天大2020年春季考试《线性代数》在线作业一.doc
天大2020年春季考试《刑法学》在线作业二.doc

1.根据我国刑法的规定,偷盗婴幼儿的行为可因主观目的的不同而构成的犯罪有()。
A.偷盗婴幼儿罪B.拐卖儿童罪C.绑架罪D.拐骗儿童罪【参考答案】: BCD2.犯盗窃、诈骗、抢夺罪,为窝藏赃物、抗拒抓捕、毁灭罪证而当场使用暴力或者以暴力相威胁的,以抢劫罪论处。
这里的“当场”是指()。
A.盗窃、诈骗、抢夺的作案现场B.赃物被发现的当场C.行为人作案后逃离现场时被即刻发现而紧追不放的,被追捕的现场D.行为人被发现的当场【参考答案】: AC3.主犯包括()。
A.起主要作用的教唆犯B.帮助犯C.组织犯D.起主要作用的实行犯【参考答案】: ACD4.刑法的性质包含()含义。
A.残酷性B.严厉性C.法律性D.阶级性【参考答案】: CD5.下列可以成为洗钱罪对象的有()。
A.生产、销售假药罪的违法所得B.恐怖组织犯罪的违法所得C.贩卖毒品所获赃款D.走私假币的非法所得【参考答案】: BCD6.抢劫罪的犯罪方法包括()。
A.使被害人不敢反抗的方法B.使被害人不能反抗的方法C.使被害人丧失反抗能力的方法 D.使被害人不知反抗的方法【参考答案】: ABCD7.医疗事故罪的犯罪主体包括()。
A.药剂人员B.救护车司机C.医疗防疫人员D.护理人员【参考答案】: ABCD8.()致人死亡的,应当以故意杀人罪定罪从重处罚。
A.非法拘禁B.司法工作人员暴力取证C.监管人员虐待被监管人D.司法工作人员刑讯逼供【参考答案】: BCD9.被假释的犯罪分子,在假释考验期内,有()情形,应当撤销假释。
A.发现判决宣告以前还有其他罪没有判决,该罪已经超过追诉时效的B.有其他具有社会危害性的行为的C.有违反有关假释的监督管理规定行为的D.犯新罪的【参考答案】: CD10.虚假广告罪的主体包括()。
A.广告经营者B.广告发布者C.广告主D.消费者【参考答案】: ABC11.贪污罪与挪用公款罪的主要区别在于()。
A.犯罪主体不同B.犯罪目的不同C.犯罪客体不同D.客观方面不同【参考答案】: ABCD12.构成非法经营罪的行为有()。
天大2020年春季考试《有机化学》在线作业一.doc

1.下列环烷烃中,加氢开环最容易的是A.环丙烷B.环丁烷C.环戊烷D.环己烷【参考答案】: A2.A.AB.BC.CD.D【参考答案】: A3.A.AB.BC.CD.D【参考答案】: A4.制备Grignard试剂时,烃基相同而卤原子不同的卤代烃活性最高的是A.RFB.RClC.RBrD.RI【参考答案】: D5.下列环烷烃中,环张力最大的是A.环丙烷B.环丁烷C.环戊烷D.环己烷【参考答案】: A6.烷烃跟氯气发生取代反应活性最高的是A.伯氢B.仲氢C.叔氢【参考答案】: C7.A.AB.BC.CD.D【参考答案】: A8.A.AB.BC.CD.D【参考答案】: C9.甲醇钠的碱性比氢氧化钠强A.正确B.错误【参考答案】: A10.当反应按SN1反应时,一定不会有碳正离子重排后生成的产物A.正确B.错误【参考答案】: B11.A.AB.BC.CD.D【参考答案】: A12.A.AB.BC.CD.D 【参考答案】: B13.A.AB.BC.CD.D 【参考答案】: B14.A.AB.BC.CD.D 【参考答案】: A15.A.AB.BC.CD.D 【参考答案】: B16.A.AB.BC.CD.D 【参考答案】: D17.A.AB.BC.CD.D 【参考答案】: A18.A.AB.BC.CD.D 【参考答案】: B19.A.AB.BC.CD.D 【参考答案】: B20.A.AB.BC.CD.D 【参考答案】: C。
天大2020年春季考试《工程力学》在线作业一.doc

1.下列说法中不正确的是:()A.力使物体绕矩心逆时针旋转为负B.平面汇交力系的合力对平面内任一点的力矩等于力系中各力对同一点的力矩的代数和C.力偶不能与一个力等效也不能与一个力平衡D.力偶对其作用平面内任一点的矩恒等于力偶矩,而与矩心无关【参考答案】: A2.若计算自由度>0,则自由度S()0,体系是()A.>,几何不变B.<,几何不变C.>,几何可变D.>,几何可变【参考答案】: C3.A.AB.BC.CD.D【参考答案】: C4.受平面纯弯曲的梁,若截面形状分别是矩形、工字形、圆形及方形,其最合理的截面是A.圆形B.矩形C.工字形D.方形【参考答案】: CA.AB.BC.CD.D【参考答案】: A6.在刚架中,()为主要内力A.剪力B.轴力C.弯矩【参考答案】: C7.矩形截面梁受均布荷载作用,梁的高为h,宽为b,其跨度为L,若梁的跨度减小一半,问梁的正应力是跨度为L多少倍()A.2倍B.0.5倍C.0.25倍D.4倍【参考答案】: CA.AB.BC.CD.D 【参考答案】: C9.A.AB.BC.CD.D 【参考答案】: B10.计算静定多跨梁,要遵守的原则是,先计算(),再计算()A.附属部分,基本部分B.基本部分,附属部分【参考答案】: A11.A.AB.BC.CD.D【参考答案】: C12.A.AB.BC.CD.D【参考答案】: A13.1个单铰相当于()个约束?1个刚结点相当于()个约束?A.1,2B.2,3C.3,2D.3,3【参考答案】: B14.A.AB.BC.CD.D【参考答案】: B15.若直杆段上无荷载作用,则剪力图与轴线的关系是()A.相交B.平行C.垂直D.以上三种都有可能【参考答案】: B16.一下说法错误的是()A.拱主要承受压力,因此可以使用抗拉弱、抗压强的材料B.拱需要坚实的基础C.带拉杆三铰拱不是静定拱D.三铰拱两个水平支座反力互等【参考答案】: C17.刚架中的结点全部或部分是()A.刚结点B.铰结点C.刚结点和铰结点【参考答案】: A18.理想桁架的假定有()A.桁架中所有的结点均为理想铰,即光滑无摩擦铰接B.桁架中所有杆的杆轴绝对平直,且通过其两端铰的中心C.荷载和支座均在铰结点上,即桁架上所有外力为结点力D.以上说法都对【参考答案】: D19.A.AB.BC.CD.D 【参考答案】: B20.A.AB.BC.CD.D 【参考答案】: D。
天大2020年春季考试《离散数学(2)-1》在线作业一.doc

1.题面见图片A.AB.BC.CD.D 【参考答案】: C2.题面见图片A.AB.BC.CD.D 【参考答案】: C3.题面见图片A.AB.BC.CD.D 【参考答案】: B4.题面见图片A.AB.BC.CD.D 【参考答案】: B5.题面见图片A.AB.BC.CD.D 【参考答案】: D6.题面见图片A.AB.BC.CD.D【参考答案】: B7.题面见图片A.AB.BC.CD.D【参考答案】: D8.题面见图片A.AB.BC.CD.D 【参考答案】: D9.题面见图片A.AB.BC.CD.D 【参考答案】: B10.题面见图片A.AB.BC.CD.D 【参考答案】: A11.题面见图片A.AB.BC.CD.D 【参考答案】: D12.题面见图片A.AB.BC.CD.D 【参考答案】: A13.题面见图片A.AB.BC.CD.D 【参考答案】: C14.题面见图片A.AB.BC.CD.D【参考答案】: A15.题面见图片A.AB.BC.CD.D 【参考答案】: A16.题面见图片A.AB.BC.CD.D【参考答案】: A17.题面见图片A.AB.BC.CD.D【参考答案】: B18.题面见图片A.AB.BC.CD.D 【参考答案】: B19.题面见图片A.AB.BC.CD.D 【参考答案】: D20.题面见图片A.AB.BC.CD.D 【参考答案】: B。
线性代数(专) 天津大学网考复习题库及答案

有无穷多解
同 其中
3、求非齐次线性方程组 的全部解(用其特解与导出组的基础解系表示)。
解:
有无穷多解
同解方程组为
特解为 导出组的基础解系为 ,
全部解为 其中
4、求非齐次线性方程组 的全部解(用基础解系表示)。
解:
有无穷多解
同解方程组为
特解为 导出组的基础解系为 ,
全部解为 其中
(2)写出 对应的二次型 ,并判定 的正定性。
解:
(1)
对于 解 得 ,
已正交单位化
对于 解 得
单位化 令 则
(2)
正定从而 正定
4、设 求正交矩阵 ,使 为对角形。
解:
对于 解 得 ,
已正交单位化
对于 解 得
单位化 令 则
七、1、设 为 阶方阵且满足 ,证明 可逆。(证明略)
2、设 阶方阵 若 ,证明 不可逆。(证明略)
极大无关组为
5、求向量组 , , , 的秩,并求出它的一个极大无关组。
解:
令
极大无关组为
6、求向量组 , , , 的秩,并求出它的一个极大无关组。
解:令
极大无关组为
五、解线性方程组
1、求齐次线性方程组 的基础解系及通解。
解:
有无穷多解
同解方程组 基础解系为
通解为 其中
2、求齐次线性方程组 的基础解系及通解。
A、 B、 C、 或 D、
三、解矩阵方程
1、设 ,求矩阵 ,使得 。
解:由 , 可逆
2、设 ,求矩阵 ,使得 。
解:由 ,
可逆
3、设 ,求矩阵 ,使得
解:由 ,
可逆
4、设 ,求矩阵 ,使得 。
(2020年编辑)线性代数试题及答案

线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA )(B *A k n)(C *-A kn 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
19春天津大学《线性代数(专)》在线作业二100分答案

11.题面见图片
A.A
B.B
C.C
D.D
标准选择是:C
12.题面见图片
A.A
B.B
C.C
D.D
标准选择是:B
13.题面见图片
A.A
B.B
C.C
D.D
标准选择是:D
14.题面见图片
A.A
B.B
C.C
D.D
标准选择是:C
15.题面见图片
A.A
B.B
C.C
D.D
标准选择是:D
二、判断题(共5道试题,共25分)
5.题面见图片
A.A
B.B
C.C
D.D
标准选择是:A
6.题面见图片
A.A
B.B
C.C
D.D标准选择是Biblioteka C7.题面见图片A.A
B.B
C.C
D.D
标准选择是:C
8.题面见图片
A.A
B.B
C.C
D.D
标准选择是:B
9.题面见图片
A.A
B.B
C.C
D.D
标准选择是:B
10.题面见图片
A.A
B.B
C.C
D.D
1.题面见图片
A.错误
B.正确
标准选择是:B
2.题面见图片
A.错误
B.正确
标准选择是:A
3.题面见图片
A.错误
B.正确
标准选择是:B
4.题面见图片
A.错误
B.正确
标准选择是:B
5.题面见图片
A.错误
B.正确
标准选择是:B
《线性代数(专)》在线作业二-0001
2020届天津市高三第一次在线大联考(3月)数学试题(解析版)

2020届天津市高三第一次在线大联考(3月)数学试题一、单选题1.已知全集U =R ,集合1,0,1,2,3,4{},{|,3}A B x x =-=∈≤R 则下图中阴影部分所表示的集合为( )A .{1,0,1,2,3}-B .{4}C .{3,4}D .{1,0,1,2}-【答案】B【解析】由图可知,阴影部分表示的是A 中的元素除去A 与B 的交集中的元素后剩下的元素,得解. 【详解】解:由图可知,阴影部分表示的是A 中的元素除去A 与B 的交集中的元素后剩下的元素.即(){1,0,1,2,3,4}{|3}{4}U A B x x =-∈>=R I I ð, 所以阴影部分所表示的集合是{4}, 故选:B . 【点睛】本题考查了韦恩图,重点考查了集合交、并、补的运算,属基础题.2.若复数z 满足1iz i =+,则在复平面内,复数z 对应的点的坐标是( ) A .(1,1)- B .(1,1)-C .(1,1)D .(1,1)--【答案】A【解析】由复数除法运算可得1z i =-,再确定复数z 对应的点的坐标即可. 【详解】解:由1iz i =+,得2i i(1i)i i i11z +==+=-, 所以复数z 对应的点的坐标为(1,1)-, 故选:A . 【点睛】本题考查了复数除法运算,重点考查了复平面内复数z 对应的点的坐标,属基础题.3.函数2()ln f x x x =-的图象大致为( )A .B .C .D .【答案】C【解析】先由函数的定义域可排除B ,D ,再结合导数的应用可排除A ,得解. 【详解】解:由函数2()ln f x x x =-可得,函数()f x 的定义域为{|0}x x >,故排除B ,D ,根据函数2()ln f x x x =-,可得'()f x =21212(0)x x x x x--=>, 由'()f x >0,得22x >,即函数()f x 在2)2+∞上单调递增, 由'()f x <0得202x <<,即函数()f x 在2(0,2上单调递减, 可以排除A , 故选:C . 【点睛】本题考查了函数的图像,重点考查了导数的应用,属基础题.4.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .60D .70【答案】B【解析】分析处理频率分布直方图中的数据求解即可. 【详解】解:依题意,得[12(0.050.050.15)]25n -⨯++=, 解得50n =, 故选:B . 【点睛】本题考查了频率分布直方图,属基础题.5.已知抛物线2:(0)C y ax a =>的焦点F 是双曲线223312y x -=的一个焦点,则a =( ) A .2 B .4 C .12D .14【答案】D【解析】先求出双曲线、抛物线的标准方程,再求出双曲线、抛物线的焦点坐标,运算即可得解. 【详解】解:抛物线的方程为2(0)y ax a =>,即其标准方程为2()10x y a a>=,则其焦点坐标为F 1(0,)4a, 又双曲线方程为223312y x -=,即其标准方程为2211233y x -=,则其焦点坐标为(0,1),由题意可得,114a=,解得14a =,故选:D . 【点睛】本题考查了双曲线、抛物线的标准方程,重点考查了双曲线、抛物线的焦点坐标的求法,属基础题.6.已知定义在R 上的偶函数()f x 在(0,)+∞上是减函数,则( )A .113212111(())(log )(())233f f f <-<B .113212111(())(())(log )233f f f <<-C .113212111(log )(())(())323f f f -<<D .113212111(())(())(log )323f f f <<-【答案】C【解析】由偶函数性质()()()f x f x f x -==,再结合函数的单调性即可得解. 【详解】解:因为函数()f x 是定义在R 上的偶函数, 所以1122211(log )(log )(log 3)33f f f -==. 又因为函数()f x 在(0,)+∞上是减函数,且11133221110()()()1log 3332<<<<<,所以113212111(log )(())(())323f f f -<<.故选:C . 【点睛】本题考查了偶函数的性质,重点考查了函数单调性的应用,属基础题.7.“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高的(不超过三次)多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即()046hV S S S '=++,式中h ,S ,S ',0S 依次为几何体的高、上底面积、下底面积、中截面面积.如图,现将曲线21(0)4y x x =≥与直线4y =及y 轴围成的封闭图形绕y 轴旋转一周得到一个几何体,则利用辛卜生公式可求得该几何体的体积为( )A .16πB .32πC .8πD .16【答案】B【解析】根据“辛卜生公式”:()046hV S S S '=++,根据旋转体特点,结合已知即可得解. 【详解】解:由题意,该几何体的高为h y =时,其截面面积为244x y y π=π⋅=π, 故可以利用辛卜生公式求该几何体的体积.由题意可知该几何体中,'0S =,048S π⨯2==π,2416S =π⋅=π,所以所求体积4(16048)326V =⨯++⨯=πππ,故选:B . 【点睛】本题考查了求旋转体体积,解题关键是能够理解“辛卜生公式”,重点考查了理解能力及运算能力,属基础题.8.已知函数2()2cos 23sin 4f x x x =+,则下列判断错误的是( ) A .函数()6y f x π=-的最小正周期为πB .()f x 的图象关于直线3x π=对称C .()f x 的值域为[1,3]-D .()f x 的图象关于点(,1)24-π对称 【答案】A【解析】先利用降幂公式及辅助角公式可得()2sin(4)16f x x π=++,再结合三角函数的性质及值域逐一判断即可得解. 【详解】解:由题意,2()2cos 23sin4cos43sin412sin(4)16f x x x x x x π==++=++,对于选项A ,()6f x -π=2sin[4()]2sin(4)121cos46621x x x πππ-++=-+=-+,其最小正周期为242ππ=,故A 错误;对于选项B ,令4++,62x k k ππ=π∈Z ,得,124k x k ππ=+∈Z ,当1k =时,得3x π=,所以B 正确;对于选项C ,()2sin(4)16f x x π=++,由sin(4)[1,1]6x π+∈-,得()[1,3]f x ∈-,所以C正确;对于选项D ,令4+,6x k k π=π∈Z ,得,244k x k ππ=-+∈Z ,当0k =时,24x π=-,所以D 正确. 故选:A . 【点睛】本题考查了三角恒等变换,重点考查了三角函数的性质,属中档题.9.已知函数21,0()12,02x e x f x x x x ⎧-≥⎪=⎨+<⎪⎩,函数()(1)g x k x =-,若方程()()f x g x =恰有三个实数解,则实数k 的取值范围为( ) A.[1 B.C.(0,3-D.(0,3-【答案】D【解析】要使方程()()f x g x =恰有三个实数解,则函数(),()f x g x 的图象恰有三个交点,再分别作出函数(),()f x g x 的图象,观察图像的交点个数即可得解. 【详解】解:依题意,画出21,0()12,02x e x f x x x x ⎧-≥⎪=⎨+<⎪⎩的图象,如图.直线()(1)g x k x =-过定点(1,0),由图象可知,函数()g x 的图象与21()2,02f x x x x =+<的图象相切时,函数(),()f xg x 的图象恰有两个交点.下面利用导数法求该切线的斜率. 设切点为00(,)P x y ,由()2,0f 'x x x =+<,得00()2k f 'x x ==+=20001221x x x +-,化简得20024=0x x --,解得01x =01x =+,要使方程()()f x g x =恰有三个实数解,则函数(),()f x g x 的图象恰有三个交点,结合图象可知035k <<-, 所以实数k 的取值范围为(0,35)-, 故选:D .【点睛】本题考查了方程的解的个数与函数图像交点个数的关系,重点考查了数形结合的数学思想方法,属中档题.二、填空题10.命题p :0x R ∃∈,200220x x ++<,写出命题p 的否定:__________.【答案】x R ∀∈,2220x x ++≥【解析】由特称命题的否定是全称命题即可得解. 【详解】解:由命题p 是特称命题,则其否定是全称命题, 所以命题p 的否定为:x R ∀∈,2220x x ++≥. 故答案为:x R ∀∈,2220x x ++≥. 【点睛】本题考查了特称命题与全称命题,属基础题. 11.621()x x的展开式中,2x -的系数为__________. 【答案】15【解析】由621()x x 的展开式通项公式656216621C ()()(1)C rr r r r rr T x x x--+=-=-,令6522r-=-,再求解即可. 【详解】解:根据621)x 的展开式通项公式656216621C ()(1)C rr r r r rr T x x--+=-=-可得:令6522r-=-,解得2r =, 所以2x -的系数为226C (1)15-=. 故答案为:15. 【点睛】本题考查了二项式展开式的通项公式的应用,重点考查了运算能力,属基础题. 12.已知某篮球运动员投篮命中率为34,若在一次投篮训练中连续投篮100次,X 表示投进的次数,则X 的方差()D X =__________. 【答案】18.75(填754也得分) 【解析】由X 满足二项分布,利用方差公式求解即可. 【详解】解:由题意可知,X 满足二项分布,故3375()100(1)=18.75444D X =⨯⨯-=,故答案为:18.75. 【点睛】本题考查了二项分布及方差的求法,属基础题.13.点P 是圆22:(1)(1)1C x y -+-=上的动点,点Q 是直线:2l x y -=上的动点,若线段PQ 与直线l 的夹角始终为45︒,则线段PQ 的最小值是__________.【答案】2【解析】由点到直线的距离公式可得:圆心到直线l 距离为d =性质可得||)PQ d r ≥-,再求解即可. 【详解】解:由题意,圆C 的圆心坐标为(1,1),则圆心到直线:20l x y --=距离为d ==所以||)1)2PQ d r ≥-=故答案为:2【点睛】本题考查了点到直线的距离公式,重点考查了数形结合的数学思想方法,属基础题. 14.若正数,x y 满足230x y +-=,则2x yxy+的最小值为 . 【答案】3 【解析】试题分析:,所以原式变形为:,所以最小值是3.【考点】基本不等式求最值15.如图,在矩形ABCD 中,已知4AB =,2AD =,点E 是AD 的中点,点F 为边CD 上一点,若AF 与BE 相交于点G ,且10AF BE ⋅=-u u u r u u u r,则EF BG ⋅u u u r u u u r =__________.【答案】–8【解析】先建立平面直角坐标系,再结合向量数量积的坐标运算求解即可. 【详解】解:以A 为坐标原点,AB 、AD 所在直线分别为x 轴与y 轴,建立平面直角坐标系, 则A (0,0),B (4,0),E (0,1).设(,2)F x ,则(,2)AF x =u u u r ,(4,1)BE =-u u u r,所以4210AF BE x ⋅=-+=-u u u r u u u r,所以3x =, 所以(3,2)F ,所以直线AF 的方程为23y x =,易得直线BE 的方程为114y x =-+, 联立23114y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,得128(,)1111G ,所以328(,)1111BG =-u u u r , 又因为(3,1)EF =u u u r,所以3283()181111EF BG ⋅=⨯-+⨯=-u u u r u u u r ,故答案为:-8. 【点睛】本题考查了向量数量积的坐标运算,重点考查了运算能力,属基础题.三、解答题16.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c .若sin 8sin a B A =,π4C =,22265a cb ac +-=.(1)求c 的长;(2)求πcos()6A -的值.【答案】(1)(2【解析】(1)先由正弦定理得8b =,再结合余弦定理求出4sin 5B =,然后结合sin sin c b C B=求解即可; (2)由两角和、差的余弦公式求解即可. 【详解】(1)由sin 8sin a B A =,结合正弦定理,得8ab a =,所以8b =,因为22265a c b ac +-=,所以222635cos 225ac a c b B ac ac +-===.因为0πB <<,所以4sin 5B =,由正弦定理sin sin c b C B=,可得8sin 24sin 5b Cc B ⋅===(2)在ABC V 中,πA B C ++=,所以π()A B C =-+,于是πππcos cos()cos()cos cos sin sin 444A B C B B B =-+=-+=-+, 又3cos 5B =,4sin 5B =,故32422cos 55A =-⨯+⨯=, 因为0πA <<,所以272sin 1cos A A =-=. 因此πππ2372172+6cos()cos cos sin sin 6662A A A -=+=⨯+⨯=. 【点睛】本题考查了正弦定理及余弦定理,重点考查了两角和、差的余弦公式,属中档题. 17.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,120BAD ∠=︒,2AB =,AC BD O =I ,PO ⊥底面ABCD ,点E 在棱PD 上.(1)求证:平面PBD ⊥平面ACE ;(2)若2OP =,点E 为PD 的中点,求二面角P AC E --的余弦值.【答案】(1)证明见解析;(227. 【解析】(1)由线面垂直的性质可得PO AC ⊥,再由线面垂直的判定定理可得AC ⊥平面PBD ,即可证明平面PBD ⊥平面ACE ;(2)先由二面角的平面的作法可得POE ∠即为二面角P AC E --的平面角,再求解即可.【详解】证明:(1)因为PO ⊥平面ABCD ,所以PO AC ⊥,因为ABCD 为菱形,所以AC BD ⊥,又BD PO O =I ,BD ⊂平面PBD ,PO ⊂平面PBD ,所以AC ⊥平面PBD ,又AC ⊂平面ACE ,故平面PBD ⊥平面ACE .(2)如图,连接OE ,则OE ⊂平面ACE ,由(1)可得,AC OE ⊥,AC OP ⊥,故POE ∠即为二面角P AC E --的平面角,在菱形ABCD 中,2AB AD ==,120BAD ∠=︒, 所以23BD =,3OD =,又2PO =,所以222(3)7PB PD ==+=,由点E 为PD 的中点,易得172OE PD ==,172PE PD ==, 所以POE △为等腰三角形,在POE △内过点E 作高,垂足为H ,则1HO =, 所以27cos cos 7HO POE HOE OE ∠=∠=== 即二面角P AC E --的余弦值为27.【点睛】本题考查了线面垂直的判定定理及性质定理,重点考查了二面角的平面角的作法及求法,属中档题.18.已知椭圆C :2222 1(0)x y a b a b +=>>的离心率2e =,右焦点到左顶点的距离为1+2(1)求椭圆C 的标准方程;(2)若直线:l y x m =+与椭圆C 交于A 、B 两点,且以弦AB 为直径的圆过椭圆C 的右焦点F ,求直线l 的方程.【答案】(1)2212x y +=;(2)27y x -=或27y x +=-.【解析】(1)由已知条件可得22212a c c e a a b c ⎧+=+⎪⎪==⎨⎪=+⎪⎩,再求解即可;(2)以弦AB 为直径的圆过椭圆C 的右焦点F 等价于0FA FB ⋅=u u u r u u u r ,再联立直线与椭圆方程求解即可.【详解】(1)设椭圆C 的焦距为2c ,依题意得2221a c c e a a b c ⎧+=+⎪⎪==⎨⎪=+⎪⎩,解得11a c b ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为2212x y +=. (2)联立2212x y y x m ⎧+=⎪⎨⎪=+⎩,消去y ,化简得2234220x mx m ++-=,由2221612(22)8240m m m ∆=-⨯-=-+>,得m <<.设11(,)A x y ,22(,)B x y ,则1243m x x +=-,212223m x x -⋅=, 因为以弦AB 为直径的圆过椭圆C 的右焦点F ,所以0FA FB ⋅=u u u r u u u r. 由(1)可知F (1,0),所以11(1,)FA x y =-u u u r ,22(1,)FB x y =-uu r ,所以11221212121212(1,)(1,)(1)(1)()1FA FB x y x y x x y y x x x x y y =-⋅=-⋅-=--++++u u u r u u u r ,因为212121212()()()y y x m x m x x m x x m =++=+++,所以22121212121212()1()2(1)()+10FA FB x x x x x x m x x m x x m x x m ⋅=+++++++-+=-+=u u u r u u u r , 即222242(1)()+1033m m m m -⨯+--+=, 整理得23410m m +-=,解得(m , 所以直线l的方程为y x =,即y x =y x =. 【点睛】本题考查了椭圆方程的求法,重点考查了直线与圆锥曲线的位置关系,属中档题. 19.已知等比数列{}n a 的各项均为正数,等差数列{}n b 的前n 项和为n S ,且满足11a =,11b =,2311a S +=,432b a b -=.(1)求数列{}n a 及{}n b 的通项公式;(2)设数列{}n c 满足21log ,212,2n n n b a n m c n m +=-⎧=⎨=⎩,其中*m N ∈,求*121211()()n i i i n c c =-+∈⋅∑N . 【答案】(1)12n n a -=,21n b n =-;(2)21n n +. 【解析】(1)由数列{}n a 为等比数列,数列{}n b 为等差数列,结合已知条件求其基本量即可得解;(2)由2121n c n -=-,2121n c n +=+,即212+111111()(21)(21)22121n n c c n n n n -==⨯-⋅-+-+,再累加求和即可得解.【详解】 解:(1)设等比数列{}n a 的公比为q ,等差数列{}n b 的公差为d .由2311a S +=,432b a b -=,得11211133113a q b d b d a q b d ++=⎧⎨+-=+⎩, 将11a =,11b =代入,得23820q d d q +=⎧⎨-=⎩,解得2q =(负值舍去),2d =, 故12n n a -=,21n b n =-.(2)由21log ,212,2n n n b a n m c n m+=-⎧=⎨=⎩,其中*m N ∈, 得2121n c n -=-,2121n c n +=+, 所以212+111111()(21)(21)22121n n c c n n n n -==⨯-⋅-+-+, 所以1212111111111111()(1)(1)233557212122121n i i i n c c n n n n =-+=⨯-+-+-++-=⨯-=⋅-+++∑L . 【点睛】本题考查了等差数列、等比数列通项公式的求法,重点考查了数列裂项累加求和法,属中档题.20.已知函数()ln 1,f x x x ax a =-+∈R .(1)若关于x 的不等式()0f x ≥恒成立,求a 的取值范围;(2)当*n N ∈时,求证:21(1)n n n n -+-<+⋅(3)求证:21e 2ln (e 2)x x x x x+≥-++-. 【答案】(1)(,1]-∞;(2)见解析;(3)见解析.【解析】(1)不等式()0f x ≥恒成立等价于1ln a x x ≤+恒成立,即min 1(ln )a x x ≤+,再构造函数1()ln F x x x=+,利用导数求其最小值即可得解; (2)由(1)知当1a =时,有ln 10x x x -+≥恒成立,所以1ln 1x x ≥-,然后令*21,n x n =>∈N ,即1ln2ln212n nn =>-,再不等式左右两边分别累加求和即可得解; (3)由(1)可知,当1a =时, 1ln 10x x+-≥在(0,+)x ∈∞上恒成立,即要证21e 2ln (e 2)x x x x x +≥-++-等价于21e (+ln (e 2)1)01x x x x x--+---≥,即只需证当0x >时,2e (e 2)10x x x ----≥,再构造函数2()e (e 2)1(0)x h x x x x =----≥,利用导数求证即可.【详解】解:(1)由题意,函数()f x 的定义域为(0,)+∞,由()0f x ≥,得ln 10x x ax -+≥, 所以1ln a x x ≤+恒成立,即min 1(ln )a x x≤+. 令1()ln F x x x =+,则'22111()x F x x x x -=-=, 令'()0F x >,解得1x >,令'()0F x <,解得01x <<,所以函数()F x 在(0,1)上单调递减,在(1,)+∞上单调递增. 所以函数1()ln F x x x=+的最小值为(1)1F =,所以1a ≤, 即a 的取值范围是(,1]-∞.(2)由(1)知当1a =时,有ln 10x x x -+≥恒成立,所以1ln 1x x≥-(当且仅当1x =时等号成立).令*21,n x n =>∈N ,得1ln2ln212n nn =>-, 所以11ln212⨯>-,212ln212⨯>-,313ln212⨯>-,L ,1ln212n n ⨯>-, 以上各式相加,得2111(12)ln2()222n n n +++>-+++L L , 所以11(1)(1)122ln2112212n n n n n n ⨯-+>-=-+-,即21(1)n n n n -+-<+⋅(3)由(1)可知,当1a =时,()0f x ≥, 即1ln 10x x+-≥在(0,+)x ∈∞上恒成立. 要证21e 2ln (e 2)x x x x x +≥-++-,即证21e (+ln (e 2)1)01x x x x x --+---≥, 只需证当0x >时,2e (e 2)10x x x ----≥.令2()e (e 2)1(0)x h x x x x =----≥,则'()e 2(e 2)x h x x =---.令()e 2(e 2)x u x x =---,则'()e 2x u x =-.由'()0u x =,得ln2x =.当(0,ln2)x ∈时,'()0u x <,()u x 单调递减;当[ln2,)x ∈+∞时,'()0u x >,()u x 单调递增.即'()h x 在(0,ln2)上单调递减,在[ln2,)+∞上单调递增.而'(0)1(e 2)3e 0h =--=->,'(ln 2)(1)0h h'<=,所以0(0,ln2)x ∃∈,使得'0()0h x =.当0(0,)x x ∈时,'()0h x >,()h x 单调递增;当0(,1)x x ∈时,'()0h x <,()h x 单调递减;当(1,)x ∈+∞时,'()0h x >,()h x 单调递增.又(0)110h =-=,(1)e 1(e 2)10h =----=,所以对0x ∀>,()0h x ≥恒成立,即x 2e (e 2)10x x ----≥. 综上所述,21e 2ln (e 2)x x x x x+≥-++-成立.【点睛】本题考查了不等式恒成立问题,重点考查了导数的综合应用,属综合性较强的题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: D
2.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: B
3.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: C
4.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: B
5.题面见图片
A.A
B.B
C.C
D.D
【参考答案】: A
6.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: C
7.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: B
8.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: A
A.A
B.B
C.C
D.D 【参考答案】: B
10.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: C
A.A
B.B
C.C
D.D 【参考答案】: D
12.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: B
13.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: A
14.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: A
15.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: C
16.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: A
17.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: A
18.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: C
19.题面见图片
A.A
B.B
C.C
D.D 【参考答案】: A
20.题面见图片
A.A
B.B
C.C
D. D
【参考答案】: C。