概率练习题答案

合集下载

概率习题(附答案)

概率习题(附答案)

随机事件的概率一、选择题(每题4分)1、黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( ) A.能开门的可能性大于不能开门的可能性; B.不能开门的可能性大于能开门的可能性 C.能开门的可能性与不能开门的可能性相等 D.无法确定2、有5个人站成一排,则甲站在正中间的概率与甲站在两端的概率的比值为( )A.21 B.2 C.21或2 D.无法确定3、如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( )A 、 21B 、 83C 、 41D 、 314、某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是 ( ) A 、 1001 B 、10001 C 、100001 D 、100001115、连掷两次骰子,它们的点数都是4的概率是( ) A 、61 B 、41 C 、161 D 、361 6、啤酒厂做促销活动,在一箱啤酒(每箱24瓶)中有4瓶的盖内印有“奖”字. 小明的爸爸买了一箱这种品牌的啤酒,但是连续打开4瓶均未中奖. 小明这时在剩下的啤酒中任意拿出一瓶,那么他拿出的这瓶中奖的概率( ). (A)424 (B)16 (C)520 (D)15二、填空题(每题3分)7、可能事件的概率p 的取值范围是__________。

必然事件发生的概率是_____,不可能事件发生的概率是_____。

8、投掷一个均匀的正六面体骰子,每个面上依次标有1、2、3、4、5、6,则掷得“5”的概率P=________,这个数表示的意思是__________________. 9、王刚的身高将来会长到4米,这个事件得概率为_____。

10、任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是___11、小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .12、右图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______13、一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .14、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______15、袋中装有3个白球和2个黄球,从中随机地摸出二个球,都为白球的概率为_______,为一个白球与一个黄球的概率是_______.16、用1,2,3组成三位数(不重复使用),其中排出偶数的概率是_________.17、一个口袋中有24个红球和若干个绿球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中搅匀,重复上述过程,试验200次,其中有125次摸到绿球,估计口袋中有绿球___个。

概率练习题含答案

概率练习题含答案

第一章 随机事件及其概率 练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B ) (2)事件的对立与互不相容是等价的。

(B ) (3)若()0,P A = 则A =∅。

(B )(4)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B )(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (6)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1=3两个女孩。

(B ) (7)若P(A)P(B)≤,则⊂A B 。

(B )(8)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A )2. 选择题(1)设A, B 两事件满足P(AB)=0,则CA. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )A.()a c c + B . 1a c +-C. a b c +-D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。

求三位同学中至少有一位通过考试的概率。

答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。

现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。

答案约为0.599。

2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。

答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。

答案约为0.201。

3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。

答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。

答案约为0.967。

以上为高中数学概率统计专题练习题及答案。

希望对您的学习有所帮助!。

概率统计练习题答案

概率统计练习题答案

概率统计练习题答案一、选择题1.答案:B2.答案:C3.答案:A4.答案:D5.答案:C6.答案:A7.答案:B8.答案:D9.答案:C10.答案:B11.答案:A12.答案:C13.答案:B14.答案:D15.答案:A二、填空题1.答案:0.252.答案:0.93.答案:0.154.答案:25.答案:0.046.答案:137.答案:0.3338.答案:0.849.答案:0.62510.答案:0.8三、解答题1.答案:设事件A为随机抽取的球为红球,事件B为随机抽取的球为蓝球。

根据条件概率公式,P(A|B) = P(AB)/P(B)。

已知P(A) = 0.6,P(B) = 0.4,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.4 = 0.6。

所以,答案为0.6。

2.答案:设事件A为选手射中靶心,事件B为选手准确报告靶心位置。

根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) +P(A|B3)P(B3)。

已知P(A|B1) = 0.8,P(A|B2) = 0.6,P(A|B3) = 0.4,P(B1) = 0.3,P(B2) = 0.4,P(B3) = 0.3,代入公式可得P(A) = 0.8*0.3 + 0.6*0.4 + 0.4*0.3 = 0.62。

所以,答案为0.62。

3.答案:设事件A为选手拿到奖品,事件B为选手答对问题。

根据条件概率公式,P(A|B) = P(AB)/P(B)。

已知P(A) = 0.4,P(B) = 0.6,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.6 = 0.4。

所以,答案为0.4。

4.答案:设事件A为抽取的学生是男生,事件B为抽取的学生是高中生。

根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2)。

已知P(A|B1) = 0.6,P(A|B2) = 0.4,P(B1) = 0.7,P(B2) = 0.3,代入公式可得P(A) = 0.6*0.7 + 0.4*0.3 = 0.54。

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。

求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。

b) 中奖号码是偶数的概率为15/30,即1/2。

c) 中奖号码是质数的概率为8/30,即4/15。

问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。

求销售量的概率分布表。

解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。

求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。

b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。

问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。

若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。

解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。

以上是高中数学概率与统计概率分布的练习题及答案。

概率统计习题集(含答案)

概率统计习题集(含答案)

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

小学数学概率练习题及答案

小学数学概率练习题及答案

小学数学概率练习题及答案概率是数学中一个非常重要的概念,对于小学生来说,通过练习概率题目可以培养他们的逻辑思维和数学思维能力。

下面是一份小学数学概率练习题及答案,希望对你有所帮助。

一、选择题1. 已知一副扑克牌,共有52张牌,其中红心牌有13张,请问随机从中抽取一张牌,抽到红心牌的概率是多少?A. 1/2B. 2/13C. 1/4D. 1/132. 一只箱子里有5个红球和3个蓝球,随机从箱子中取出一个球,抽到红球的概率是多少?A. 3/8B. 1/2C. 2/5D. 3/53. 一枚硬币抛掷两次,求出现至少一次正面的概率。

A. 1/4B. 1/2C. 3/4D. 1/3二、填空题1. 一枚骰子抛掷一次,出现奇数的概率是____。

2. 一张从52张牌中随机抽取的扑克牌是红心的概率是____。

3. 从一个有30人的班级中随机抽取一人,抽到一个男生的概率是____。

三、解答题1. 一个装有5个红球和4个蓝球的盒子,从中随机抽取一个球,求抽到红球的概率。

2. 一枚硬币抛掷3次,求抛掷中恰好两次正面的概率。

四、应用题1. 某班级有30个学生,其中有10个男生和20个女生,学生随机排队,求第一个出场的是男生并且第二个出场的是女生的概率。

2. 集合A含有4个元素,集合B含有6个元素,随机从集合A和集合B中各取一个元素,求取到的两个元素都是奇数的概率。

答案:一、选择题1. D. 1/132. C. 2/53. C. 3/4二、填空题1. 1/22. 1/23. 1/2三、解答题1. 抽到红球的概率为 5/9。

2. 抛掷中恰好两次正面的概率为 3/8。

四、应用题1. 第一个出场的是男生并且第二个出场的是女生的概率为 10/30 * 20/29 = 100/87 ≈ 1.15。

2. 取到的两个元素都是奇数的概率为 (2/4) * (3/6) = 6/24 = 1/4。

概率论习题与答案

概率论习题与答案

概率论习题 一、填空题1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 .2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率.3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 .4、 已知()0.7,()0.3,P A P A B =-= 则().P AB =5、 已知()0.3,()0.4,()0.5,P A P B P A B === 则(|).P B A B ⋃=6、 掷两枚硬币,至少出现一个正面的概率为..7、设()0.4,()0.7,P A P A B =⋃= 若,A B 独立,则().P B =8、设,A B 为两事件,11()(),(|),36P A P B P A B === 则(|).P A B =9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是.10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 .11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。

那么(|)P C AB = 。

12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,求此人是男性的概率 。

13、将3个球随机的放入4个杯子中,求杯子中球的最大个数分别为1,2,3的概率。

14、把C B A ⋃⋃表示为互不相容事件的和是 。

15、,,A B C 中不多于两个发生可表示为 。

二、选择题1、下面四个结论成立的是( ).()().,.().()A A B C A B C B AB C A BC C A B B A D A B B A--=-⋃=∅⊂=∅⋃-=-⋃=若且则2、设()0,P AB =则下列说法正确的是( )...()0()0.()()A AB B ABC P A P BD P A B P A ==-=和不相容 是不可能事件或3、掷21n +次硬币,正面次数多于反面次数的概率为( )1..21211.0.5.21nn A B n n n C D n -++++ 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ).()()..()().()()A P AB P A B B AC P A P BD P AB P A ⋃=∈==5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ).A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=06、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ).A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ).D P (A ∪B )=17、已知()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =( ).A 0.2 .B 0.45 .C 0.6 .D 0.758、同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ).A 0.125 .B 0.25 .C 0.375.D 0.509、设事件,A B 互不相容,已知()0.4P A =,()0.5P B =,则()P AB =( ).A 0.1 .B 0.4 .C 0.9 .D 110、已知事件A ,B 相互独立,且()0P A >,()0P B >,则下列等式成立的是( ).A ()()()P A B P A P B ⋃=+ .B ()1()()P A B P A P B ⋃=- .C ()()()P A B P A P B ⋃= .D ()1P A B ⋃=11、设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则( )..A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立.D 事件A 与B 互不独立12、对于任意两事件A 和B ,)(B A P -=( )..A )()(B P A P - .B )()()(AB P B P A P +- .C )()(AB P A P -.D )()()(B A P A P A P -+13、设A 、B 是两事件,且P (A )=0.6,P(B)=0.7则P (AB )取到最大值时是( ).A 0.6 .B 0.7 .C 1 .D 0.4214、某人忘记了电话号码的最后一个数字,因而他随意地拨号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( A ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0D .P (A ∪B )=12.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( D ) A .P (A ) B .P (AB ) C .P (A|B )D .13.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( D )A .601B .457C .51 D .157 4.若A 与B 互为对立事件,则下式成立的是( C ) A.P (A ⋃B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B )D.P (AB )=φ5.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( C )A.81B.41C.83D.21 6.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53)A |B (P =,则P (B )=( A )A. 51B. 52C.53 D.54 7.设随机变量X则k= A.0.1 B.0.2 C.0.3D.0.4 8.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B AB .C B AC .C B AD .C B A9.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )= ( B )A .253B .2517C .54 D .252310.下列各函数中,可作为某随机变量概率密度的是( A ) A .⎩⎨⎧<<=其他,0;10,2)(x x x fB .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x fC .⎩⎨⎧-<<=其他,1;10,3)(2x x x fD .⎩⎨⎧<<-=其他,0;11,4)(3x x x f11.某种电子元件的使用寿命X (单位:小时)的概率密度为⎪⎩⎪⎨⎧<≥=,100,0;100,100)(2x x x x f 任取一只电子元件,则它的使用寿命在150小时以内的概率为( B )A .41B .31C .21 D .32 12.下列各表中可作为某随机变量分布律的是( C ) A . B .C .D .13.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有( B ) A.F(-a)=1-⎰a0dx )x (fB.F(-a)=⎰-adx )x (f 21 C.F(-a)=F(a) D.F(-a)=2F(a)-114.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352B .0.432C .0.784D .0.93615.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C )A .0.2B .0.35C .0.55D .0.8 16.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为 ( B )A .2,3-B .-3, 2C .2,3D .3, 217.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=( C ) A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5}D .P{4.5<X<5.5} 18.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c 等于( D )A .-1B .21- C .21 D .119.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( A ) A .E (X )=0.5,D (X )=0.25 B .E (X )=2,D (X )=2 C .E (X )=0.5,D (X )=0.5D .E (X )=2,D (X )=420.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( C ) A .-13 B .15 C .19 D .2321.设随机变量X 具有分布P{X=k}=51,k=1,2,3,4,5,则E (X )=( B ) A.2 B.3 C.4 D.522.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=,x ,;x ,ce f(x)x -0005则常数c 等于( B )A .-51B .51 C .1 D .523.已知随机变量X 的分布律为,且E (X )=1,则常数x =( B ) A .2 B .4 C .6 D .824.设x 1,x 2,…,x 5是来自正态总体N (2,σμ)的样本,其样本均值和样本方差分别为∑==51i i x 51x 和251i i2)x x(41s ∑=-=,则s)x (5μ-服从( A ) A.t(4) B.t(5) C.)4(2χD. )5(2χ25.设总体X~N (2,σμ),2σ未知,x 1,x 2,…,x n 为样本,∑=--=n1i 2i2)x x(1n 1s ,检验假设H 0∶2σ=20σ时采用的统计量是( C )A.)1n (t ~n/s x t -μ-=B. )n (t ~n/s x t μ-=C. )1n (~s )1n (2222-χσ-=χ D. )n (~s )1n (2222χσ-=χ26.设x 1,x 2,…,1n x 与y 1,y 2,…,2n y 分别是来自总体),(21σμN 与),(22σμN 的两个样本,它们相互独立,且x ,y 分别为两个样本的样本均值,则y x -所服从的分布为( A ) A .))11(,(22121σμμn n N +- B .))11(,(22121σμμn n N -- C .))11(,(2222121σμμn n N +- D .))11(,(2222121σμμn n N --27.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( C ) A .2χ (5)B .t (5)C .F (2,3)D .F (3,2)28.在假设检验中, H 0为原假设, 则显著性水平α的意义是 ( A ) A .P {拒绝H 0|H 0为真} B .P {接受H 0|H 0为真} C .P {接受H 0|H 0不真} D .P {拒绝H 0|H 0不真}29.在假设检验问题中,犯第一类错误的概率α的意义是( C ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率30.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( B ) A .x 2 B .x C .2xD .x21二、填空题1.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=___0.5_____. 2.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为_____18/35_____.3.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为____07___.4.设A 与B 是两个随机事件,已知P (A )=0.4,P (B )=0.6, P (A ⋃B )=0.7,则P (B A )=_____0.3____.5.设事件A 与B 相互独立,且P (A )=0.3,P (B )=0.4,则P (A ⋃B )=____0.58___. 6.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=_0.21____.7.设P (A )=0.4,P (B )=0.3,P (A ⋃B )=0.4,则P (B A )=__0.1____. 8.设A ,B 相互独立且都不发生的概率为91,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则P (A )=____2/3____.9.设随机变量X~B (1,0.8)(二项分布),则X 的分布函数为__0 0.2 1_________. 10.设随机变量X 的概率密度为f(x)=⎩⎨⎧≤≤,,0,c x 0,x 242其他则常数c=___0.5____.11.设A , B 为随机事件, P (A )=0.6, P (B |A )=0.3, 则P (AB )=___0.18___.12.设随机事件A 与B 互不相容, P (A )=0.6, P (A ∪B )=0.8, 则P (B )=___0.4____. 13.设A , B 互为对立事件, 且P (A )=0.4, 则P (A B )=__0.4____.14.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为____0.9____.15.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X<a}<0.8413,则常数a<_____3____.16.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=____31/32_______.17.已知随机变量X 服从参数为λ的泊松分布,且P {}0=X =e -1,则λ=____1_____. 18.设随机变量X 服从正态分布N (1,4),Φ(x )为标准正态分布函数,已知Φ(1)=0.8413,Φ(2)=0.9772,则P {}=<3X ___0.8185___.19.设随机变量X 服从参数为3的泊松分布, 则P {X =2}=____9/2exp (-3)______.20.设随机变量X ~N (0,42), 且P {X >1}=0.4013, Φ (x )为标准正态分布函数, 则Φ(0.25)=___0.5987____. 21.设随机变量X 与Y 相互独立, X 在区间[0, 3]上服从均匀分布, Y 服从参数为4的指数分布,则D (X +Y )=__13/16_______.22.设X 为随机变量, E (X +3)=5, D (2X )=4, 则E (X 2)=___5_____.23.若随机变量X 服从均值为2,方差为2σ的正态分布,且P{2≤X ≤4}=0.3, 则P{X ≤0}=___0.2_.24.设随机变量X ,Y 相互独立,且P{X ≤1}=21,P{Y ≤1}=31,则P{X ≤1,Y ≤1}=__1/6_________.25.设随机变量X 服从正态分布N (2,4),Y 服从均匀分布U (3,5),则E (2X-3Y )= _-8_____.26.在假设检验中,在原假设H 0不成立的情况下,样本值未落入拒绝域W ,从而接受H 0,称这种错误为第_____二____类错误.27.设随机变量X ~B (4,32),则P {}1<X =___1/81________. 28.已知随机变量X 的分布函数为 F (x )⎪⎩⎪⎨⎧≥<<-+-≤,6,166,126;6,0x X x x ;则当-6<x <6时,X29.设随机变量X 的分布律为Y =X 2,记随机变量Y 的分布函数为F Y (y ),则F Y (3)=_________________.30.已知随机变量X 的分布律为 则{}=<)(X E X P __0.8__. 31.已知E (X )=-1,D (X )=3,则E (3X 2-2)=___10______.32.设总体是X ~N (2,μ),x 1,x 2,x 3是总体的简单随机样本,1ˆμ, 2ˆμ是总体参数μ的两个估计量,且1ˆμ=321414121x x x ++,2ˆμ=321313131x x x ++,其中较有效的估计量是__2ˆμ_____.33.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E (X )=1,则x=___10/7_______.34.设随机变量X 的分布律为则D (X )=_____1____.35.设随机变量X 服从参数为3的指数分布,则D (2X+1)=___4/9______.36.设总体X~N (μ,σ2),x 1,x 2,x 3,x 4为来自总体X 的体本,且241241)(,41σ∑∑==-=i ii i x xx x 则服从自由度为____3___的2χ分布.37.设总体X~N (μ,σ2),x 1,x 2,x 3为来自X 的样本,则当常数a=_____1/4_______时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 三、计算题1.飞机在雨天晚点的概率为0.8,在晴天晚点的概率为0.2,天气预报称明天有雨的概率为0.4,试求明天飞机晚点的概率.2.司机通过某高速路收费站等候的时间X (单位:分钟)服从参数为λ=51的指数分布. (1)求某司机在此收费站等候时间超过10分钟的概率p ;(2)若该司机一个月要经过此收费站两次,用Y 表示等候时间超过10分钟的次数,写出Y 的分布律,并求P{Y ≥1}.2解: (1)f(x)=⎪⎩⎪⎨⎧≤>-0,00,e 51x 51x xP{X>10}=21010515151-∞+∞+--==⎰e e dx e x x(2) P{Y ≥1}=1-)0(P 2=1-422202022)1()(-----=-e e e e C3.设随机变量X 的概率密度为 ⎪⎩⎪⎨⎧≤≤=.,0;20,2)(其他x x x f试求:(1)E (X ),D (X );(2)D (2-3X );(3)P{0<X<1}.3.解: (1)E(X)=⎰+∞∞-dx x xf )(=⎰⋅22x x dx=34)(E 2X =⎰+∞∞-dx x f x )(2=⎰⋅2022xx dx=2∴D(X)=)(E 2X -2)]([X E =2-2)34(=92(2)D(2-3x)=D(-3x)=9D(X)=9⨯92=2(3)P{0<x<1}=⎰⎰==1010412)(dx x dx x f4. 假设某校考生数学成绩服从正态分布,随机抽取25位考生的数学成绩,算得平均成绩61=x 分,标准差s=15分.若在显著性水平0.05下是否可以认为全体考生的数学平均成绩为70分?(附:t 0.025(24)=2.0639) 1 解: 设700==μμ,ns/x μ-~t(n-1),n=25, 0639.2)24()1(025.02==-t n t α0639.23325/157061s/x >=-=-=-nμ,拒绝该假设,不可以认为全体考生的数学平均成绩为70分。

相关文档
最新文档