高中数学椭圆的焦点弦长公式的四种推导方法及其应用

高中数学椭圆的焦点弦长公式的四种推导方法及其应用
高中数学椭圆的焦点弦长公式的四种推导方法及其应用

椭圆的焦点弦长公式的四种推导方法及其应用

摘要

:直线与椭圆相交时的弦长问题,可以用万能的弦长公式解决即12

AB x -或

者12AB y -,而有一种特殊的弦是过焦点的弦,它的弦长有专门的公式:

22222cos ab AB a c θ

=-,如果记住公式,可以给我们解题带来方便.

下面我们用万能弦长公式,余弦定理,焦半径公式,仿射性四种方法来推导椭圆的焦点弦长公式,这几种方法涉及到很多思想,最后举例说明其应用.

解法一:根据弦长公式直接带入解决.

题:设椭圆方程为122

22=+b

y a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭

圆于1122(,),(,)A x y B x y 两点,求弦长AB .

椭圆方程12222=+b

y a x 可化为02

22222=-+b a y a x b ……①,

直线l 过右焦点,则可以假设直线为:x my c =+(斜率不存在即为0m =时),代入①得:

222222222()20b m a y mcb y b c a b +++-=,整理得,222224()20b m a y mcb y b ++-=

∴24

1212222222

2,mcb b y y y y b m a b m a +=-=-++,

12AB y -==∴()2

222

221ab AB m b m a

=++ (1)若直线l 的倾斜角为θ,且不为90o

,则1

tan m θ

=

,则有: ()222

2222

222

221111tan tan ab ab AB m b m a b a θθ

??=+=+ ?+??+,

由正切化为余弦,得到最后的焦点弦长公式为2

222

2cos ab AB a c θ

=-……②. (2)若=90θo

,则0m =,带入()22

222

21ab AB m b m a =++,得通径长为22b a ,同样满足②式.并且由

()222232222222

2222222222

22()222()2()21=22ab a b m a a ab a a b a a b b AB m a a b m a b m a b m a a a +-+--=+=-≥-=+++,当且仅当0=m 即斜率不存在的时候,过焦点弦长最短为a b 2

2,故可知通径是最短的焦点弦,.

综上,焦点弦长公式为2

2222cos ab AB a c θ

=-.

解法二:根据余弦定理解决

题:设椭圆方程为122

22=+b

y a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭

圆于1122(,),(,)A x y B x y 两点,求弦长AB .

解:如右图所示,连结11,F A F B ,设22=,F A x F B y =,假设直线的倾斜角为θ,则由椭圆定义可得11=2,2F A a x F B a y -=-,在

12AF F ?中,由余弦定理得

222(2)(2)cos()4c x a x cx πθ+---=,化简可得2

cos b x a c θ=-,在

12BF F ?中,由余弦定理同理可得2

cos b y a c θ=+,则弦长

222

22

22=cos cos cos b b ab AB x y a c a c a c θθθ=+=+-+-.

解法三:利用焦半径公式解决

题:设椭圆方程为122

22=+b

y a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭

圆于1122(,),(,)A x y B x y 两点,求弦长AB .

解:由解法一知222121212222222

22=()22m cb a c

x x my c my c m y y c c b m a b m a ++++=++=-+=++.由椭圆

的第二定义可得焦半径公式,那么2122,F A a ex F B a ex =-=-

故222221212222

22

2222(1)

=2()ab m ab ab m AB a ex a ex a e x x b m a b m a ++-+-=-+==++

后面分析同解法一.

解法四:利用仿射性解决

题:设椭圆方程为122

22=+b

y a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭

圆于1122(,),(,)A x y B x y 两点,求弦长AB .

解:利用仿射性,可做如下变换''x x

a y y

b =???=??

,则原椭圆变为222

(')(')x y a +=,这是一个以原点为圆心,

a 为半径的圆.假设原直线的斜率为k ,则变换后斜率为

a

k b

.椭圆中弦长212=1AB k x x +-,经过变换后变为2

12''1()a A B k x x b

=+-,带入,得变换前后弦长关系为

22

2

2

1=

''b k AB A B b a k

++……③

而我们知道圆的弦长可以用垂径定理求得.如图所示,假设直线为

()a

y k x c b

=

-,圆心到直线的距离为21()

a kc b

d a k b

=+,根据半径

为a ,勾股定理求得弦长为

2

2222222

2(

)

(1)''=221()akc a b k b A B a ak b a k b

+-=++,将此结果带入③中,得

22

2222222222222222211(1)2(1)

=

''=2=b k b k a b k ab k AB A B b a k b a k b a k b a k

++++++++,由tan k θ=,带入得 2

222

2cos ab AB a c θ

=-.

上面我们分别用了四种不同的方法,求出了椭圆中过焦点的弦长公式为:2

222

2cos ab AB a c θ

=-,记住这个公式,可以帮助我们快速解决一些题目,下面我们举例说明.

例1

已知椭圆

22

12521

x y +=

的直线交椭圆于,A B 两点,求AB . 分析:如果直接用弦长公式解决,因为有根号,特别繁琐,利用公式则迎刃而解.

解:由题,2

2

5,21,4=3

a b c π

θ===,,带入2

222

2cos ab AB a c θ=-得=10AB . 例2

已知点3

(1,)2

P -在椭圆C :22221(0)x y a b a b +=>>上,过椭圆C 的右焦点2(1,0)F 的直线l 与

椭圆C 交于,M N 两点. (1)求椭圆的标准方程;

(2)若AB 是椭圆C 经过原点O 的弦,且MN AB P ,2

AB

W MN

=

,试判断W 是否为定值?若是定值,

求出这个定值,若不是,说明理由.

分析:因为l 过焦点,故弦长可以用过焦点的弦长公式解决,显得十分简洁简单. 解:(1)由题知1c =,将点P 带入得

2219

14a b

+=,又222a b c =+,解得224,3a b ==,故椭圆方程为22

143

x y +=. (2)假设(,)A m n

,则AB =,设倾斜角为θ

,则cos θ=

,根据过焦点的

弦长公式则2

2

2

22

22

22

2

2

21234cos 12()4ab

m n MN m a c m n m n θ

+===-+-+,故2

22

=443AB

m n W MN =+()=4. 例3

如图,已知椭圆22

143

x y +=的左右焦点为12,F F ,过2F 的直线1l 交椭圆于,A C 两点,过1F 的直线2l 交椭圆于,B D 两点,12,l l 交于点P (P 在x 轴下方),且123

4

F PF π∠=,求四边形ABCD 的面积的最大值.

分析:注意到以原点为圆心,半焦距为半径的圆与椭圆没有交点,故形成1234

F PF π

∠=的点P 在圆内,先可以用焦点弦长公式表示出面积,再利用换元求出其最大值.

解:假设1l 的倾斜角为θ,则2l 的倾斜角为

3+4πθ,由椭圆的焦点弦长公式得:2

12

4cos AC θ

=-, 2124cos ()

4

BD π

θ=

--,2

21221212=

2244cos 4cos ()4

S AC BD πθθ???=??---, 设2

2

()(4cos )(4cos ())4

f π

θθθ=---

71714971(cos 2)(sin 2)sin 2+cos 2+sin 42222448

θθθθθ=--=-() 设sin 2cos 2(2,2)t t θθ??+=∈-?

?

, 则2

sin 41t θ=-,带入得2

4971()+(1)448

f t t t =-- 即21797()848

f t t t =

-+ min 99142

()8

f t -=

,此时2t =, 即sin 2cos 22θθ+=

,得到=

8

π

θ.

综上,四边形ABCD 的最大值为2882

=

5.1499142

S ≈-.此时

=

8

π

θ,得到2l 的倾斜角为

78

π

,刚好两直线关于y 轴对称,如右图所示.

高中数学-圆锥曲线有关焦点弦的几个公式及应用.

圆锥曲线有关焦点弦的几个公式及应用 如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在 直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以 。

图1 (2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为()

解这里,所以,又,代入公式得,所 以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则() 解这里,,设直线的倾斜角为,代入公式得,所以 ,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3

椭圆的焦点弦长公式

椭圆的焦点弦长公式 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

椭圆的焦点弦长公式 θ2222 21cos 2c a ab F F -=及其应用 在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有命题: 若椭圆的焦点弦21F F 所在直线的倾斜角为θ,a 、b 、c 分别表示椭圆的长半轴长、短半轴长和焦半距,则有θ 2222 21cos 2c a ab F F -=。 上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。 例1、已知椭圆的长轴长AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点,设X PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长? 分析:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而 22=b ,故由焦 点弦长公式θ 2222 21cos 2c a ab F F -=及题设可得:24cos 816)22(4222=-??α,解得αcos ±=22-,即α=arc 22cos -或arc -π22cos -。 例2、在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的 准线为Y 轴,直线l 通过点F ,且倾斜角为3 π,又直线l 被椭圆E 截得的线段的长度为5 16,求椭圆E 的方程。 分析:由题意可设椭圆E 的方程为1)1()3(22 22=-+--b y a c x ,又椭圆E 相应于F 的准线为Y 轴,故有32 +=c c a (1), 又由焦点弦长公式有3cos 22 222 πc a ab -=5 16 (2)又 222c b a += (3)。解由(1)、

椭圆的焦点弦长公式

椭圆的焦点弦长公式 θ2222 21cos 2c a ab F F -=及其应用 在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢首先我们有命题: 若椭圆的焦点弦21F F 所在直线的倾斜角为θ,a 、b 、c 分别表示椭圆的长半轴长、短半轴长和焦半距,则有θ 2222 21cos 2c a ab F F -=。 上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。 例1、已知椭圆的长轴长AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点,设X PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长 分析:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而22=b ,故由焦 点弦长公式θ 2222 21cos 2c a ab F F -=及题设可得:24cos 816)22(4222=-??α,解得αcos ±=22-,即α=arc 22cos -或arc -π22cos -。 例2、在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的准线为Y 轴,直线l 通过点F ,且倾斜角为 3 π,又直线l 被椭圆E 截得的线段的长度为516,求椭圆E 的方程。 分析:由题意可设椭圆E 的方程为1)1()3(22 22=-+--b y a c x ,又椭圆E 相应于F 的准线为Y 轴,故有32 +=c c a (1), 又由焦点弦长公式有3cos 22 222πc a ab -=516 (2)又 222c b a += (3)。解由(1)、(2)、(3)联列的方程组得:42=a ,32 =b ,1=c ,从而所求椭圆E 的方程为13 )1(4)4(2 2=-+-y x 。 例3、已知椭圆C :12222=+b y a x (0>>b a ),直线1l :1=-b y a x 被椭圆C 截得的

圆锥曲线的焦点弦公式及应用(难)

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。 证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。由圆锥曲线的统一定义得,,又,所以。 (1)当焦点内分弦时。 如图1,,所以。 图1

(2)当焦点外分弦时(此时曲线为双曲线)。 如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心 率为。过右焦点且斜率为的直线于相交于两点,若,则()

解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。 例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为 的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时, 设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点 且斜率为的直线交的两支于两点。若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

高中数学椭圆的焦点弦长公式的四种推导方法及其应用

椭圆的焦点弦长公式的四种推导方法及其应用 摘要 :直线与椭圆相交时的弦长问题,可以用万能的弦长公式解决即12 AB x -或 者12AB y -,而有一种特殊的弦是过焦点的弦,它的弦长有专门的公式: 22222cos ab AB a c θ =-,如果记住公式,可以给我们解题带来方便. 下面我们用万能弦长公式,余弦定理,焦半径公式,仿射性四种方法来推导椭圆的焦点弦长公式,这几种方法涉及到很多思想,最后举例说明其应用. 解法一:根据弦长公式直接带入解决. 题:设椭圆方程为122 22=+b y a x ,左右焦点分别为12(,0),(,0)F c F c -,直线l 过椭圆的右焦点2F 交椭 圆于1122(,),(,)A x y B x y 两点,求弦长AB . 椭圆方程12222=+b y a x 可化为02 22222=-+b a y a x b ……①, 直线l 过右焦点,则可以假设直线为:x my c =+(斜率不存在即为0m =时),代入①得: 222222222()20b m a y mcb y b c a b +++-=,整理得,222224()20b m a y mcb y b ++-= ∴24 1212222222 2,mcb b y y y y b m a b m a +=-=-++, ∴ 12AB y -==∴()2 222 221ab AB m b m a =++ (1)若直线l 的倾斜角为θ,且不为90o ,则1 tan m θ = ,则有: ()222 2222 222 221111tan tan ab ab AB m b m a b a θθ ??=+=+ ?+??+, 由正切化为余弦,得到最后的焦点弦长公式为2 222 2cos ab AB a c θ =-……②. (2)若=90θo ,则0m =,带入()22 222 21ab AB m b m a =++,得通径长为22b a ,同样满足②式.并且由

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F 为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P 为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PQ e PF =,∴)cos (p PF e PF +=θ,其中FH p =,=θ〈x 轴,FP 〉 ∴焦半径θ cos 1e ep PF -=. 当P 在双曲线的左支上时,θcos 1e ep PF +- =. 推论:若圆锥曲线的弦MN 经过焦点F ,则有 ep NF MF 211=+.

三、圆锥曲线的焦点弦长 若圆锥曲线的弦MN 经过焦点F , 1、椭圆中,c b c c a p 2 2=-=,θ θπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中, 若M 、N 在双曲线同一支上,θ θπθ2222 cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2 222 cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ. 3、抛物线中,θ θπθ2sin 2)cos(1cos 1p p p MN =--+-=. 四、直角坐标系中的焦半径公式 设P (x,y )是圆锥曲线上的点, 1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2; 2、若1F 、2F 分别是双曲线的左、右焦点, 当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2; 当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2; 3、若F 是抛物线的焦点,2p x PF + =.

圆锥曲线弦长公式

圆锥曲线弦长公式 关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。解:连结,设,由椭圆定义得,由余弦定理得 ,整理可得,同理可求得,则弦长 同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距) 结论:椭圆过焦点弦长公式: 二

. 双曲线的焦点弦长 设双曲线,其中两焦点坐标为 ,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。 。 解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得 整理可得,同理,则可求得弦长

(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得, 整理可得,则 因此焦点在x轴的焦点弦长为 同理可得焦点在y轴上的焦点弦长公式 三

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。. 抛物线的焦点弦长 若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|(图4) 解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得 即 则 同理的焦点弦长为

的焦点弦长为,所以抛物线的焦点弦长为 由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。 一

焦点弦公式及其应用

焦点弦公式及其应用 焦点弦公式及其应用论文关键词:焦点弦公式,应用 在近年来的高考数学试题中,经常出现圆锥曲线焦点弦问题.用常规方法解决这类问题时,由于解题过程复杂,运算量较大,所以很容易出现差错. 为了准确而迅速地解决圆锥曲线焦点弦问题.我们可以利用下面介绍的焦点弦公式. 设圆锥曲线的离心率为,焦准距为,过焦点的弦AB与主轴(即椭圆长轴、双曲线实轴、抛物线对称轴)的夹角为θ,则可以推导出弦AB的长度公式,简称焦点弦公式.特别当离心率时,焦点弦公式还可以化简. 1、当时,圆锥曲线为椭圆, ; 2、当时,圆锥曲线为抛物线, . 图1 下面对焦点弦公式进行证明. 证法一如图1,设椭圆C:焦点为,过焦点F的弦AB的倾斜角为,当时,弦AB在直线L:上.由直线L和椭圆C的方程可得 .

设点A、B的坐标分为和,则.由焦半径公式得弦AB的长度为 ∵焦准距为,∵.当时,公式也成立. 对于双曲线和抛物线用同样的方法可以证明. 证法二设圆锥曲线的离心率为,焦准距为,则极坐标方程为,过焦点的弦AB与x轴的夹角为θ.当时,如图2.∵,. ∵ .即. 当时,同理可以推得. 利用焦点弦公式,可以巧妙地解决与圆锥曲线焦点弦有关的各种问题.现在分别举例如下. 一、在椭圆中的应用 例1 (2008年高考安徽卷文科22题) 已知椭圆,其相应于焦点F(2,0)的准线方程为x=4. (∵)求椭圆C的方程; (∵)已知过点F1(-2,0)倾斜角为的直线交椭圆C于A,B两点.,求证: (∵)过点F1(-2,0)作两条互相垂直的直线分别交椭圆C于点A、B和D、E,求的最小值. 解:(∵)由已知得,又,所以. 故所求椭圆C的方程为. (∵)因为直线AB倾斜角为,,,,。 由焦点弦,可得=得证.

椭圆的焦点弦长公式

在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题。 结论:若椭圆的焦点弦21F F 所在直线的倾斜角为θ,a 、b 、c 分别表示椭圆的长半轴长、短半轴长和焦半距,则有θ 2222 21cos 2c a ab F F -=。 例1.已知椭圆的长轴长AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点, 设X PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长? 解:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而22=b ,由焦点弦长公式 θ2222 21cos 2c a ab F F -=及题设可得:24cos 816)22(4222=-??α,解得αcos ±=22-,即 α=arc 22cos -或arc -π22cos -。 例2.在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的准线为Y 轴,直线l 通过点F ,且倾斜角为3 π,又直线l 被椭圆E 截得的线段的长度为516,求椭圆E 的方程。 解:由题意可设椭圆E 的方程为1)1()3(22 22=-+--b y a c x ,又椭圆E 相应于F 的准线为Y 轴,故有32 +=c c a ;由焦点弦长公式有3cos 22222π c a ab -=5 16;又 222c b a +=;解得:42=a ,32=b ,1=c ,从而所求椭圆E 的方程为13 )1(4)4(2 2=-+-y x 。 例3.已知椭圆C :12222=+b y a x (0>>b a ),直线1l :1=-b y a x 被椭圆C 截得的弦长为22,过椭圆右焦点且斜率为3的直线2l 被椭圆C 截得的弦长是它的长轴长的5 2,求椭圆C 的方程。 解:由题意可知直线1l 过椭圆C 的长、短轴的两个端点,故有822=+b a ,又由焦点弦长公式得 θ2222cos 2c a ab -=54a , 因tan θ=3,得3 πθ=,又 222c b a += ,解得:62=a ,22=b ,从而所求椭圆E 的方程为1262 2=+y x 。

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F作相应准线的垂线,垂足为K,以FK的反向延长线为极轴建立极坐标系. ep 椭圆、双曲线、抛物线统一的极坐标方程为:. 1ecos 其中p是定点F到定直线的距离,p>0. 当0<e<1时,方程表示椭圆; 当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PF e PQ,∴PF e(PF cos p),其中p FH,〈x轴,FP〉∴焦半径PF ep . 1ecos 当P在双曲线的左支上时,PF ep 1ecos . 推论:若圆锥曲线的弦MN经过焦点F,则有 112 . MF NF ep

2 cos 2 . c 2 2 2 三、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 经过焦点 F , a 2 b 2 ep ep 2ab 2 1、椭圆中, p , MN c c 1 ecos 1 ecos( ) a 2 c 2、双曲线中, ep ep 2ab 2 若 M 、N 在双曲线同一支上, MN ; 1 ecos 1 ecos( ) a 2 c 2 cos ep ep 2ab 2 若 M 、N 在双曲线不同支上, MN . 1 ecos 1 ecos c 2 cos a 2 3、抛物线中, MN p p 2p . 1 cos 1 cos( ) sin 四、直角坐标系中的焦半径公式 设 P (x,y )是圆锥曲线上的点, 1、若 F 、F 分别是椭圆的左、右焦点,则 PF 1 2 1 a ex ,PF 2 a ex ; 2、若 F 、 F 分别是双曲线的左、右焦点, 1 2 当点 P 在双曲线右支上时, PF 1 ex a , PF 2 ex a ; 当点 P 在双曲线左支上时, PF 1 a ex , PF 2 a ex ; 3、若 F 是抛物线的焦点, PF x p . 2

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问

椭圆的焦点弦长公式

椭圆的焦点弦长公式 θ 2 2 2 2 21cos 2c a ab F F -= 及其应用 在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有命题: 若椭圆的焦点弦21F F 所在直线的倾斜角为θ,a 、b 、c 分别表示椭圆的长半轴长、 短半轴长和焦半距,则有θ 2 2 2 2 21cos 2c a ab F F -= 。 上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。 例1、已知椭圆的长轴长AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点,设X PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长? 分析:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而22=b ,故由焦 点弦长公式θ 2 2 2 2 21cos 2c a ab F F -= 及题设可得: 24c o s 816)22(422 2 =-??α ,解得 αc o s ±=22-,即α=arc 22cos -或arc -π22cos -。 例2、在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的准线为Y 轴, 直线l 通过点F ,且倾斜角为3 π ,又直线l 被椭圆E 截得的线段的长度为5 16,求椭圆E 的 方程。 分析:由题意可设椭圆E 的方程为 1)1() 3(2 2 2 2 =-+ --b y a c x ,又椭圆E 相应于F 的准线 为Y 轴,故有 32 +=c c a (1), 又由焦点弦长公式有 3 cos 22 2 2 2 πc a ab -= 5 16 (2) 又 222c b a += (3)。解由(1)、(2)、(3)联列的方程组得:42=a ,32 =b ,1=c , 从而所求椭圆E 的方程为 13 ) 1(4) 4(2 2 =-+ -y x 。 例3、已知椭圆C : 12 22 2=+ b y a x (0>>b a ),直线1l : 1=- b y a x 被椭圆C 截得的

高中数学椭圆的焦点弦长公式的四种推导方法及其应用

椭圆的焦点弦长公式的四种推导方法及其应用 摘要 :直线与椭圆相交时的弦长问题,可以用万能的弦长公式解决即 AB = 1 k 2 x 1 x 2 或者 AB= 1+( k 1 )2 y 1 y 2 ,而有一种特殊的弦是过焦点的弦,它的弦长有专门的公 式: 2ab 2 AB 2 2a 2b 2 ,如果记住公式,可以给我们解题带来方便 . a 2 c 2 cos 2 下面我们用万能弦长公式, 余弦定理, 焦半径公式, 仿射性四种方法来推导椭圆的焦点弦长公式, 这几种方法涉及到很多思想,最后举例说明其应用 . 解法一 :根据弦长公式直接带入解决 . 22 题:设椭圆方程为 x 2 y 2 1,左右焦点分别为 F 1( c,0), F 2(c,0) ,直线 l 过椭圆的右焦点 F 2 交椭 ab 圆于 A( x 1 , y 1), B ( x 2 , y 2 )两点,求弦长 AB . 22 椭圆方程 x 2 y 2 1可化为 b 2x 2 a 2y 2 a 2 b 2 ??①, a 2 b 2 直线 l 过右焦点,则可以假设直线为: x my c ( 斜率不存在即为 m 0时 ) ,代入①得: (b 2m 2 a 2)y 2 2mc b 2 y b 2 c 2 a 2b 2 0 ,整理得, (b 2m 2 a 2)y 2 2mcb 2 y b 4 ∴ y 1 y 2 b 2m 2 2mcb 2 2 ,y 1y 2 a b 4 b 2m 2 a AB = 1+( k 1 )2 y 1 y 2 1 m 2 ( 2 2 bm 2mcb 2 ) 2 2) a 4b 4 2 2 2 b m a 1 m 2 4a 2 b 4 (1 m 2 ) 2 2 2 2 (b m a ) ∴ AB 2ab 2 2 2 2 b m a 1m 1)若直线 l 的倾斜角为 ,且不为 90o ,则 1 tan ,则有: AB b 2m 2a 2b a 2 1 m 2 b m a 2ab 2 2 1 2 b 2 a tan 1 tan 2 由正切化为余弦,得到最后的焦点弦长公式为 AB 2ab 2 2 2 2 a c cos ②. 2)若 =90o ,则 m 0,带入 AB 2 2ab 2 2 2 2 b m a 1 m 2 ,得通径长为 2b 2 ,同样满足②式 .并且由 a

圆锥曲线焦点弦问题

圆锥曲线焦点弦问题

θ2222 sin 2c a ab - 高考题:1.过抛物线)0(22 >=p py x 的焦点F 作倾斜角为300的直线与抛物线交于A 、B 两点(点A 在y 轴左侧),则 =FB AF 解:由公式:11cos +-= λλθe 得:11-21+=λλ,解得λ=3,∴=FB AF 3 1 2.双曲线122 22=-b y a x ,AB 过右焦点F 交双曲线与A 、B ,若直线AB 的斜率为3, 4=则双曲线的离心率e= 解:∵由已知tan θ=3∴θ=600, 由公式:11cos +-= λλθe 得:e 11-21+=λλ=1 41 -4+ ∴ e= 5 6 3.(2010高考全国卷)已知椭圆C :12222=+b y a x (a>b>0),离心率23 =e ,过右焦点且 斜率为k (k>0)的直线与C 相交于A 、B 两点,若3=,则k=( B )

A 、1 B 、2 C 、3 D 、2 解:由公式:11 cos +-= λλθe 得cos θ=3 1∴ k=tan θ=2;故选B 。 4.2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为 ,过 且斜率为的直线交 于 两点。若 ,则 的离心率为( ) 解 这里,所以,又,代入公式得,所 以 ,故选。 5.(08高考江西)过抛物线的焦点作倾斜角为的直线,与抛物 线交于 两点(点在轴左侧),则有____ 图3 解 如图3,由题意知直线 与抛物线的地称轴的夹角 ,当点 在 轴左侧时, 设,又,代入公式得,解得,所以。

6.(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。 7.已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。若,则___ 解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。8.(2009年高考福建)过抛物线的焦点作倾斜角为的直线,交抛物线于两点,若线段的长为8,则___ 解由抛物线焦点弦的弦长公式为得,,解得。 11.(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___ 解易知均在右支上,因为,离心率,点准距 ,因倾斜角为,所以。由焦半径公式得, 。

高中数学 圆锥曲线焦点弦斜率公式及应用 专题辅导

高中数学 圆锥曲线焦点弦斜率公式及应用 专题辅导 周华生 本文介绍圆锥曲线标准方程的两个用定比λ表示的斜率公式及解题时的巧妙应用。 定理1 若 AB 是椭圆 )0b a (b a y a x b :2222221>>=+Γ或双曲线 2222222b a y a x b :=-Γ或抛物线)0p (px 2y :23>=Γ的焦点弦,F 为焦点且λ=,(A 在B 之上),则弦AB 所在直线斜率k 满足 )1,0(1e ) 1()1(k 2 2 22 ±≠λ≠λ--λ+λ= (1) 证明:设AB 的倾角为α。 (1)当?<α<900时,l 为F 对应的准线,如图1对曲线1Γ: ?? ?α-α=±=+-=+-=+λ-λ== λ) F (cos e ) F (cos e |AB ||)BC |(e |BF ||AF ||)'BB ||'AA (|e | BF ||AF || BF ||AF |11,|'BB || 'AA ||BF ||AF |为右焦点为左焦点 所以2 22 2 )1()1(e sec -λ+λ=α,即1e )1()1(tan 2222--λ+λ=α。 (2)当?<α

圆锥曲线之焦点弦专题

圆锥曲线之焦点弦专题 一.圆锥曲线常用的几种方法: 1.定义法 2.韦达定理 3.设而不求点差法 4.弦长公式法 5.数形结合法 6.参数法(点参数;K参数:角参数) 7.代入法中的顺序 8.充分利用曲线系方程法 二.圆锥曲线七种常见题型 1.中点弦问题 2.焦点三角形问题 3.直线与圆锥曲线位置关系 4.圆锥曲线的有关最值(范围)问题 5.求曲线的方程问题 6.存在两点关于直线对称问题 7.两线段垂直问题 三.焦点弦题型讲与练 模型:e=√1+k2|?-1/?+1|或|ecos?|=|?-1/?+1 1.已知椭圆c:x2/a2+y2/b2=1的离心率为√3/2,过右焦点F且斜率为k的直线与c交与A.B两点,若向量AF=3FB.求k的值。 2设F1,F2分别是椭圆E:x2+y2/2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为___ .3.设F1.F2分别为椭圆x2/3+y2=1的左右的焦点,点A,B在椭圆上,若向量F1A =5F2B,则A点的坐标 .

4.椭圆的左右焦点分别为F1F2,A、B是椭圆上的两点,AF1=3F1B,∠BAF=90,椭圆的离心率是() A 1/2 B√2/2 C√3/2 D3/4 5.(本小题满分12分)设F1,F2分别是椭圆E:的左,右焦点, 过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(I) 求E的离心率; (II) 设点P(0,-1)满足|PA|=|PB|,求E的方程. 6.设F1,F2分别是椭圆C:的左,右焦点,M是C上一点且MF2 与x轴垂直.直线MF1与C的另一交点为N. (Ⅰ)若直线MN的斜率为3/4,求C的离心率; (Ⅱ)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b. 7.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E. (Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程; (Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程焦半径公式焦点弦公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.? 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.? 椭圆、双曲线、抛物线统一的极坐标方程为:θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0. 当0<e <1时,方程表示椭圆;? 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线

(2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需令0θ=, 右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义,简洁而有 力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题 若圆锥曲线的弦MN 经过焦点F ,

圆锥曲线焦点弦公式及应用

圆锥曲线焦点弦公式及应用 湖北省阳新县高级中学邹生书 焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。 定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。(1)当焦点内分弦时,有 ;(2)当焦点外分弦时(此时曲线为双曲线),有 。 证明设直线是焦点所对应的准线,点在直线上的射影分别为, 点在直线上的射影为。由圆锥曲线的统一定义得,,又 ,所以。 (1)当焦点内分弦时。 如图1,,所以 。 图1 (2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以 。 图2 评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。 例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右 焦点为,过且斜率为的直线交于两点。若,则的离心率为() 解这里,所以,又,代入公式得,所 以,故选。 例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的 离心率为。过右焦点且斜率为的直线于相交于两点,若,则() 解这里,,设直线的倾斜角为,代入公式得, 所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜 角为的直线,与抛物线交于两点(点在轴左侧),则有____ 图3 解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴 左侧时,设,又,代入公式得,解得,所以。 例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___ 解设直线与焦点所在的轴的夹角为,则,又,代 入公式得,所以。 例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。若,则___ 解这里,,因直线与左右两支相交,故应选择公式 ,代入公式得,所以所以,所以。 定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准 距(焦点到对应准线的距离)为。过点的弦与曲线的焦点所在的轴的夹

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线

(3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题

椭圆的焦点弦长公式(1)

椭圆的焦点弦长公式 θ 2222 21cos 2c a ab F F -=及其应用 在有关椭圆的综合题中,常常遇到椭圆焦点弦的问题,如何解决这类问题呢?首先我们有 命题: 若椭圆的焦点弦21F F 所在直线的倾斜角为θ,a 、b 、c 分别表示椭圆的长半轴长、短半轴长和焦半距,则有θ 2222 21cos 2c a ab F F -=。 上面命题的证明很容易得出,在此笔者只谈谈该命题的应用。 例1、已知椭圆的长轴长 AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点,设X PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长? 分析:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而22=b ,故由焦 点弦长公式θ 2222 21cos 2c a ab F F -=及题设可得:24cos 816)22(4222=-??α,解得αcos ±=22-,即α=arc 22cos -或arc -π22cos -。 例2、在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的准线为Y 轴,直线l 通过点F ,且倾斜角为3 π,又直线l 被椭圆E 截得的线段的长度为516,求椭圆E 的方程。 分析:由题意可设椭圆E 的方程为1)1()3(2 2 22=-+--b y a c x ,又椭圆E 相应于F 的准线为Y 轴,故有32 +=c c a (1), 又由焦点弦长公式有3cos 22222π c a ab -=5 16 (2)又 222c b a += (3)。解由(1)、(2)、(3)联列的方程组得:42=a ,32=b ,1=c , 从而所求椭圆E 的方程为13 )1(4)4(2 2=-+-y x 。

圆锥曲线焦点弦长公式极坐标参数方程

圆锥曲线焦点弦长公式(极坐标参数方程) 圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!? 定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则 (1)当焦点在x 轴上时,弦AB 的长| cos 1|||2 2αe H AB -= ; (2)当焦点在y 轴上时,弦AB 的长| sin 1|||22αe H AB -=. 推论: (1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α 22cos 1||e H AB -=; 当A 、B 不在双曲线的一支上时,1 cos ||2 2-= αe H AB ;当圆锥曲线是抛物线时,α 2 sin ||H AB = . (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α 22sin 1||e H AB -=; 当A 、B 不在双曲线的一支上时,1 sin ||2 2-= αe H AB ;当圆锥曲线是抛物线时,

α 2cos ||H AB = . 典题妙解 下面以部分高考题为例说明上述结论在解题中的妙用. 例1(06湖南文第21题)已知椭圆13 4221=+y x C :,抛物线px m y 22 =-)((p >0), 且1C 、2C 的公共弦AB 过椭圆1C 的右焦点. (Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若3 4 =p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.

相关文档
最新文档