3均为腰长为2的等腰直角三角形,△ABC1为底边为2,高为2的等腰三角形∴S=×2×2=2故答案为:或2.【点评】本题考查了等腰三角形的判定,构造圆,结合圆的切线性质及平行线的性质分类讨论,是解题的关键.15.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为3步.【分析】根据题意:分别计算出两种跳法所需要的步数,比较就可以了.【解答】解:如图中红棋子所示,根据规则:①点A从右边通过3次轴对称后,位于阴影部分内;②点A从左边通过4次轴对称后,位于阴影部分内.所以跳行的最少步数为3步.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分.16.如图,在△ABC中,∠A=75°,∠C=45°,BC=4,点M是AC边上的动点,点M 关于直线AB、BC的对称点分别为P、Q,则线段PQ长的取值范围是.【分析】连接BP、BQ、BM,过点B作BD⊥PQ于点D,由对称性可知PB=BM=BQ、△PBQ等腰三角形,进而即可得出PD=PB,再根据BM的取值范围即可得出线段PQ长的取值范围.【解答】解:∵∠A=75°,∠C=45°,∴∠ABC=180°﹣75°﹣45°=60°,连接BP、BQ、BM,过点B作BD⊥PQ于点D,如图所示.∵点M关于直线AB、BC的对称点分别为P、Q,∴BP=BQ=BM,∠PBA=∠MBA,∠MBC=∠QBC,∴∠PBQ=120°,∵PB=BQ,∴∠BPQ=∠BQP=30°,∴cos30°==,∴PD=PB,∵BC=4,∠C=45°,∴2≤BM≤4,∵BM=PB,∴2≤PB≤4,∴2≤PD≤4×,即≤PD≤2,∵PQ=2PD,∴2≤PQ≤4.故答案为:2≤PQ≤4.【点评】本题考查了轴对称的性质,等腰三角形的判定和性质,直角三角形30度角的性质和三角函数,解题的关键是证得△BPQ是等腰三角形.17.如图所示的商标有两条对称轴.【分析】根据轴对称图形的对称轴的意义结合图形画出,即可得出答案.【解答】解:有两条对称轴,如图所示:直线AB和直线CD.故答案为:两.【点评】本题考查了对轴对称图形的应用,注意:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形图形叫做轴对称图形轴对称图形,这条直线叫对称轴.18.小明从镜子里看到镜子对面的钟表里的时间是2点30分,实际时间为9点30分.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称,分析可得答案.【解答】解:2:30时,分针竖直向下,时针指23之间,根据对称性可得:与9:30时的指针指向成轴对称,故实际时间是9:30.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.三.解答题(共8小题)19.已知:如图,△ABC中,AD平分∠BAC,DE∥AB分别交BC、AC于D、C两点,CE =6,DE=5.过D作DF⊥AB于F.DF=4.(1)求AE的长;(2)求△ACD的面积.【分析】(1)依据角平分线的定义以及平行线的性质,即可得到∠DAE=∠ADE,进而得出AE=DE=5;(2)过D作DG⊥AC于G,依据角平分线的性质以及三角形面积公式,即可得到△ACD 的面积.【解答】解:(1)∵AD平分∠BAC,∴∠DAB=∠DAC,∵DE∥AB,∴∠ADE=∠DAB,∴∠DAE=∠ADE,∴AE=DE=5;(2)如图,过D作DG⊥AC于G,又∵DF⊥AB,AD平分∠BAC,∴DG=DF=4,∵CE=6,∴AC=AE+CE=5+6=11,∴△ACD的面积=×AC×DG=×11×4=22.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.20.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.【分析】连接BD,根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:连接BD,∵E为AB的中点,DE⊥AB于点E,∴AD=BD,∴∠DBA=∠A,∴∠DBA=66°,∵∠ABC=90°,∴∠DBC=∠ABC﹣∠ABD=24°∵AD=BC,∴BD=BC,∴∠C=∠BDC,∴∠C==78°.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.21.如图,等腰△ABC中,AB=AC,∠ABC=35°,E是BC边上一点且AE=CE,D是BC边上的中点,连接AD,AE.(1)求∠DAE的度数;(2)若BD上存在点F,且∠AFE=∠AEF,求证:BF=CE.【分析】(1)根据等腰三角形的性质可求∠C,再根据等腰三角形的性质可求∠CAE,根据等腰三角形三线合一的性质和三角形内角和定理可求∠CAD,再根据角的和差关系可求∠DAE的度数;(2)等腰三角形三线合一的性质可得BD=CD,FD=ED,再根据线段的和差关系即可求解.【解答】解:(1)∵AB=AC,∠ABC=35°,∴∠C=35°,∴∠CAE=35°,∵D是BC边上的中点,∴AD⊥BC,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣35°=55°,∴∠DAE=∠DAC﹣∠C=55°﹣35°=20°;(2)证明:∵D是BC边上的中点,∴BD=CD,∵∠AFE=∠AEF,∴AF=AE,∵AD⊥BC,∴D是EF边上的中点,∴FD=ED,∴BD﹣FD=CD﹣ED,即BF=CE.【点评】考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等;③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.22.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.【分析】(1)当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,依据点P运动的路程为6.5cm,即可得到x的值以及CP的长;(2)△ABP为等腰三角形,点P只能在AC上且PA=PB.设CP=x,则AP=BP=4﹣x,依据勾股定理即可得到x的值.【解答】解:(1)∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,∴点P运动的路程为6.5cm,∴x=6.5÷1=,此时CP=AB=cm;故答案为:,;(2)△ABP为等腰三角形,点P只能在AC上且PA=PB.设CP=x,则AP=BP=4﹣x,在Rt△BCP中,BC2+CP2=BP2,即32+x2=(4﹣x)2,解之得:x=,∴当x为时,△ABP为等腰三角形.【点评】本题考查了等腰三角形的判定与性质、勾股定理的应用,熟练掌握等腰三角形的判定与性质,利用勾股定理列方程是解决问题的关键.23.(1)当a=﹣1时,代数式2a+5的值为3;(2)等边三角形有3条对称轴.【分析】(1)根据题意得2a+5=3,解方程即可;(2)轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:(1)由题意得:2a+5=3,解得:a=﹣1,故当a=﹣1时,代数式2a+5的值为3;(2)等边三角形有3条对称轴.故答案为:﹣1,3.【点评】本题考查了轴对称的性质及解一元一次方程的知识,正确理解轴对称图形的定义是解决本题的关键,是一个基础题.24.已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.【分析】(1)根据轴对称变换的性质作图;(2)根据关于y轴对称的点的坐标特点解答;(3)根据矩形的面积公式和三角形的面积公式计算.【解答】解:(1)所作图形如图所示;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.(3)S△ABC【点评】本题考查的是轴对称变换的性质,掌握轴对称变换中坐标的变化特点是解题的关键,注意坐标系中不规则图形的面积的求法.25.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.【分析】本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.【解答】解:如图所示;【点评】本题主要考查的是利用轴对称设计图案,掌握轴对称图形的性质是解题的解题的关键.26.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P、A'、B在同一直线上(如图2)设直线A'B的解析式为:y=k'x+b'解得:∴直线A'B:y=﹣x﹣1当﹣x﹣1=0时,得:x=﹣2∴点P坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA'交x轴于点C,过B作BD⊥直线AA'于点D(如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或 解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB :y =﹣x +7再向上平移12个单位得直线AB :y =﹣x +19∴Q (0,19)综上所述,y 轴上存在点Q 使得△QAB 的面积等于△PAB 的面积,Q 的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.1、人生如逆旅,我亦是行人。

八年级数学《轴对称》单元测试题及答案(K12教育文档)

八年级数学《轴对称》单元测试题及答案(K12教育文档)

八年级数学《轴对称》单元测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学《轴对称》单元测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学《轴对称》单元测试题及答案(word版可编辑修改)的全部内容。

DC B A 八年级数学《轴对称》单元测试题选择题(本大题共12小题,每小题2分,共24分)1. 下列几何图形中,是轴对称图形且对称轴条数大于1的有( )长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线。

A 3个B 4个C 5个D 6个2. 下列说法正确的是( ) A. 任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC 与△DEF 成轴对称,则△ABC ≌△DEFD.点A,点B 在直线L 两旁,且AB 与直线L 交于点O,若AO =BO ,则点A 与点B 关于直线L 对称 3。

如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )4。

在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( ) A 。

(-2,-1) B 。

(-2,1) C 。

(2,1) D 。

(1,-2) 5。

已知点A 的坐标为(1,4),则点A 关于x 轴对称的点的纵坐标为( ) A 。

1 B. -1 C. 4 D 。

-4 6.等腰三角形是轴对称图形,它的对称轴是( )A 。

过顶点的直线B 。

底边上的高C 。

底边的中线D 。

顶角平分线所在的直线. 7。

已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( ) A 。

翼教版八年级数学(上册)《第十五章 轴对称》单元检测题(含答案详解)

翼教版八年级数学(上册)《第十五章 轴对称》单元检测题(含答案详解)

第十五章 轴对称检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.羊字象征吉祥和美好,下图的图案与羊字有关,其中是轴对称图形的有( ) A.1个 B.2个 C.3个 D.4个2.等腰三角形两边的长分别为 和,则这个三角形的周长是( )A. B. C.D.在到之间3.如图,平分∠,,,垂足分别为,下列结论正确的是( )A. B. C.∠∠ D.4.如图,直线是线段的垂直平分线,为直线上的一点,已知线段,则线段的长为( ) A. B. C. D.5.等腰三角形的周长为,其中一边长为,则该等腰三角形的底边长为( )A. B. C. D. 6.如图,在△中,,∠,的垂直平分线交于,交于,下列结论错误的是( ) A.平分∠ B.△的周长等于C. D.点是线段的中点7.如图,△与△关于直线对称,则∠等于( )[来源:]A. B. C. D.8.如图,已知∥,,则下列结论不一定成立的是( ) A.∠∠ B.∠∠C.D.9.已知和关于轴对称,则的值为( )A.1B.-1C. D.10.如图,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是( ) 二、填空题(每小题3分,共24分)11.观察字母,其中不是轴对称字母的是______________.12.如图是从镜中看到的一串数字,这串数字应为_________. 13.如图,在△中,,是∠的平分线,若则点到的距离为______. 14.已知点关于轴的对称点的坐标是,那么点关于轴的对称点的坐标是____. 15.等腰三角形一个顶角和一个底角之和是,则顶角等于______.16.如图,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对.A B C DABCDO第8题图O B 第6题图 E D C 第题图上折 右折 沿虚线剪下 展开17.如图,在△中,是的垂直平分线,,△的周长为,则△的周长为______.18.如图,在△中,,若∠,则∠________. 三、解答题(共46分)19.(6分)如图,已知在矩形中,,,在边上取一点,将△沿折叠,使点恰好落在边上的点处,请你求出的长. 20.(6分)如图,已知线段垂直平分线段,平分∠.问与平行吗?请说明理由.21.(6分)如图,∠内有一点,在射线上找出一点,在射线上找出一点,使最短.22.(6分)如图,在△中,分别平分∠和△的外角∠,∥交于点,求证:.23.(6分)已知,如图,在△中,,边的垂直平分线交于点,交于点,,△的周长为,求的长.24.(8分)已知、,当分别为何值时, (1)关于轴对称;(2)关于轴对称.25.(8分)如图,∥∠的平分线与∠的平分线交于点,过点的直线垂直于,垂足为,交于点.试问:点是线段的中点吗?为什么?第23题图AC E BD 第22题图D C BEF GAABCD P第25题图第十五章轴对称检测题参考答案1.B 解析:因为美和善都是轴对称图形,祥和洋不是轴对称图形,所以是轴对称图形的有2个.2.B 解析:当,由知此时构不成三角形;当为腰长时,由,知此时三角形的周长为故选B.3.A 解析:由平分∠,于,于,知故选项A 正确.4.D 解析:因为直线是线段的垂直平分线,为直线上的一点,所以.因为线段所以,故选D.5.B 解析:若长为边为腰,则等腰三角形的底边长为此时三角形不存在,所以长为边为底边,所以该等腰三角形的底边长为故选B.6.D 解析:因为在△中,,∠,所以∠∠.因为的垂直平分线是,所以,所以∠∠,所以∠∠∠∠,所以平分∠,故正确.△的周长为,故正确.因为∠,∠,所以∠∠∠,所以∠∠,所以,所以,故正确.因为,所以,所以点不是线段的中点,故错误.故选.7.D 解析:因为△与△关于直线对称,所以所以.8.C 解析:由∥,知由,知所以,故A、B正确.所以又,所以故D正确.故选C.9.A 解析:由关于轴对称的点,纵坐标相同,横坐标互为相反数,得,,所以10.B 解析:按照题意,动手操作一下,可知展开后所得的图形是选项B.11.解析:12.解析:自己动手操作一下,或从纸的后面看,可得答案为13.解析:过点作于点,由角平分线的性质,知14.解析:因为点关于轴的对称点的坐标是,所以点的坐标为,所以点关于轴的对称点的坐标是15.解析:因为等腰三角形的一个顶角和一个底角之和是,所以等腰三角形的底角为所以等腰三角形的顶角为16.解析:△和△,△和△△和△△和△共4对.17.19 解析:因为是的垂直平分线,所以,所以因为△的周长为,所以所以.所以△的周长为18.解析:因为,所以所以所以19.解:根据题意,得△≌△,所以∠,,.设,则.在Rt △中,由勾股定理,得,即,所以,所以.在Rt △中,由勾股定理可得,即,所以,所以,即.20.解:∥.理由如下:因为垂直平分,所以,所以∠∠.因为平分∠,所以∠∠,所以∠∠,所以∥.21.解:如图,分别以直线、为对称轴,作点的对应点和,连接,交于点,交于点,则最短.22.证明:因为分别平分∠和∠,所以∠∠,∠∠.因为∥,所以∠∠,∠∠.所以∠∠,∠∠.所以.所以.23.解:因为垂直平分,所以.因为,所以.因为△的周长为,所以故.24.解:(1)由题意,得解得所以当时,点关于轴对称.(2)由题意,得解得所以当,时,点关于轴对称. 25.解:点是线段的中点.理由如下:过点作于点因为∥所以.又因为∠的平分线,是∠的平分线,所以所以所以点是线段的中点. OPMN第21题答图YX。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010—2011学年度第一学期散水头中学八年级数学
第十五章轴对称单元检测
一、扫描与聚集
1.我国的文字非常讲究对称美,下列四个图案,有别于其余三个图案是( )
2.下列图形不一定是轴对称图形的是( ) A .等腰三角形 B .正方形 C .圆 D .三角形
3.观察图中的汽车商标,其中市轴对称图形的个数为( ) A .2 B .3 C .4 D .5
4.等腰三角形两边的长分别为2cm 和5cm ,则这个三角形的周长是( ) A .9 cm B .12cm C .9 cm 或12cm D .在9 cm 或12cm 之间
5.在等边三角形ABC 中,CD 是ACB ∠的平分线,过D 作DE//BC 交于E ,若ABC

的边长为a ,则ADE
∆的周长为()A.2a
B.3 a 4
C.1.5a
D.a
6.下列说法中,不正确的是()
A.等腰三角形底边上的中线就是它的顶角平分线
B.等腰三角形底边上的高就是底边的垂直平分线的一部分
C.一条线段可看作以它的垂直平分线对称轴的轴对称图形
D.两个三角形能够重合,他们一定是轴对称的
7.如图,在等腰三角形ABC中,AB=AC,BE、CD分别是底角的平分线,DE//BC,图中等腰三角形的个数是()
A.3
B.4
C.5
D.6
8.如图,AB=AC,
1
A=36,1=2,ADE=EDB
2
∠∠∠∠∠
,则图中等腰三角形有()
A.3 B.4 C.5 D.6
9.等腰三角形上的高与底边的夹角等于( ) A .顶角 B .顶角的两倍 C .顶角的一半 D .底角的一半
10.在等腰ABC ∆中,AB=AC ,O 为不同于A 的一点,且OB=OC 则直线AO 与底边BC 的关系为( )
A .平行
B .垂直且平分底边
C .斜交
D .垂直BC 但不平分BC 二、 思考与表达
11.如图是从镜中看到的一串数字,这串数字应为_________。

12.如图,在ABC ∆中,DE 是AC 的垂直平分线,AE=3 cm .ABD ∆的周长为13cm ,则ABC ∆的周长为______cm 。

13.等腰三角形底边长为4cm ,则腰长x 的取值范围是_____。

14.正五角星共有_______条对称轴。

15.如图,在ACD ∆中,AD=BD=BC ,若C=25∠,则ADB ∆= ______。

16.等腰三角形一个顶角和一个底角之和是110,则顶角是______。

17.如图,ABC ∆中,OB 平分ABC ∠,OC 平分ACB ∠经过点O 且平行BC ,BE=3 cm ,CF =2cm ,则EF= ________ cm 。

18.如图,ABC ∆中,AB=AC ,BD 是角平分线,BE=BD ,A=72∠,则DEC ∠= _____。

19.已知等腰三角形的一个角为42,则它的底角为_______。

20.如果等腰三角形的轴长是25cm ,一腰上的中线把三角形分成两个三角形的周长差
是4cm.则这个等腰三角形的腰长为_____。

三、应用与实践
21.如图,图中的图形式轴对称图形吗? 如果是轴对称图形,请作出他们的对称轴。

22.如图,以等腰三角形ABC 的边AB 的垂直平分线为对称轴画ABC ∆的轴对称图形。

23.如图,AD 是等腰ABC ∆顶角的外角的平分线,那么AD 与BC 平行吗?为什么?
24.如图,已知线段CD 垂直平分线AB ,AB 平分CAD ∠问AD 与BC 平行吗?请说明理由。

25.如图,XOY ∠内有一点P ,在射线OX 上找出一点M ,在射线OY 上找出一点N ,PM+MN+NP 最短。

26.如图,已知AOB ∠和AOB ∠内两点M 、N 画一点P 使它到AOB ∠的两边距离相等,且到点M 和N 的距离相等。

27.已知AOB ∠=30点P 在OA 上,且OP=2 ,点P 关于直线OB 的对称点是Q ,求PQ 的长。

28.如图,在ABC ∆中,C ∠为直角,A=30∠,CD ⊥AB 于D ,若BD=1。

求AB 的长。

答案
1.D 2.D 3.C 4.B 5.C 6.D 7.B 8.C 9.C 10.B 11.810 076 12.19 13.x>2cm 14.5 15.80 16.40 17.5 cm 18.103.5 19.42或69
20.7cm 或293cm ,11cm 或 17
3cm
21.略 22.略
23.解:AD//BC ,
ABC ∆是等腰三角形,∴B=C ∠∠,又EAC ∠是三角形ABC

的一个外角,EAC=B+C=2B ∴∠∠∠∠AD 平分EAC ∠,
1
EAD=EAC.EAD=B,AD//BC
2∴∠∠∴∠∠∴。

24.解:AD//BC ,
CD 垂直平分AB ,AC=BC,CAB=CBA,AB ∴∴∠∠平分
CAD,CAB=CAD,BAD=CBA.AD//BC ∠∴∠∠∴∠∠∴。

25.解:分别以直线OX 、OY 为对称轴,作P 点的对应点P P '''和,连结P P '''交OX
于M ,交OY 与N ,则PM+MN+NP 最短,如图所示。

26.如图所示,画法如下:(1)作AOB ∠的角平线OC ;(2)连结MN ,画线段MN 的垂直平分线,与OC 交于点P ,则点P 为符合题意的点。

27.解法1:如图所示。

连结OQ 。

点P 与点Q 关于OB 对称,∴OB 垂直平分PQ ,
∴OP=PQ , POB=BOQ 30.POQ 60POQ ∴∠∠=∴∠=∴∆是等边三角形,PQ OP 2∴==。

解法2 :设OB 交于PQ 于点D ,在Rt POD ∆中,因为POD=30,ODP=90,∠∠所
以1
PD=21
2⨯=,因为P 、Q 关于OB 对称,所以PD=PQ=1,所以PQ=2 。

28. 解:在Rt ABC ∆中,因为ACB=90,A=30,∠∠所以B=60.∠又因为CD AB ⊥于D ,所以在Rt ABC ∆中BCD=30∠,所以BC=2BD=2×1=2,在Rt ABC ∆中,因为
A=30,ACB=90,∠∠所以AB=2BC=4。

相关文档
最新文档