概率论模拟试题(附答案)
概率论与数理统计模拟试题&参考答案

练习题一一、填空题。
1、已知P(A)=0.3,P(A+B)=0.6,则当A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。
2、已知X ~),(p n B ,且8E X =, 4.8D X =, 则n =__________,X 的最可能值为__________。
3、若)(~λP X ,则=EX ,=DX 。
4、二维离散型随机变量),(ηξ的分布律为:则η的边缘分布_____________,ξ,η是否独立?_____________(填独立或不独立)。
5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n=++ 服从__________。
6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1, 0.2, 0.3, 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为 。
7、设连续型随机变量ξ的概率密度为1 -1 ()1 010 x xx x x ϕ+≤<⎧⎪=-≤≤⎨⎪⎩其它,则E ξ=__________。
二、判断题。
1、服从二元正态分布的随机变量),(ηξ,它们独立的充要条件是ξ与η的相关系数0ρ=。
( )2、设12(,,,)n X X X 是来自正态总体2(,)N μσ的样本,S 是样本方差,则222(1)~()n Sn χσ-。
( )3、随机变量Y X ,相互独立必推出Y X ,不相关。
( )4、已知θ 是θ的无偏估计,则2θ 一定是2θ的无偏估计。
( )5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为0.4。
( )三、选择题。
1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。
3个这样的元件使用1000小时后,都没有损坏的概率是 (A )1e -; (B )3e -(C )31e --(D )13e -2、设X 的分布函数为)(x F ,则13+=X Y 的分布函数()y G 为(A )()3131-y F (B )()13+y F (C )1)(3+y F (D )⎪⎭⎫⎝⎛-3131y F3、设随机变量(3,4)N ξ ,且()()P c P c ξξ≤=>,则c 的取值为() (A )0; (B )3; (C )-3; (D )24、设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()。
概率论模拟卷1~6及答案

一、(15分)玻璃杯成箱出售,每箱20只。
已知任取一箱,箱中0、1、2只残次品的概率相应为0.8、0.1和0.1,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。
试求:(1)顾客买下该箱的概率;(2)在顾客买下的该箱中,没有残次品的概率。
二、(12分)设随机变量X的分布列为 .求:(1)参数;(2);(3)的分布列。
三、(10分)设二维随机变量在矩形上服从均匀分布,(1)求的联合概率密度(2)求关于、的边缘概率密度(3)判断与的独立性。
四、(12分)设 ,,且与相互独立,试求和的相关系数(其中a、b是不全为零的常数)。
五、(12分)设从大批发芽率为0.9的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率。
六、(12分)设总体的概率密度为是取自总体的简单随机样本。
求:(1)的矩估计量;(2)的方差。
七、(12分)设服从,是来自总体的样本,+。
试求常数,使得服从分布。
八、(15分)从一批木材中抽取100根,测量其小头直径,得到样本平均数为,已知这批木材小头直径的标准差,问该批木材的平均小头直径能否认为是在以上?(取显著性水平=0.05)附表一:, , , ,一、(14分)已知50只铆钉中有3只是次品,将这50只铆钉随机地用在10个部件上。
若每个部件用3只铆钉,问3只次品铆钉恰好用在同一部件上的概率是多少?二、(14分)已知随机变量X 的概率密度为()⎩⎨⎧<<=其他,010,2x Ax x f ,求:(1)参数A ;(2)}35.0{<<X P ;(3)}{x X P <。
三、(14分)设随机变量X 和Y 的联合分布以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Y X U +=的方差。
四、(12分)已知),(Y X 的概率密度函数为⎩⎨⎧<<<<+=其它,010,10,),(y x y x y x f . (1)求X 与Y 的相关系数XY ρ;(2)试判断X 与Y 的独立性。
概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
概率论 模拟题(一)及答案

上 海 金 融 学 院_概率论与数理统计(理工)模拟题一课程代码:13330075_考试形式:闭卷 时间: 120 分钟考试时 只能使用简单计算器(无存储功能)试 题 纸 一、单项选择题(共5题,每题2分,共计10分)1. 设当事件A 与B 同时发生时C 也发生, 则 ( ). (A) B A 是C 的子事件; (B)AB C =;(C) AB 是C 的子事件; (D) C 是AB 的子事件.2. 设事件=A {甲种产品畅销, 乙种产品滞销}, 则A 的对立事件为 ( ).(A) 甲种产品滞销,乙种产品畅销; (B) 甲种产品滞销;(C) 甲、乙两种产品均畅销;(D) 甲种产品滞销或者乙种产品畅销.3. 设X 为随机变量,且2()0.7,()0.2,E X D X ==则 式一定成立:A .13{}0.222P X -<<≥ B.{0.6P X ≥C.{00.6P X <<≥ D.{00.6P X <<≤ 4. 设12,,,(1)n X X X n > 是来自总体(0,1)N 的一个样本,,X S 分别为样本均值和标准差,则 成立。
A. (0,1)X NB. (0,)nX N nC. 221(1)ni i X n χ=-∑ D.(1)Xt n S- 5. 设12,,,(1)n X X X n > 是来自总体2(,)N μσ的一个样本,期望值μ已知,则下列估计量中,唯有 是2σ的无偏估计。
A. 211()n i i X X n =-∑ B. 211()1n i i X n μ=--∑ C. 211()1n i i X X n =--∑ D. 211()1n i i X n μ=-+∑二、填空题(共15个空,每空2分,共计30分)1.已知,5.0)(=A P ()0.2P AB =, 4.0)(=B P , 则(1) )(AB P = ; (2) )(B A P -= ;(3) )(B A P ⋃= ; (4) )(B A P = . 2.若(0,1),()X N x x ϕΦ ,()分别表示它的概率密度函数、分布函数,则ϕ(0)= ;(0)Φ= ;{0}P X == ;{0}P X <= ;{0}P X >= 。
概率论期末模拟题

所以不独立;
(2) ;
(3) ,
.
六.(本题12分)
设二维随机变量的概率密度为
求:(1) 的边缘密度函数; (2) ; (3) . 解 (1) (2) ; (3) .
七.(本题6分) 一部件包括10部分,每部分的长度是一个随机变量,它们相互独 立,且服从同一均匀分布,其数学期望为2mm,均方差为0.05,规定总 长度为mm时产品合格,试求产品合格的概率.
1.设表示3个事件,则表示( )
(A) 中有一个发生 (C) 都不发生 解 本题应选C.
(B) 中不多于一个发生 (D) 中恰有两个发生
2.已知=( ).
(A)
(B)
(C)
(D)
解,
.
故本题应选A.
3.设两个相互独立的随机变量与分别服从正态分布和,则( )
(A)
(B)
(C)
(D)
解 ,,故本题应选B.
(4).
六.(本题12分)
设随机变量X的密度函数为 ,
试求: (1) 的值; (2) ; (3) 的密度函数. 解 (1) 因,从而; (2) ;
(3) 当时,;当时, ,
所以,两边关于y求导可得, 故Y的密度函数为
七.(本题6分) 某商店负责供应某地区1000人商品,某种产品在一段时间内每人需 用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店 应预备多少件这种商品,才能以的概率保证不会脱销?(假定该商品在 某一段时间内每人最多买一件).
第一步假设:=,统计量~, 经检验,接受:=;
第二步假设:, 统计量 经检验,接受,即可认为东、西两支矿脉含锌量的平均值相等.(请参见 模拟试题(一)第九大题)
十.(本题5分)
概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设A,B是两个互不相容的事件,P(A)>0 ,P(B)>0,则()一定成立。
[A]P(A)=1-P(B)[B]P(A│B)=0[C]P(A│B)=1 [D]P(AB)=02、设A,B是两个事件,P(A)>0,P(B)>0,当下面条件()成立时,A 与B一定相互独立。
[A]P( AB)=P(A)P(B)[B]P(AB)=P(A)P(B)[C]P(A│B)=P(B)[D]P(A│B)=P(A)3、若A、B相互独立,则下列式子成立的为()。
[A] P(AB) P(A)P(B) [B] P(AB)0[C] P(AB) P(BA) [D]P(AB) P(B)4、下面的函数中,()可以是离散型随机变量的概率函数。
[A] P 1 k e1(k 0,1,2 ) k![B] P 2 k e1(k 1,2 )k![C]P 3 k 1(k0,1,2 ) 2k[D] P 4 k1(k 1, 2, 3) k25、设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为了使F(x) aF1(x)bF2(x)是某一随机变量的分布函数,则下列个组中应取()。
[A] a 1 3 [B] a2 2 ,b2,b3 2 3[C a 3,b 2[D a 1,b 3] ]5 5 2 2二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T,错误的填F,填在答题卷相应题号处。
概率论与数理统计模拟试题

选择题1.设h⑴,卩2。
)为两个分布函数,苴相应的概率密度/i(X),/2(尤〕是连续函数,则必为概率密度的是(D)A /1U)/2WB 2f2W F lWD fiMF2W + /2(尤)耳002.设随机变量X飞(0,1), Y~N (1,4)且相关系数二1,则(D)A P(Y=-2X-1)=1B P(Y=2X-1)=1C P(Y=-2X+1)=1D P(Y=2X+1)=13.已知概率论的期末考试成绩服从正态分布,从这个总体中随机抽取n二36的样本,并计算得英平均分为79,标准差为9,那么下列成绩不在这次考试中全体考生成绩均值卩的的宜信区间之内的有(),并且当置信度增大时,置信区间长度()。
已知:Z005 = 1.645,减小,减小,增大,增大答案:D解析:由题知,cr=9, n=36, X =79当 & 二时,1-—=2所以Z% 二Z。
®二—(J9X- — S =79 _ -— xl.645 = 76.5325yjn 亠J36—c9X+ —Za/9 =79 +^=x 1.645 =81.4675yjn〜J36即卩的的置信区间为(,)且当u的置信度1-a增大时,置信区间的长度也增大。
故,答案为D.4・下列选项中可以正确表示为分布函数F(x)或连续性随机变量的概率密度函数f(x)的是答案:B.解析:考点1.分布函数要满足右连续。
A 不满足右连续考点2.连续性随机变量的概率密度函数的X 范I 期为(-8,*0),且在这个范|刑上积分和为.为,D 为(-1)。
故C, D 错误5.设随机变MX,r 服从正态分布N(—1,2),“(1,2),并且X, Y 不相关,aX + Y 与X +bY 亦不相关,则().(A) a — b = 1(B) a —b = 0 (C) a + b = 1 (D) a+b = 0应选(D).解 X~N(—1,2),厂N(l,2),于是D (X )= 2,D (K )=2. 又 Cov(X,Y) = 0.Cov(aX + Y^X+bY) = 0. 由协方差的性质有Cov(aX + Y,X +aY)=aCov(X, X) + Cov(Y, X) + abCov(X, Y) + bCov(Y 、Y) = aD(X)+bD(Y) = 2a + 2b =0故a + b = 0•故选(D)・&设X 为禽散性随机变量,且p = P[X=ad(i = l,2……),则X 的期望EX 存在的充分 条件是()0,x <0 0,x<0-,0 < x < 2A. F(x) = 33—,2 < x<5 4 B. F(x)=l,x> 57tx.— < x< 1 4 l,x>lC. f(x) = <,x>0 0,x<0D ・ f(x)=sinsK 竺20,其它limmslim n t s答案:D解析:EX 存在o 习伽|/川收敛,所以是EX 存在的必要条件并不一泄是充分条件.而Bn=l不能保证收敛,因而正确选项是D期望和级数知识的综合考察。
《概率论》考试试题(含答案)

《概率论》考试试题(含答案) ................................................................................................... 1 解答与评分标准 . (3)《概率论》考试试题(含答案)一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为( ) (A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为( )(A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对 4.某一随机变量的分布函数为()3xxa be F x e +=+,则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B =_____.2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.五.(本题10分) 设二维随机变量(ξ,η)的联合分布是η=1 η=2 η=4 η=5ξ=0 0.05 0.12 0.15 0.07 ξ=1 0.03 0.10 0.08 0.11 ξ=2 0.070.010.110.10(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=)九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________.十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824 假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)解:1(18201834183118161824)18255ξ=++++=-------------------2分 已知10.95, 0.05αα-==,0.02521.96u u α==---------------------------5分10σ=,n=5,0.025210 1.96108.7755u u nασ⨯===-------------------8分所求真值μ的0.95的置信区间为[1816.23, 1833.77](单位:℃)-------10分解答与评分标准一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为ξη⋅0 1 2 4 5 8 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟试题(一)一.单项选择题(每小题2分,共16分)1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立(C) 0)(0)(==B P A P 或 (D) AB 未必是不可能事件2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( )(A) )1(3p - (B) 3)1(p - (C) 31p - (D) 213)1(p p C - 3.若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立的是( )(A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续 4.若随机变量ξ的概率密度为)( 21)(4)3(2+∞<<-∞=+-x ex f x π,则=η( ))1,0(~N(A)23+ξ (B)23+ξ(C)23-ξ(D)23-ξ5.若随机变量ηξ ,不相关,则下列等式中不成立的是( )(A) 0),(=ηξCov (B) ηξηξD D D +=+)((C) ηξξηD D D ⋅=(D) ηξξηE E E ⋅=6.设样本n X X X ,,,21⋅⋅⋅取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( )(A) )1,0(~N X (B) )1,0(~N X n(C))(~212n X ni i χ∑= (D))1(~-n t SX7.样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量(A)∑=ni iX1(B) X (C) )46(1.01n X X + (D) 321X X X -+8.在假设检验中,记o H 为待检假设,则犯第一类错误指的是( ) (A) 0H 成立,经检验接受0H (B) 0H 成立,经检验拒绝0H (C) 0H 不成立,经检验接受0H (D) 0H 不成立,经检验拒绝0H 二.填空题(每空2分,共14分)1.同时掷三个均匀的硬币,出现三个正面的概率是________,恰好出现一个正面的概率是________.2.设随机变量ξ服从一区间上的均匀分布,且31,3==ξξD E ,则ξ的概率密度为________.3.设随机变量ξ服从参数为2的指数分布,η服从参数为4的指数分布,则=+)32(2ηξE ________.4.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式,有≤≥+}6|{|Y X P ________.5.假设随机变量X 服从分布)(n t ,则21X服从分布________(并写出其参数).6.设n X X X ,,,21 )1(>n 为来自总体X 的一个样本,对总体方差DX 进行估计时,常用的无偏估计量是________.三.(本题6分)设1.0)(=A P ,9.0)|(=A B P ,2.0)|(=A B P ,求)|(B A P . 四.(本题8分)两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起.又知第一台加工的零件数是第二台加工的零件数的2倍.求:(1) 任取一个零件是合格品的概率,(2) 若任取一个零件是废品,它为第二台车床加工的概率. 五.(本题14分)袋中有4个球分别标有数字1,2,2,3,从袋中任取一球后,不放回再取一球,分别以,ξη记第一次,第二次取得球上标有的数字,求:(1) ) ,(ηξ的联合分布; (2) ηξ,的边缘分布; (3) ηξ,是否独立; (4) ξηE . 六.(本题12分)设随机变量X 的密度函数为)( )(||2+∞<<-∞=-x e Ax x f x ,试求:(1) A 的值; (2) )21(≤<-X P ; (3) 2X Y =的密度函数.七.(本题6分)某商店负责供应某地区1000人商品,某种产品在一段时间内每人需用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店应预备多少件这种商品,才能以%7.99的概率保证不会脱销?(假定该商品在某一段时间内每人最多买一件).八.(本题10分)一个罐内装有黑球和白球,黑球数与白球数之比为R .(1) 从罐内任取一球,取得黑球的个数X 为总体,即⎩⎨⎧=白球,,黑球,,01X 求总体X 的分布;(2) 从罐内有放回的抽取一个容量为n 的样本n X X X ,,,21 ,其中有m个白球,求比数R 的最大似然估计值.九.(本题14分)对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω): A 批:0.140,0.138,0.143,0.141,0.144,0.137;B 批:0.135,0.140,0.142,0.136,0.138,0.141. 已知元件电阻服从正态分布,设05.0=α,问:(1) 两批电子元件的电阻的方差是否相等; (2) 两批电子元件的平均电阻是否有显著差异. (2281.2)10(025.0=t ,15.7)5,5(025.0=F )模拟试题(二)一.单项选择题(每小题2分,共16分) 1.设C , ,B A 表示3个事件,则C B A 表示( )(A) C , ,B A 中有一个发生 (B) C , ,B A 中不多于一个发生 (C) C , ,B A 都不发生 (D) C , ,B A 中恰有两个发生2.已知)(,61)|(,31)()(B A P B A P B P A P 则====( ).(A) 187 (B) 1811 (C) 31 (D) 413.设两个相互独立的随机变量X 与Y 分别服从正态分布)1,0(N 和)1,1(N ,则( )(A) 21}0{=≤+Y X P (B) 21}1{=≤+Y X P(C) 21}0{=≤-Y X P (D) 21}1{=≤-Y X P4.设X 与Y 为两随机变量,且6.0,1,4===XY DY DX ρ,则=-)23(Y X D ( )(A) 40 (B) 34 (C) 25.6 (D) 17.65.若随机变量ξ服从参数为λ的泊松分布,则2ξ的数学期望是( )(A) λ (B) λ1(C) 2λ (D) λλ+26.设n X X X ,,,21 是来自于正态总体),(2σμN 的简单随机样本,X 为样本方差,记∑=--=n i i X X n S 122)(111 ∑=-=n i i X X n S 1222)(1 ∑=--=n i i X n S 1223)(11μ ∑=-=n i i X n S 1224)(1μ 则服从自由度为1-n 的t 分布的随机变量是( )(A) 1/1--=n S X t μ (B) 1/2--=n S X t μ(C) 1/3--=n S X t μ (D) 1/4--=n S X t μ7.设总体X 的均值μ与方差2σ都存在,且均为未知参数,而n X X X ,,,21 是该总体的一个样本,X 为样本方差,则总体方差2σ的矩估计量是( )(A) X (B) ∑=-ni i X n 12)(1μ(C) ∑=--n i i X X n 12)(11 (D) ∑=-n i i X X n 12)(1 8.在假设检验时,若增大样本容量,则犯两类错误的概率( ) (A) 都增大 (B) 都减小(C) 都不变 (D) 一个增大一个减小 二.填空题(每空2分,共14分)1.设10件产品中有4件不合格品,从中任取2件,已知所取2件中有1件是不合格品,则另外1件也是不合格品的概率为________.2.设随机变量ξ服从)8.0 ,1(B 分布,则ξ的分布函数为________. 3.若随机变量X 服从均值为2,方差为2σ的正态分布,且6.0}40{=<<X P ,则}0{<X P =________.4.设总体X 服从参数为p 的0-1分布,其中)10(<<p p 未知.现得一样本容量为8的样本值:0,1,0,1,1,0,1,1,则样本均值是________,样本方差是________.5.设总体X 服从参数为λ的指数分布,现从X 中随机抽取10个样本,根据测得的结果计算知27101=∑=i i x ,那么λ的矩估计值为________.6.设总体) ,(~2σμN X ,且2σ未知,用样本检验假设00μμ=:H 时,采用的统计量是________.三.(本题8分)设有三只外形完全相同的盒子,Ⅰ号盒中装有14个黑球,6个白球;Ⅱ号盒中装有5个黑球,25个白球;Ⅲ号盒中装有8个黑球,42个白球.现在从三个盒子中任取一盒,再从中任取一球,求: (1)取到的球是黑球的概率;(2)若取到的是黑球,它是取自Ⅰ号盒中的概率. 四.(本题6分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其它,,,,002cos 21)(πx x x f , 对X 独立地重复观察4次,用Y 表示观察值大于3π地次数,求2Y 的数学期望.五.(本题12分)设(,)ξη的联合分布律为 η 0 1 2 ξ1 0.1 0.05 0.352 0.3 0.1 0.1 问:(1)ηξ,是否独立;(2) 计算()P ξη=的值;(3) 在2η=的条件下ξ的条件分布律.六.(本题12分)设二维随机变量) ,(Y X 的概率密度为⎩⎨⎧≤≤≤=,,0,10,12),(2其它x y y y x f求:(1) X 的边缘密度函数)(x f X ;(2) EXY ;(3) )1(>+Y X P .七.(本题6分)一部件包括10部分,每部分的长度是一个随机变量,它们相互独立,且服从同一均匀分布,其数学期望为2mm ,均方差为0.05,规定总长度为)1.020(±mm 时产品合格,试求产品合格的概率.八.(本题7分) 设总体X 具有概率密度为⎪⎩⎪⎨⎧>-=--,,0,0,)!1()(1其它x e x k x f x k kθθ 其中k 为已知正整数,求θ的极大似然估计.九.(本题14分)从某锌矿的东、西两支矿脉中,各抽取样本容量分别为9与8的样本进行测试,得样本含锌平均数及样本方差如下:东支:230.0=x ,1337.021=n s , )9(1=n 西支:269.0=x ,1736.022=n s , )8(2=n 若东、西两支矿脉的含锌量都服从正态分布,问东、西两支矿脉含锌量的平均值是否可以看作一样?)05.0(=α53.4)7 ,8( (025.0=F ,90.4)8 ,7(025.0=F ,) 1315.2)15(0025.0=t十.(本题5分) 设总体X 的密度函数为⎪⎩⎪⎨⎧≤≤=,,0,0,3)(33其它θθx x x f其中θ为未知参数,n X X X ,,,21 为来自总体X 的样本,证明:X 34是θ的无偏估计量.模拟试卷(三)一.填空(每小题2分,共14分)1.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8180,则该射手的命中率为 . 2.若事件A ,B 独立,且p A P =)(,q B P =)(则=)(B A P . 3.设离散型随机变量ξ服从参数为λ(0>λ)的泊松分布,已知==)1(ξP )2(=ξP ,则λ= .4.设相互独立的两个随机变量X ,Y 具有同一分布律,且X 的分布律为:X 0 1P 21 21则随机变量},max{Y X Z =的分布律为 .5.设随机变量X ,Y 的方差分别为25=DX ,36=DY ,相关系数4.0=XYρ,则),(Y X Cov = .6.设总体X 的期望值μ和方差2σ都存在,总体方差2σ的无偏估计量是21)(∑=-ni i X X n k ,则=k . 7.设总体),(~2σμN X ,μ未知,检验2020σσ=H :,应选用的统计量是 .二 .单项选择(每小题2分,共16分)1.6本中文书和4本外文书任意往书架上摆放,则4本外文书放在一起的概率为( )(A )!10!6!4 (B ) 107 (C ) !10!7!4 (D ) 1042.若事件A ,B 相互独立,则下列正确的是( )(A ) =)|(A B P )|(B A P (B ) =)|(A B P )(A P (C ) )|(B A P )(B P = (D ) =)|(B A P )(1A P - 3.设随机变量ξ服从参数为n ,p 的二项分布,且6.1=ξE ,28.1=ξD ,则n ,p 的值为( )(A ) n =8,p =2.0 (B ) n =4,p =4.0 (C ) n =5,p =32.0 (D ) n =6,p =3.04.设随机变量ξ服从正态分布)1,2(N ,其概率密度函数为)(x f ,分布函数为)(F x ,则有( )(A ) =≥)0(ξP =≤)0(ξP 5.0 (B ) =≥)2(ξP =≤)2(ξP 5.0 (C ) )(x f =)(x f -,),(∞+-∞∈x(D ) =-)(x F -1)(x F , ),(∞+-∞∈x5.如果随机变量ξ与η满足:)(ηξ+D )(ηξ-=D ,则下列式子正确的是( )(A ) ξ与η相互独立 (B ) ξ与η不相关 (C ) 0=ηD (D ) 0=⋅ηξD D6.设n X X X ,,,21 是来自总体),(~2σμN X 的样本,X 为样本均值,令=Y 212)(σ∑=-ni iX X,则~Y ( )(A ) )1(2-n χ (B ) )(2n χ (C ) ),(2σμN (D ) ),(2nN σμ7.设n X X X ,,,21 是取自总体),0(2σN 的样本,可以作为2σ的无偏估计量的统计量是( )(A ) ∑=n i i X n 121 (B ) ∑=-n i i X n 1211 (C ) ∑=n i i X n 11 (D ) ∑=-ni i X n 111 8.样本n X X X ,,,21 来自正态总体),(2σμN ,若进行假设检验,当( )时,一般采用统计量nS X t /0μ-=(A ) μ 未知,检验2σ=20σ (B ) μ已知,检验2σ=20σ(C ) 2σ未知,检验 μ=0μ (D ) 2σ已知,检验μ=0μ 三.(本题8分)有两台车床生产同一型号螺杆,甲车床的产量是乙车床的5.1倍,甲车床的废品率为%2,乙车床的废品率为%1,现随机抽取一根螺杆检查,发现是废品,问该废品是由甲车床生产的概率是多少?四.(本题8分)假设一部机器在一天内发生故障的概率为2.0,机器发生故障时全天停止工作.若一周五个工作日里无故障,可获利润10万元,发生一次故障获利润5万元,发生两次故障获利润0万元,发生三次或三次以上故障就要亏损2万元,问一周内期望利润是多少?五.(本题12分)1.设随机向量ξ,η的联合分布为:ξ η 1 2 31 0 61 1212 61 61 613 121 61(1) 求ξ,η的边际分布;(2) 判断ξ与η是否独立. 2.设随机变量ξ和η的联合密度函数为:),(y x f =⎩⎨⎧<<-其它,,,,00e y x y求概率)1(≤+ηξP .六.(本题8分)设连续型随机变量ξ的分布函数为:=)(x F ⎪⎩⎪⎨⎧≤>+-,,,,000e 22x x B A x 求:(1) 系数A 及B ;(2) 随机变量ξ的概率密度; (3) )9ln 4ln (≤≤ξP . 七.(本题8分)设n X X X ,,,21 为总体X 的一个样本,X 的概率密度为:)(x f =⎪⎩⎪⎨⎧≤≤-其它,,,,0101x x θθ其中θ>0,求未知参数θ的矩估计量.八.(本题10分)设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为5.66分,标准差为15分,问在显著水平05.0下,是否可认为全体考生的平均成绩为70分?九.(本题12分)两家银行分别对21个储户和16个储户的年存款余额进行抽样调查,测得其平均年存款余额分别为x =2600元和y =2700元,样本标准差相应地为811=S 元和1052=S 元,假设年存款余额服从正态分布,试比较两家银行的储户的平均年存款余额有无显著差异?(10.0=α)十.(本题4分)设总体X 服从参数为λ的泊松分布,λ为未知参数,⎩⎨⎧-=为偶数,,为奇数,,X X X T 11)( 证明:)(X T 是λ2-e 的一个无偏估计量.模拟试题(四)一.填空题(每小题2分,共20分)1.设)(A P =0.4,)(B P =0.5.若,7.0)(=B A P 则=)(B A P . 2.若随机变量X 服从二项分布,即X ~B (5,0.1),则)21(X D -= . 3.三次独立重复射击中,若至少有一次击中的概率为6437,则每次击中的概率为 .4.设随机变量X 的概率密度是:⎩⎨⎧<<=,,0,10,3)(2其它x x x f ,且,784.0)(=≥a X P 则=a .5.利用正态分布的结论,有:=+-⎰∞+∞---dx ex x x 2)2(22)44(21π.6.设总体X 的密度函数为:⎩⎨⎧<<=-,,0,10,)(1其它x x x f αα)0(>αα为参数其中,n x x x ,,,21 是来自总体X 的样本观测值,则样本的似然函数=);,,,(21αn x x x L .7.设X ,Y 是二维随机向量,DX ,DY 都不为零,若有常数0>a 与b 使1)(=+-=b aX Y P ,这时X 与Y 是 关系.8.若X ~),(2σμN ,n X X X ,,,21 是来自总体X 的样本,2,S X 分别为样本均值和方差,则SnX )(μ-~ 分布. 9.设X ~),(211σμN ,Y ~),(222σμN ,X 与Y 相互独立.从X ,Y 中分别抽取容量为21,n n 的样本,样本均值分别为Y X ,,则Y X -服从分布 .10.设随机变量X 和Y 的相关系数为0.9,若4.0-=X Z ,则Y 与Z 的相关系数为____________.二.单项选择题(每小题2分,共12分)1. 设随机变量X 的数学期望)(X E 与2)(σ=X D 均存在,由切比雪夫不等式估计概率)4(σ<-EX X P 为( ))(A 161≥)(B 161≤ )(C 1615≥ )(D 1615≤ 2.B A ,为随机随机事件,且A B ⊂,则下列式子正确的是( ))(A )()(A P B A P = )(B )()()(A P B P A B P -=- )(C )()(A P AB P = )(D )()(B P A B P =3. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,,,,010)(x B Ax x f 且127)(=X E ,则( ))(A 5.0,1-==B A )(B 1,5.0=-=B A)(C 1,5.0==B A )(D 5.0,1==B A4.若随机变量X 与Y 不相关,则有( ))(A )(9)()3(Y D X D Y X D -=- )(B )()()(Y D X D XY D ⨯= )(C 0)]}()][({[=--Y E Y X E X E )(D 1)(=+=b aX Y P5.已知随机变量F ~),(21n n F ,且αα=>)},({21n n F F P ,则=-),(211n n F α( ).)(A ),(121n n F α )(B ),(1121n n F α-)(C ),(112n n F α )(D ),(1211n n F α-6.将一枚硬币独立地掷两次,记事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件)(A 321,,A A A 相互独立 )(B 432,,A A A 相互独立 )(C 321,,A A A 两两独立 )(D 432,,A A A 两两独立三.计算题(每小题8分,共48分)1.某厂由甲,乙,丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%,12%.现从该厂产品中任意抽取一件,求:(1) 取到不合格产品的概率;(2) 若取到的是不合格品,求它是由甲厂生产的概率.2.一实习生用一台机器接连独立地制造三个同样的零件,第i 个零件是不合格品的概率为)3,2,1(11=+=i ip i ,以X 表示三个零件中合格品的个数,求:(1) X 的概率分布; (2) X 的方差DX .3.设总体X ~),0(2σN ,2σ为未知参数,n x x x ,,,21 是来自总体X 的一组样本值,求2σ的最大似然估计.4.二维随机变量(X ,Y )的联合概率密度:⎩⎨⎧>>=+-其它,,,,00,02),()2(y x e y x f y x 求:(1) X 与Y 之间是否相互独立,判断X 与Y 是否线性相关;(2) )1(≤+X Y P .5.某人乘车或步行上班,他等车的时间X (单位:分钟)服从参数为51的指数分布,如果等车时间超过10分钟他就步行上班.若此人一周上班5次,以Y 表示他一周步行上班的次数.求Y 的概率分布;并求他一周内至少有一次步行上班的概率.6.设随机变量X 的概率密度为⎪⎩⎪⎨⎧∈⋅=其它,,,,0]8,1[31)(32x xx f )(x F 是X 的分布函数.求随机变量)(X F Y =的概率分布.四.应用题(第1题7分、第2题8分,共15分)1.假设对目标独立地发射400发炮弹,已知每一发炮弹的命中率等于0.2,用中心极限定理计算命中60发到100发之间的概率.2.某厂生产铜丝,生产一向稳定.现从该厂产品中随机抽出10段检查其折断力,测后经计算:5.160)(,5.28712=-=∑=ni ix xx .假定铜丝折断力服从正态分布,问是否可以相信该厂生产的铜丝的折断力方差为16?(1.0=α)五.证明题(5分)若随机变量X 的密度函数)(x f ,对任意的R x ∈,满足:)()(x f x f -=,)(x F 是其分布函数.证明:对任意实数a ,有⎰-=-a dx x f a F 0)(21)(模拟试题(一)参考答案 一.单项选择题 1.D2.C3.A4.A5.C6.C7.A8.B二.填空题1.2.3.4.5. 6. 三.四.(1)0.973; (2)0.25 五.(1)1 2 3 1 0 23 0(2),,,,(3)不独立(4)六.(1);(2)(3)七.643八.(1) 1 0即(2),,由样本值知,,故估计值为九.(1)相等;(2)无显著性差异模拟试题参考答案(二)一.单项选择题1.C2.A3.B4.C5.D6.B7.D8.B 二.填空题1.2.3.0.24.,0.275.6.三.(1)0.342;(2)0.682四.提示:,,五.(1)不独立;(2)0.15(3),六.(1)(2);(3)七.0.4714八.九.是提示:本题是在未知方差,又没有说明方差是否相等的情况下,要求检验两总体均值是否相等的问题,故首先必须检验方差是否相等,在相等的条件下,检验总体均值是否相等。