2020-2021学年广东省广州第二中学高一上学期期末数学试题 (解析版)

合集下载

2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)

2020-2021学年必修二高一数学下学期期末第八章 立体几何初步(章节专练解析版)

第八章 立体几何初步(章节复习专项训练)一、选择题1.如图,在棱长为1正方体ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF ∆沿BF 所在的直线进行翻折,将CDE ∆沿DE 所在直线进行翻折,在翻折的过程中,下列说法错误..的是A .无论旋转到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒【答案】D【详解】解:过A 点作AM⊥BF 于M ,过C 作CN⊥DE 于N 点在翻折过程中,AF 是以F 为顶点,AM 为底面半径的圆锥的母线,同理,AB ,EC ,DC 也可以看成圆锥的母线;在A 中,A 点轨迹为圆周,C 点轨迹为圆周,显然没有公共点,故A 正确;在B 中,能否使得直线AF 与直线CE 所成的角为60°,又AF ,EC 分别可看成是圆锥的母线,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B 正确;在C 中,能否使得直线AF 与直线CE 所成的角为90°,只需看以F 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C 正确;在D 中,能否使得直线AB 与直线CD 所成的角为90︒,只需看以B 为顶点,AM 为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D 不成立;故选D .2.如图所示,多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,EF 到平面ABCD 的距离为2,则该多面体的体积V 为( )A .92B .5C .6D .152【答案】D【详解】解法一:如图,连接EB ,EC ,AC ,则213263E ABCD V -=⨯⨯=.2AB EF =,//EF AB2EAB BEF S S ∆∆∴=.12F EBC C EFB C ABE V V V ---=∴= 11132222E ABC E ABCD V V --==⨯=. E ABCDF EBC V V V --∴=+315622=+=. 解法二:如图,设G ,H 分别为AB ,DC 的中点,连接EG ,EH ,GH ,则//EG FB ,//EH FC ,//GH BC ,得三棱柱EGH FBC -,由题意得123E AGHD AGHD V S -=⨯ 1332332=⨯⨯⨯=, 133933332222GH FBC B EGH E BGH E GBCH E AGHD V V V V V -----===⨯==⨯=⨯, 915322E AGHD EGH FBC V V V --=+=+=∴. 解法三:如图,延长EF 至点M ,使3EM AB ==,连接BM ,CM ,AF ,DF ,则多面体BCM ADE -为斜三棱柱,其直截面面积3S =,则9BCM ADE V S AB -=⋅=.又平面BCM 与平面ADE 平行,F 为EM 的中点,F ADE F BCM V V --∴=,2F BCM F ABCD BCM ADE V V V ---∴+=, 即12933233F BCM V -=-⨯⨯⨯=, 32F BCM V -∴=,152BCM ADE F BCM V V V --=-=∴. 故选:D 3.下列命题中正确的是A .若a ,b 是两条直线,且a ⊥b ,那么a 平行于经过b 的任何平面B .若直线a 和平面α满足a ⊥α,那么a 与α内的任何直线平行C .平行于同一条直线的两个平面平行D .若直线a ,b 和平面α满足a ⊥b ,a ⊥α,b 不在平面α内,则b ⊥α【答案】D【详解】解:如果a ,b 是两条直线,且//a b ,那么a 平行于经过b 但不经过a 的任何平面,故A 错误; 如果直线a 和平面α满足//a α,那么a 与α内的任何直线平行或异面,故B 错误;如果两条直线都平行于同一个平面,那么这两条直线可能平行,也可能相交,也可能异面,故C 错误; D 选项:过直线a 作平面β,设⋂=c αβ,又//a α//a c ∴又//a b//b c ∴又b α⊂/且c α⊂//b α∴.因此D 正确.故选:D .4.如图,正方体ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,M 为棱BB 1的中点,则下列结论中错误的是( )A .D 1O⊥平面A 1BC 1B .MO⊥平面A 1BC 1C .二面角M -AC -B 等于90°D .异面直线BC 1与AC 所成的角等于60°【答案】C【详解】对于A ,连接11B D ,交11AC 于E ,则四边形1DOBE 为平行四边形 故1D O BE1D O ⊄平面11,A BC BE ⊂平面111,A BC DO ∴平面11A BC ,故正确对于B ,连接1B D ,因为O 为底面ABCD 的中心,M 为棱1BB 的中点,1MO B D ∴,易证1B D ⊥平面11A BC ,则MO ⊥平面11A BC ,故正确;对于C ,因为,BO AC MO AC ⊥⊥,则MOB ∠为二面角M AC B --的平面角,显然不等于90︒,故错误对于D ,1111,AC AC AC B ∴∠为异面直线1BC 与AC 所成的角,11AC B ∆为等边三角形,1160AC B ∴∠=︒,故正确故选C5.如图,在长方体1111ABCD A BC D -中,E 、F 分别是棱1AA 和1BB 的中点,过EF 的平面EFGH 分别交BC 和AD 于点G 、H ,则GH 与AB 的位置关系是A .平行B .相交C .异面D .平行或异面【答案】A【详解】 在长方体1111ABCD A BC D -中,11//AA BB ,E 、F 分别为1AA 、1BB 的中点,//AE BF ∴,∴四边形ABFE 为平行四边形,//EF AB ∴, EF ⊄平面ABCD ,AB 平面ABCD ,//EF ∴平面ABCD ,EF ⊂平面EFGH ,平面EFGH平面ABCD GH =,//EF GH ∴, 又//EF AB ,//GH AB ∴,故选A.6.如图所示,点S 在平面ABC 外,SB⊥AC ,SB=AC=2,E 、F 分别是SC 和AB 的中点,则EF 的长是A .1 BC .2D .12【答案】B【详解】取BC 的中点D ,连接ED 与FD⊥E 、F 分别是SC 和AB 的中点,点D 为BC 的中点⊥ED⊥SB ,FD⊥AC,而SB⊥AC ,SB=AC=2则三角形EDF 为等腰直角三角形,则ED=FD=1即故选B.7.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆O 上一点(不同于A ,B 两点),且PA AC =,则二面角P BC A --的大小为A .60°B .30°C .45°D .15°【答案】C【详解】 解:由条件得,PA BC AC BC ⊥⊥.又PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以BC ⊥平面PAC .又因为PC ⊂平面PAC , 所以BC PC ⊥.所以PCA ∠为二面角P BC A --的平面角.在Rt PAC ∆中,由PA AC =得45PCA ︒∠=. 故选:C .8.在空间四边形ABCD 中,若AD BC BD AD ⊥⊥,,则有A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC【答案】D【详解】 由题意,知AD BC BD AD ⊥⊥,,又由BC BD B =,可得AD ⊥平面DBC ,又由AD ⊂平面ADC ,根据面面垂直的判定定理,可得平面ADC ⊥平面DBC9.直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于 A .30°B .45°C .60°D .90°【答案】C【详解】本试题主要考查异面直线所成的角问题,考查空间想象与计算能力.延长B 1A 1到E ,使A 1E =A 1B 1,连结AE ,EC 1,则AE ⊥A 1B ,⊥EAC 1或其补角即为所求,由已知条件可得⊥AEC 1为正三角形,⊥⊥EC 1B 为60,故选C .10.已知两个平面相互垂直,下列命题⊥一个平面内已知直线必垂直于另一个平面内的任意一条直线⊥一个平面内已知直线必垂直于另一个平面内的无数条直线⊥一个平面内任意一条直线必垂直于另一个平面⊥过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题个数是( )A .1B .2C .3D .4 【答案】A【详解】由题意,对于⊥,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故⊥错误;对于⊥,设平面α∩平面β=m ,n⊥α,l⊥β,⊥平面α⊥平面β, ⊥当l⊥m 时,必有l⊥α,而n⊥α, ⊥l⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即⊥正确;对于⊥,当两个平面垂直时,一个平面内的任一条直线不不一定垂直于另一个平面,故⊥错误;对于⊥,当两个平面垂直时,过一个平面内任意一点作交线的垂线,若该直线不在第一个平面内,则此直线不一定垂直于另一个平面,故⊥错误;故选A .11.在空间中,给出下列说法:⊥平行于同一个平面的两条直线是平行直线;⊥垂直于同一条直线的两个平面是平行平面;⊥若平面α内有不共线的三点到平面β的距离相等,则//αβ;⊥过平面α的一条斜线,有且只有一个平面与平面α垂直.其中正确的是( )A .⊥⊥B .⊥⊥C .⊥⊥D .⊥⊥ 【答案】B【详解】⊥平行于同一个平面的两条直线可能平行、相交或异面,不正确;易知⊥正确;⊥若平面α内有不共线的三点到平面β的距离相等,则α与β可能平行,也可能相交,不正确;易知⊥正确.故选B.12.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l⊥αD .如果两个平面有三个公共点,则这两个平面重合.【答案】A【详解】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个公共点且它们共线,这两个平面可以相交,故D 错.综上,选A .13.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为A .27πB .36πC .54πD .81π 【答案】B【详解】设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ⨯=π.14.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为A .8π3B .32π3C .8πD 【答案】C【详解】设球的半径为R ,则截面圆的半径为,⊥截面圆的面积为S =π2=(R 2-1)π=π,⊥R 2=2,⊥球的表面积S =4πR 2=8π.故选C. 15.已知圆柱的侧面展开图是一个边长为2的正方形,那么这个圆柱的体积是A .2πB .1πC .22πD .21π【答案】A【详解】由题意可知,圆柱的高为2,底面周长为2,故半径为1π,所以底面积为1π,所以体积为2π,故选A . 16.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是( )A .原来相交的仍相交B .原来垂直的仍垂直C .原来平行的仍平行D .原来共点的仍共点【答案】B【详解】解:根据斜二测画法作水平放置的平面图形的直观图的规则,与x 轴平行的线段长度不变,与y 轴平行的线段长度变为原来的一半,且倾斜45︒,故原来垂直线段不一定垂直了;故选:B .17.如图所示为一个水平放置的平面图形的直观图,它是底角为45︒,腰和上底长均为1的等腰梯形,则原平面图形为 ( )A .下底长为1B .下底长为1+C .下底长为1D .下底长为1+【答案】C【详解】45A B C '''∠=,1A B ''= 2cos451B C A B A D ''''''∴=+=∴原平面图形下底长为1由直观图还原平面图形如下图所示:可知原平面图形为下底长为1故选:C18.半径为R 的半圆卷成一个圆锥,则它的体积是( )A 3RB 3RC 3RD 3R 【答案】C【详解】设底面半径为r ,则2r R ππ=,所以2R r =.所以圆锥的高2h R ==.所以体积22311332R V r h R ππ⎛⎫=⨯== ⎪⎝⎭.故选:C .19.下列说法中正确的是A .圆锥的轴截面是等边三角形B .用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C .将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所围成的几何体是由一个圆台和两个圆锥组合而成D .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱【答案】D【详解】圆锥的轴截面是两腰等于母线长的等腰三角形,A 错误;只有用一个平行于底面的平面去截棱锥,才能得到一个棱锥和一个棱台,B 错误;等腰梯形绕着它的较长的底边所在的直线旋转一周的几何体,是由一个圆柱和两个圆锥组合而成,故C 错误;由棱柱的定义得,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,故D 正确.20.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+> 【答案】A【详解】如图,过A '作A H '⊥平面BCD ,垂足为H ,过A '作A G EF '⊥,垂足为G ,设,,A G d A H h A EG γ'''==∠=,因为A H '⊥平面BCD ,EF ⊂平面BCD ,故A H EF '⊥,而A G A H A '''⋂=,故EF ⊥平面A GH ',而GH ⊂平面A GH ',所以EF GH ⊥,故A GH θ'∠=,又A EH α'∠=,A FH β'∠=.在直角三角形A GE '中,sin d A E γ'=,同理cos d A F γ'=, 故sin sin sin sin sin h h d dαγθγγ===,同理sin sin cos βθγ=, 故222sin sin sin αβθ+=,故2cos 2cos 21sin 22αβθ--=, 整理得到2cos 2cos 2cos 22αβθ+=, 故()()2cos cos cos 22αβαβαβαβθ+--⎡⎤++-⎣⎦+=, 整理得到()()2cos cos cos αβαβθ+-=即()()cos cos cos cos αβθθαβ+=-, 若αβθ+≤,由04πθ<< 可得()cos cos αβθ+≥即()cos 1cos αβθ+≥, 但αβαβθ-<+≤,故cos cos αβθ->,即()cos 1cos θαβ<-,矛盾, 故αβθ+>.故A 正确,B 错误. 由222sin sin sin αβθ+=可得sin sin ,sin sin αθβθ<<,而,,αβθ均为锐角,故,αθβθ<<,22παβθ+<<,故CD 错误.故选:D.二、填空题 21.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =AB ,则下列结论正确的是_____.(填序号)⊥PB ⊥AD ;⊥平面P AB ⊥平面PBC ;⊥直线BC ⊥平面P AE ;⊥sin⊥PDA =.【答案】⊥【详解】⊥P A ⊥平面ABC ,如果PB ⊥AD ,可得AD ⊥AB ,但是AD 与AB 成60°,⊥⊥不成立,过A 作AG ⊥PB 于G ,如果平面P AB ⊥平面PBC ,可得AG ⊥BC ,⊥P A ⊥BC ,⊥BC ⊥平面P AB ,⊥BC ⊥AB ,矛盾,所以⊥不正确;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,所以⊥不正确;在R t⊥P AD 中,由于AD =2AB =2P A ,⊥sin⊥PDA =,所以⊥正确;故答案为: ⊥22.如图,已知边长为4的菱形ABCD 中,,60AC BD O ABC ⋂=∠=︒.将菱形ABCD 沿对角线AC 折起得到三棱锥D ABC -,二面角D AC B --的大小为60°,则直线BC 与平面DAB 所成角的正弦值为______.【详解】⊥四边形ABCD 是菱形,60ABC ∠=︒,,,AC OD AC OB OB OD ∴⊥⊥==,DOB ∴∠为二面角D AC B --的平面角,60DOB ∠=︒∴,OBD ∴△是等边三角形.取OB 的中点H ,连接DH ,则,3DH OB DH ⊥=.,,AC OD AC OB OD OB O ⊥⊥⋂=,AC ∴⊥平面,OBD AC DH ∴⊥,又,AC OB O AC ⋂=⊂平面ABC ,OB ⊂平面ABC ,DH ∴⊥平面ABC ,2114333D ABC ABC V S DH -∴=⋅=⨯=△4,AD AB BD OB ====ABD ∴∆的边BD 上的高h =1122ABD S BD h ∴=⋅=⨯=△设点C 到平面ABD 的距离为d ,则13C ABD ABD V S d -=⋅=△.D ABC C ABD V V --=,d ∴=∴=⊥直线BC 与平面DAB 所成角的正弦值为d BC = 23.球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为_______. 【答案】932或332【解析】设圆锥的底面半径为r,高为h,球的半径为R .由立体几何知识可得,连接圆锥的顶点和底面的圆心,必垂直于底面,且球心在连线所成的直线上.分两种情况分析:(1)球心在连线成构成的线段内因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为(2)球心在连线成构成的线段以外因为球心到该圆锥底面的距离是球半径的一半,所以,故圆锥的体积为.该圆锥的体积和此球体积的比值为24.如图,四棱台''''ABCD A B C D -的底面为菱形,P 、Q 分别为''''B C C D ,的中点.若'AA ⊥平面BPQD ,则此棱台上下底面边长的比值为___________.【答案】2 3【详解】连接AC,A′C′,则AC⊥A′C′,即A,C,A′,C′四点共面,设平面ACA′C′与PQ和QB分别均于M,N点,连接MN,如图所示:若AA′⊥平面BPQD,则AA′⊥MN,则AA'NM为平行四边形,即A'M=AN,即31''42A C=AC,''23A BAB∴=,即棱台上下底面边长的比值为23.故答案为23.三、解答题25.如图,在直四棱柱ABCD–A1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.(1)求证:AC 1⊥平面PBD ;(2)求证:BD ⊥A 1P .【答案】(1)见解析;(2)见解析【详解】(1)连接AC 交BD 于O 点,连接OP ,因为四边形ABCD 是正方形,对角线AC 交BD 于点O ,所以O 点是AC 的中点,所以AO =OC .又因为点P 是侧棱C 1C 的中点,所以CP =PC 1,在⊥ACC 1中,11C P AO OC PC==,所以AC 1⊥OP , 又因为OP ⊥面PBD ,AC 1⊥面PBD ,所以AC 1⊥平面PBD .(2)连接A 1C 1.因为ABCD –A 1B 1C 1D 1为直四棱柱,所以侧棱C 1C 垂直于底面ABCD ,又BD ⊥平面ABCD ,所以CC 1⊥BD ,因为底面ABCD 是菱形,所以AC ⊥BD ,又AC ∩CC 1=C ,AC ⊥面AC 1,CC 1⊥面AC 1,所以BD ⊥面AC 1,又因为P ⊥CC 1,CC 1⊥面ACC 1A 1,所以P ⊥面ACC 1A 1,因为A 1⊥面ACC 1A 1,所以A 1P ⊥面AC 1,所以BD ⊥A 1P .26.如图,在直三棱柱111ABC A B C -中,1BC BB =,12BAC BCA ABC ∠=∠=∠,点E 是1A B 与1AB 的交点,D 为AC 的中点.(1)求证:1BC 平面1A BD ;(2)求证:1AB ⊥平面1A BC .【答案】(1)见解析(2)见解析【解析】分析:(1)连结ED ,E 为1A B 与1AB 的交点,E 为1AB 中点,D 为AC 中点,根据三角形中位线定理可得1//ED B C ,由线面平行的判定定理可得结果;(2)由等腰三角形的性质可得AB BC ⊥,由菱形的性质可得11AB A B ⊥,1BB ⊥平面ABC ,可得1BC BB ⊥,可证明1BC AB ⊥,由线面垂直的判定定理可得结果.详解:(1)连结ED ,⊥直棱柱111ABC A B C -中,E 为1A B 与1AB 的交点,⊥E 为1AB 中点,D 为AC 中点,⊥1//ED B C又⊥ED ⊂平面1A BD ,1B C ⊄平面1A BD⊥1//B C 平面1A BD .(2)由12BAC BCA ABC ∠=∠=∠知,AB BC AB BC =⊥ ⊥1BB BC =,⊥四边形11ABB A 是菱形,⊥11AB A B ⊥. ⊥1BB ⊥平面ABC ,BC ⊂平面ABC⊥1BC BB ⊥⊥1AB BB B ⋂=,1,AB BB ⊂平面11ABB A ,⊥BC ⊥平面11ABB A⊥1AB ⊂平面11ABB A ,⊥1BC AB ⊥⊥1BC A B B ⋂=,1,BC A B ⊂平面1A BC ,⊥1AB ⊥平面1A BC27.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,平面PBC ⊥平面ABCD ,⊥BCD 4π=,BC ⊥PD ,PE ⊥BC .(1)求证:PC =PD ;(2)若底面ABCD 是边长为2的菱形,四棱锥P ﹣ABCD 的体积为43,求点B 到平面PCD 的距离.【答案】(1)证明见解析 (2)3. 【详解】 (1)证明:由题意,BC ⊥PD ,BC ⊥PE ,⊥BC ⊥平面PDE ,⊥DE ⊥平面PDE ,⊥BC ⊥DE .⊥⊥BCD 4π=,⊥DEC 2π=,⊥ED =EC ,⊥Rt⊥PED ⊥Rt⊥PEC ,⊥PC =PD .(2)解:由题意,底面ABCD 是边长为2的菱形,则ED =EC =⊥平面PBC ⊥平面ABCD ,PE ⊥BC ,平面PBC ∩平面ABCD =BC ,⊥PE ⊥平面ABCD ,即PE 是四棱锥P ﹣ABCD 的高.⊥V P ﹣ABCD 13=⨯2PE 43=,解得PE = ⊥PC =PD =2.设点B 到平面PCD 的距离为h ,⊥V B ﹣PCD =V P ﹣BCD 12=V P ﹣ABCD 23=, ⊥1132⨯⨯2×2×sin60°×h 23=,⊥h 3=.⊥点B 到平面PCD 的距离是3. 28.如图,在以A 、B 、C 、D 、E 、F 为顶点的五面体中,面ABCD 是等腰梯形,//AB CD ,面ABFE 是矩形,平面ABFE ⊥平面ABCD ,BC CD AE a ===,60DAB ∠=.(1)求证:平面⊥BDF 平面ADE ;(2)若三棱锥B DCF -a 的值. 【答案】(1)证明见解析;(2)1.【详解】(1)因为四边形ABFE 是矩形,故EA AB ⊥,又平面ABFE ⊥平面ABCD ,平面ABFE 平面ABCD AB =,AE ⊂平面ABFE , 所以AE ⊥平面ABCD ,又BD ⊂面ABCD ,所以AE BD ⊥,在等腰梯形ABCD 中,60DAB ∠=,120ADC BCD ︒∴∠=∠=,因BC CD =,故30BDC ∠=,1203090ADB ∠=-=,即AD BD ⊥, 又AE AD A =,故BD ⊥平面ADE ,BD ⊂平面BDF ,所以平面⊥BDF 平面ADE ;(2)BCD 的面积为2213sin12024BCD S a ==, //AE FB ,AE ⊥平面ABCD ,所以,BF ⊥平面ABCD ,2313D BCF F BCD V V a --∴==⋅==,故1a =.。

2020-2021学年广东省广州市番禺区仲元中学高一(上)期末数学试卷

2020-2021学年广东省广州市番禺区仲元中学高一(上)期末数学试卷

2020-2021学年广东省广州市番禺区仲元中学高一(上)期末数学试卷试题数:22,总分:1501.(单选题,5分)若集合A={x|x>1},B={x|x2-2x-3≤0},则A∩B=()A.(1,3]B.[1,3]C.[-1,1)D.[-1,+∞)2.(单选题,5分)函数f(x)= √1−x +log2(3x-1)的定义域为()A. (13,1]B. (0,13)C. (−∞,13)D.(0,1]3.(单选题,5分)已知命题p:-1<x<2,q:|x|<1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.(单选题,5分)设x,y为正数,则(x+y)(1x + 4y)的最小值为()A.6B.9C.12D.155.(单选题,5分)如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)在一个周期内的图象,则其解析式是()A.f(x)=3sin(x+ π3)B.f(x)=3sin(2x+ π3)C.f(x)=3sin(2x- π3)D.f(x)=3sin(2x+ π6)6.(单选题,5分)三个数a=log30.3,b=log32,c=12的大小顺序是()A.a<b<cB.c<a<bC.a<c<bD.b<c<a7.(单选题,5分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)x2−x1<0,且f(2)=0,则不等式xf(x)<0的解集是()A.(-2,2)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-∞,-2)∪(2,+∞)8.(单选题,5分)对于a,b∈R,定义运算“⊗”:a⊗b={a2−ab,a≤bb2−ab,a>b,设f(x)=(2x-1)⊗(x-1),且关于x的方程f(x)=t(t∈R)恰有三个互不相等的实数根x1,x2,x3,则x1+x2+x3的取值范围是()A. (5−√34,1)B. (1,5+√34)C. (12,1)D.(1,2)9.(多选题,5分)下面选项中正确的有()A.集合{1,2,3}的子集个数为7个B.“xy>0”是“x>0,y>0”的充分不必要条件C.命题“∃x∈R,使得x2+x-1<0”的否定是“∀x∈R,均有x2+x-1≥0”D.∃α,β∈R,使sin(α+β)=sinα+sinβ成立10.(多选题,5分)已知a,b,c,d均为实数,则下列命题正确的是()A.若a>b,c>d,则ac>bdB.若a2+b2=1,则a+b≤√2C.若a>b,c>d,则a-d>b-cD.若a>0,则a+1a≥211.(多选题,5分)已知函数f(x)=sin(3x+φ)(- π2<φ<π2)的图象关于直线x= π4对称,则()A.函数f(x+ π12)为奇函数B.函数f(x)在[ π12,π3]上单调递增C.若|f(x1)-f(x2)|=2,则|x1-x2|的最小值为π3D.函数f(x)的图象向右平移π4个单位长度得到函数y=-cos3x的图象12.(多选题,5分)函数f(x)= xx2+a的图象可能是()A.B.C.D.13.(填空题,5分)cos225°=___ .14.(填空题,5分)设函数f(x)= {4x−1,x≤0log2x,x>0,则f(f(12))=___ .15.(填空题,5分)已知sin(α−π12)= 13,则cos(α+17π12)=___ .16.(填空题,5分)已知函数f(x)=-x2+2x+1,x∈[0,2],函数g(x)=ax-1,x∈[-1,1],对于任意x1∈[0,2],总存在x2∈[-1,1],使得g(x2)≥f(x1)成立,则实数a的取值范围是___ .17.(问答题,10分)(1)计算:8 23 +lg5+lg2-log216-e0;(2)已知tanα= 34,求2sin(π−α)+3cos(−α)3cos(π2−α)+sin(π2+α)的值.18.(问答题,12分)已知函数f(x)=x+1x.(1)判断函数f(x)的奇偶性并证明;(2)判断f(x)在(1,+∞)上的单调性并加以证明.19.(问答题,12分)已知函数f(x)=Asin(ωx+π)(A>0,ω>0)只能同时满足下列三个6条件中的两个:① 函数f(x)的最大值为2;② 函数f(x)的图像可由y=√2sin(x−π)的图像平移得到;4.③ 函数f(x)图像的相邻两条对称轴之间的距离为π2(1)请写出这两个条件的序号,说明理由,并求出f(x)的解析式;(2)求不等式f(x)≥1的解集.)−1.20.(问答题,12分)已知函数f(x)=2cos2x−cos(2x+π2(1)求函数f(x)的最小正周期;)上的值域;(2)求f(x)在(0,π2得到函数g(x)的图象,若h(x)=g(x)-lnx,探究h(x)(3)将f(x)的图象向右平移π8)上是否存在零点.在(1,π221.(问答题,12分)参加劳动是学生成长的必要途径,每个孩子都要抓住日常生活中的劳动实践机会,自觉参与、自己动手,坚持不懈进行劳动,掌握必要的劳动技能.在劳动中接受锻炼、磨炼意志,培养正确的劳动价值观和良好的劳动品质.大家知道,用清水洗衣服,其上残留的污渍用水越多,洗掉的污渍量也越多,但是还有污渍残留在衣服上,在实验基础上现作如下假定:用x单位的水清洗1次后,衣服上残留的污渍与本次清洗前残留的污渍之比为函数.f(x)=22+x2(1)(ⅰ)试解释f(0)与f(1)的实际意义;(ⅱ)写出函数f(x)应该满足的条件或具有的性质(写出至少2条,不需要证明);(2)现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.哪种方案清洗后衣服上残留的污渍比较少?请说明理由.22.(问答题,12分)已知函数f(x)=log a(x-2a)+log a(x-3a)(a>0且a≠1).(1)当a=12,求f(2)的值;(2)当a=12时,若方程f(x)=log12(p−x)在(3,4)上有解,求实数p的取值范围;(3)若f(x)≤1在[a+3,a+4]上恒成立,求实数a的值范围.2020-2021学年广东省广州市番禺区仲元中学高一(上)期末数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)若集合A={x|x>1},B={x|x2-2x-3≤0},则A∩B=()A.(1,3]B.[1,3]C.[-1,1)D.[-1,+∞)【正确答案】:A【解析】:可以求出集合B,然后进行交集的运算即可.【解答】:解:∵A={x|x>1},B={x|-1≤x≤3},∴A∩B=(1,3].故选:A.【点评】:本题考查了描述法、区间的定义,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.2.(单选题,5分)函数f(x)= √1−x +log2(3x-1)的定义域为()A. (13,1]B. (0,13)C. (−∞,13)D.(0,1]【正确答案】:A【解析】:根据函数的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】:解:由题意可知{1−x≥03x−1>0,解得13<x≤1,∴函数f(x)的定义域为(13,1],【点评】:本题考查了求函数定义域的问题,解题时应求出使函数有意义的自变量的取值范围,是基础题目.3.(单选题,5分)已知命题p:-1<x<2,q:|x|<1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【正确答案】:B【解析】:直接利用不等式的解法和充分条件和必要条件的应用求出结果.【解答】:解:命题p:-1<x<2,q:|x|<1,整理得:-1<x<1,则p是q成立的必要不充分条件.故选:B.【点评】:本题考查的知识要点:必要条件和充分条件,不等式的解法,主要考查学生的运算能力和数学思维能力,属于基础题.4.(单选题,5分)设x,y为正数,则(x+y)(1x + 4y)的最小值为()A.6B.9C.12D.15【正确答案】:B【解析】:函数中含有整式和分式的乘积,展开出现和的部分,而积为定值,利用基本不等式求最值【解答】:解:x,y为正数,(x+y)(1x +4y)= 1+4+yx+4xy≥1+4+2 √yx×4xy=9当且仅当yx =4xy时取得“=”∴最小值为9【点评】:利用基本不等式求最值,需要满足的条件“一正,二定,三相等”5.(单选题,5分)如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)在一个周期内的图象,则其解析式是()A.f(x)=3sin(x+ π3)B.f(x)=3sin(2x+ π3)C.f(x)=3sin(2x- π3)D.f(x)=3sin(2x+ π6)【正确答案】:B【解析】:根据图象求出周期和振幅,利用五点对应法求出φ的值即可得到结论.【解答】:解:由图象知A=3,函数的周期T= 5π6 -(- π6)=π,即2πω=π,即ω=2,则f(x)=3sin(2x+φ),由五点对应法得2×(- π6)+φ=0,即φ= π3,则f(x)=3sin(2x+ π3),故选:B.【点评】:本题主要考查三角函数解析式的求解,根据条件确定A,ω和φ的值是解决本题的关键.6.(单选题,5分)三个数a=log30.3,b=log32,c=12的大小顺序是()B.c<a<bC.a<c<bD.b<c<a【正确答案】:C【解析】:结合指数与对数函数的单调性确定各数范围,即可比较大小.【解答】:解:因为a=log30.3<0,b=log32∈(12,1),c= 12,所以b>c>a.故选:C.【点评】:本题主要考查了指数与对数函数的单调性比较函数值大小,属于基础题.7.(单选题,5分)定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)x2−x1<0,且f(2)=0,则不等式xf(x)<0的解集是()A.(-2,2)B.(-2,0)∪(2,+∞)C.(-∞,-2)∪(0,2)D.(-∞,-2)∪(2,+∞)【正确答案】:B【解析】:由题意可知f(x)在[0,+∞)上是减函数,再根据对称性和f(2)=0得出f(x)在各个区间的函数值符号,从而得出答案.【解答】:解:∵ f(x2)−f(x1)x2−x1<0在∈[0,+∞)上恒成立,∴f(x)在[0,+∞)上是减函数,又f(2)=0,∴当x>2时,f(x)<0,当0≤x<2时,f(x)>0,又f(x)是偶函数,∴当x<-2时,f(x)<0,当-2<x<0时,f(x)>0,∴xf(x)<0的解为(-2,0)∪(2,+∞).故选:B.【点评】:本题考查了函数单调性与奇偶性的性质,属于中档题.8.(单选题,5分)对于a ,b∈R ,定义运算“⊗”: a ⊗b ={a 2−ab ,a ≤b b 2−ab ,a >b,设f (x )=(2x-1)⊗(x-1),且关于x 的方程f (x )=t (t∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1+x 2+x 3的取值范围是( ) A. (5−√34,1) B. (1,5+√34) C. (12,1) D.(1,2) 【正确答案】:A【解析】:根据所给的新定义,写出函数的分段形式的解析式,画出函数的图象,在图象上可以看出当直线与函数的图象有三个不同的交点时m 的取值,根据一元二次方程的根与系数之间的关系,写出两个根的积和第三个根,表示出三个根之和,并判断出函数的单调性,求出函数的值域,得到结果.【解答】:解:∵2x -1≤x -1时,有x≤0, ∴根据题意得f (x )= {(2x −1)2−(2x −1)(x −1),x ≤0(x −1)2−(2x −1)(x −1),x >0,即f (x )= {2x 2−x ,x ≤0−x 2+x ,x >0 ,画出函数的图象,如下图所示:从图象上观察当关于x 的方程为f (x )=t (t∈R )恰有三个互不相等的实数根时,t 的取值范围是(0, 14 ),当-x2+x=t时,有x1+x2=1,当2x2-x=t时,由于直线与抛物线的交点在y轴的左边,得到x3= 1−√1+8t4,∴x1+x2+x3=1+ 1−√1+8t4 = 5−√1+8t4,t∈(0,14),令y= 5−√1+8t4,t∈(0,14),则函数是减函数,又由t=0时,y=1,t= 14时,y= 5−√34,故x1+x2+x3的取值范围是(5−√34,1),故选:A.【点评】:本题考查分段函数的图象,考查新定义问题,这种问题解决的关键是根据新定义写出符合条件的解析式,本题是一个综合问题,难度中档.9.(多选题,5分)下面选项中正确的有()A.集合{1,2,3}的子集个数为7个B.“xy>0”是“x>0,y>0”的充分不必要条件C.命题“∃x∈R,使得x2+x-1<0”的否定是“∀x∈R,均有x2+x-1≥0”D.∃α,β∈R,使sin(α+β)=sinα+sinβ成立【正确答案】:CD【解析】:选项A,元素个数为n个的集合的子集个数为2n;选项B,若xy>0,则x>0,y>0或x<0,y<0,再根据充分必要条件的概念可得解;选项C,根据存在命题的否定形式,即可得解;选项D,由两角和的正弦公式推出cosβ=1,cosα=1,显然存在α,β满足.【解答】:解:选项A,元素个数为3个的集合有23=8个子集,即A错误;选项B,若xy>0,则x>0,y>0或x<0,y<0,所以应是“必要不充分条件”,即B错误;选项C,命题“∃x∈R,使得x2+x-1<0”的否定是“∀x∈R,均有x2+x-1≥0”,即C正确;选项D,因为sin(α+β)=sinαcosβ+cosαsinβ,若sin(α+β)=sinα+sinβ成立,则cosβ=1,cosα=1,所以β=2k1π(k1∈Z),α=2k2π(k2∈Z),即D正确.故选:CD.【点评】:本题考查命题的真假判断,主要包含子集个数,充分必要条件,命题的否定,两角和的正弦公式等,考查逻辑推理能力和运算能力,属于基础题.10.(多选题,5分)已知a,b,c,d均为实数,则下列命题正确的是()A.若a>b,c>d,则ac>bdB.若a2+b2=1,则a+b≤√2C.若a>b,c>d,则a-d>b-cD.若a>0,则a+1a≥2【正确答案】:BD【解析】:直接利用不等式的性质和基本不等式的应用判断A、B、C、D的结论.【解答】:解:对于A:当a>b>0,c>d>0,所以ac>bd,故A错误;对于B:由于若a2+b2=1,则(a+b)2≤2a2+2b2=2,所以a+b≤√2,故B正确;对于C:若a>b,c>d,则a-d>b-c,故C错误;对于D:由于a>0,所以a+1a≥2,当且仅当a=1时,等号成立.故选:BD.【点评】:本题考查的知识要点:不等式的性质,基本不等式的应用,主要考查学生的运算能力和数学思维能力,属于基础题.11.(多选题,5分)已知函数f(x)=sin(3x+φ)(- π2<φ<π2)的图象关于直线x= π4对称,则()A.函数f(x+ π12)为奇函数B.函数f(x)在[ π12,π3]上单调递增C.若|f(x1)-f(x2)|=2,则|x1-x2|的最小值为π3D.函数f(x)的图象向右平移π4个单位长度得到函数y=-cos3x的图象【正确答案】:AC【解析】:使用代入法先求出φ的值,得函数解析式;再根据三角函数的性质逐一判断.【解答】:解:∵函数f(x)=sin(3x+φ)(- π2<φ<π2)的图象关于直线x= π4对称,∴3× π4+φ= π2+kπ,k∈Z;∵- π2<φ<π2,∴φ=- π4;∴f(x)=sin(3x- π4);对于A,函数f(x+ π12)=sin[3(x+ π12)- π4]=sin(3x),根据正弦函数的奇偶性,所以f(-x)=-f(x)因此函数f(x)是奇函数,故A正确.对于B,由于x∈[ π12,π3],3x- π4∈[0,3π4],函数f(x)=sin(3x- π4)在[ π12,π3]上不单调,故B错误;对于C,因为f(x)max=1,f(x)min=-1又因为|f(x1)-f(x2)|=2,f(x)=sin(3x- π4)的周期为T= 2π3,所以则|x1-x2|的最小值为π3,C正确;对于D,函数f(x)的图象向右平移π4个单位长度得到函数f(x- π4)=sin[3(x- π4)- π4]=-sin3x,故D错误.故选:AC.【点评】:本题考查了三角函数的最小正周期、奇偶性、单调性、对称轴,属于基础题.12.(多选题,5分)函数f(x)= xx2+a的图象可能是()A.B.C.D.【正确答案】:ABC【解析】:分类讨论,根据函数的单调性即可判断.【解答】:解:当a=0时,f(x)= 1x,则选项C符合;当a>0,f(0)=0,故排除D;当x>0时,f(x)= 1x+ax ≤2√ax= √a时取等号,则函数f(x)在(-∞,√a)上为减函数,在(√a,+∞)为增函数,故选项B符合;当a<0时,函数的定义域为{x|x≠± √−a },当x>0,f(x)= 1x+ax ,由于y=x+ ax在(0,√−a),(√−a,+∞)为增函数,则f(x)= 1x+ax在(0,√−a),(√−a,+∞)为减函数,故A符合,故选:ABC.【点评】:本题考查了函数图象的识别和应用,关键掌握函数的单调性,属于基础题.13.(填空题,5分)cos225°=___ .【正确答案】:[1]- √22【解析】:利用诱导公式把cos225°化为-cos45°,从而求得结果.【解答】:解:cos225°=cos(180°+45°)=-cos45°=- √22,故答案为:−√22.【点评】:本题主要考查利用诱导公式进行化简求值,属于基础题.14.(填空题,5分)设函数f(x)= {4x−1,x≤0log2x,x>0,则f(f(12))=___ .【正确答案】:[1]- 34【解析】:根据题意,由函数的解析式求出f(12)的值,进而计算可得答案.【解答】:解:根据题意,f(x)= {4x−1,x≤0 log2x,x>0,则f(12)=log212=-1,则f(f(12))=f(-1)=4-1-1= 14-1=- 34;故答案为:- 34.【点评】:本题考查函数值的计算,涉及分段函数的解析式,属于基础题.15.(填空题,5分)已知sin(α−π12)= 13,则cos(α+17π12)=___ .【正确答案】:[1] 13【解析】:直接由已知利用三角函数的诱导公式化简求值.【解答】:解:由sin(α−π12)= 13,得cos(α+17π12)=cos(α+3π2−π12)=sin(α−π12)= 13,故答案为:13.【点评】:本题考查三角函数的化简求值,考查诱导公式的应用,是基础题.16.(填空题,5分)已知函数f(x)=-x2+2x+1,x∈[0,2],函数g(x)=ax-1,x∈[-1,1],对于任意x1∈[0,2],总存在x2∈[-1,1],使得g(x2)≥f(x1)成立,则实数a的取值范围是___ .【正确答案】:[1](-∞,-3]∪[3,+∞)【解析】:依题意得g(x2)max≥f(x1)max,x∈[0,2],可求出f(x)=-x2+2x+1的最大值,分a>0和a<0两种情况,由函数的单调性可求解g(x)的最大值,列式求解即可.【解答】:解:因为f(x)=-x2+2x+1=-(x-1)2+2,x∈[0,2],所以f(x)的最大值为f(1)=2,①又函数g(x)=ax-1,x∈[-1,1],当a>0时,g(x)在[-1,1]上单调递增,所以g(x)max=g(1)=a-1;②当a <0时,g (x )在[-1,1]上单调递减, 所以g (x )max =g (-1)=-a-1; ③因为对于∀x 1∈[0,2],∃x 2∈[-1,1],使得g (x 2)≥f (x 1)成立, 则g (x 2)max ≥f (x 1)max ,所以,当a >0时,a-1≥2,解得a≥3; 当a <0时,-a-1≥2,解得a≤-3;综上所述,实数a 的取值范围为(-∞,-3]∪[3,+∞). 故答案为:(-∞,-3]∪[3,+∞).【点评】:本题考查了函数恒成立问题,考查函数单调性的应用,考查了逻辑推理能力与运算求解能力,属于中档题.17.(问答题,10分)(1)计算:8 23+lg5+lg2-log 216-e 0; (2)已知tanα= 34,求 2sin (π−α)+3cos (−α)3cos(π2−α)+sin(π2+α)的值.【正确答案】:【解析】:(1)根据指数和对数的性质或运算法则,即可得解;(2)先利用诱导公式化简所求式子,再根据“同除余弦可化切”的思想,即可得解.【解答】:解:(1)原式= (23)23 +lg (5×2)- log 224 -1=22+lg10-4-1=0;(2) 2sin (π−α)+3cos (−α)3cos(π2−α)+sin(π2+α)= 2sinα+3cosα3sinα+cosα = 2tanα+33tanα+1 = 2×34+33×34+1 = 1813 .【点评】:本题考查指数和对数的化简与求值,诱导公式的应用,同角三角函数商数关系的应用,考查逻辑推理能力和运算能力,属于基础题. 18.(问答题,12分)已知函数 f (x )=x +1x . (1)判断函数f (x )的奇偶性并证明;(2)判断f (x )在(1,+∞)上的单调性并加以证明.【正确答案】:【解析】:(1)先求函数的定义域,然后利用奇偶性进行判断;(2)利用函数单调性的定义判断.【解答】:解:(1)函数f(x)为奇函数,证明如下:因为函数f(x)=x+1x的定义域为{x|x≠0},关于原点对称,且f(-x)=-x- 1x =-(x+ 1x)=-f(x),所以f(x)为奇函数.(2)f(x)在(1,+∞)上单调递增,证明如下:设1<x1<x2,则f(x1)-f(x2)=(x1-x2)+(1x1 - 1x2)=(x1-x2)+ x2−x1x1x2= (x1−x2)(x1x2−1)x1x2,因为1<x1<x2,所以x1-x2<0,x1x2-1>0,即f(x1)<f(x2),所以f(x)在(1,+∞)上单调递增.【点评】:本题主要考查函数奇偶性与单调性的判断与证明,属于基础题.19.(问答题,12分)已知函数f(x)=Asin(ωx+π6)(A>0,ω>0)只能同时满足下列三个条件中的两个:① 函数f(x)的最大值为2;② 函数f(x)的图像可由y=√2sin(x−π4)的图像平移得到;③ 函数f(x)图像的相邻两条对称轴之间的距离为π2.(1)请写出这两个条件的序号,说明理由,并求出f(x)的解析式;(2)求不等式f(x)≥1的解集.【正确答案】:【解析】:(1)分别根据三个条件求出A和ω的值,得到矛盾,从而可判断出所选条件;然后根据所选条件即可求出函数的解析式;(2)结合正弦函数的图象即可求解三角不等式.【解答】:解:函数 f(x)满足的条件为① ③ ,理由如下:若满足条件① ,则 A=2;若满足条件② ,则 A=2,ω=1,所以① ② 相互矛盾;若满足条件③ ,则T=π,所以ω=2,所以② ③ 也相互矛盾,所以函数 f(x)满足的两个条件只能为① ③ ,此时f(x)=2sin(2x+π6).(2)由f(x)=2sin(2x+π6)≥1,得sin(2x+π6)≥12,所以π6+2kπ≤2x+π6≤5π6+2kπ,k∈Z,即kπ≤x≤π3+kπ,k∈Z,所以不等式 f(x)≥1 的解集为{x|kπ≤x≤π3+kπ,k∈Z}.【点评】:本题考查三角函数的解析式,考查学生的运算能力,属于中档题.20.(问答题,12分)已知函数f(x)=2cos2x−cos(2x+π2)−1.(1)求函数f(x)的最小正周期;(2)求f(x)在(0,π2)上的值域;(3)将f(x)的图象向右平移π8得到函数g(x)的图象,若h(x)=g(x)-lnx,探究h(x)在(1,π2)上是否存在零点.【正确答案】:【解析】:(1)利用辅助角公式进行化简,利用周期公式进行计算即可.(2)求出角的范围,根据值域进行求解即可.(3)求出g(x)和h(x)的解析式,根据函数定理判断条件进行判断即可.【解答】:解:(1)f(x)=cos2x+sin2x= √2 sin(2x+ π4),则最小正周期T= 2π2=π.(2)当x∈ (0,π2)时,2x∈(0,π),2x+ π4∈(π4,5π4),即2x+ π4 = 5π4时,f(x)取得最小值,最小值为f(x)= √2 sin 5π4= √2×(−√22) =-1,当2x+ π4 = π2时,f(x)取得最大值,最大值为f(x)= √2 sin π2= √2,即函数的值域为(-1,√2 ].(3)将f(x)的图象向右平移π8得到函数g(x)的图象,则g(x)= √2 sin[2(x- π8)+ π4]= √2 sin2x,则h(x)=g(x)-lnx= √2 sin2x-lnx,h(1)= √2 sin2>0,h(π2)= √2sinπ-ln π2=-ln π2<0,则h(1)h(π2)<0,由根的存在性定理知h(x)在(1,π2)上存在零点.【点评】:本题主要考查三角函数的恒等变换,利用辅助角公式进行化简是解决本题的关键,是中档题.21.(问答题,12分)参加劳动是学生成长的必要途径,每个孩子都要抓住日常生活中的劳动实践机会,自觉参与、自己动手,坚持不懈进行劳动,掌握必要的劳动技能.在劳动中接受锻炼、磨炼意志,培养正确的劳动价值观和良好的劳动品质.大家知道,用清水洗衣服,其上残留的污渍用水越多,洗掉的污渍量也越多,但是还有污渍残留在衣服上,在实验基础上现作如下假定:用x单位的水清洗1次后,衣服上残留的污渍与本次清洗前残留的污渍之比为函数f(x)=22+x2.(1)(ⅰ)试解释f(0)与f(1)的实际意义;(ⅱ)写出函数f(x)应该满足的条件或具有的性质(写出至少2条,不需要证明);(2)现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.哪种方案清洗后衣服上残留的污渍比较少?请说明理由.【正确答案】:【解析】:(1)(i)根据已知条件,将x=0,x=1,分别代入函数f(x),即可求解.(ii)结合已知条件,用清水洗衣服,其上残留的污渍用水越多,洗掉的污渍量也越多,即可求解.(2)根据已知条件,分别求出两种情况残留的污渍量,再结合作差法,即可求解.【解答】:解:(1)(i)f(0)=1,表示没有用水清洗时,衣服上的污渍不变,f(1)= 23,表示用一个单位的水清洗时,可清除衣服上残留的污渍的13.(ii)函数f(x)的定义域为(0,+∞),值域为(0,1],在(0,+∞)上单调递减.(2)设清洗前衣服上的污渍为1,用a单位量的水清洗后,残留的污渍为W1,则W1=1×f(a)=22+a2,用a2单位的水清洗1次,残留的污渍为1×f(a2)=88+a2,W2=f2(a2)=64(8+a2)2,∵W1-W2= 22+a2−64(8+a2)2= 2a2(a2−16)(2+a2)(8+a2)2,∴W1-W2的符号由a2-16 决定,当a>4时,W1>W2,则把a单位的水平均分成2份后,清洗两次,残留的污渍较少,当a=4时,W1=W2,则两种清洗方法效果相同,当a<4时,W1<W2,则用a单位的水清洗一次,残留的污渍较少.【点评】:本题主要考查函数的实际应用,考查转化能力,属于中档题.22.(问答题,12分)已知函数f(x)=log a(x-2a)+log a(x-3a)(a>0且a≠1).(1)当a=12,求f(2)的值;(2)当a=12时,若方程f(x)=log12(p−x)在(3,4)上有解,求实数p的取值范围;(3)若f(x)≤1在[a+3,a+4]上恒成立,求实数a的值范围.【正确答案】:【解析】:(1)代入化简f(2)= log12(2-1)+ log12(2- 32),从而求得;(2)代入a= 12化简得f(x)= log12(x-1)(x- 32),将方程转化为(x-1)(x- 32)=p-x在(3,4)上有解,即x2- 32 x+ 32=p在(3,4)上有解,构造函数g(x)=x2- 32x+ 32,从而利用函数的单调性求得;(3)先确定函数的定义域,再化简f(x)=log a(x2-5ax+6a2),结合题意知函数y=x2-5ax+6a2在[a+3,a+4]上是增函数,再利用复合函数的单调性分类讨论函数的最值,并将恒成立问题转化为最值问题即可.【解答】:解:(1)当a= 12时,f(x)= log12(x-1)+ log12(x- 32),故f(2)= log12(2-1)+ log12(2- 32)= log12 1+ log1212=1;(2)当a= 12时,f(x)= log12(x-1)+ log12(x- 32)= log12(x-1)(x- 32),∵方程f(x)=log12(p−x)在(3,4)上有解,∴ log12(x-1)(x- 32)= log12(p-x)在(3,4)上有解,即(x-1)(x- 32)=p-x在(3,4)上有解,即x2- 32 x+ 32=p在(3,4)上有解,令g(x)=x2- 32 x+ 32,则g(x)在(3,4)上单调递增,故g(3)<g(x)<g(4),即6<g(x)<232,即6<p<232,故实数p的取值范围为(6,232);(3)函数f(x)=log a(x-2a)+log a(x-3a)的定义域为(3a,+∞),f(x)=log a(x-2a)+log a(x-3a)=log a(x-2a)(x-3a)=log a(x2-5ax+6a2),∵f(x)≤1在[a+3,a+4]上恒成立,∴a+3>3a,即a<32,故函数y=x2-5ax+6a2在[a+3,a+4]上是增函数,① 当0<a<1时,由复合函数的单调性可得,f(x)在[a+3,a+4]上是减函数,故f(x)≤1在[a+3,a+4]上恒成立可化为f(a+3)≤1,即log a(2a2-9a+9)≤1,即2a2-9a+9≥a,解得,a≥ 5+√72或a≤ 5−√72,故0<a<1;② 当1<a<32时,由复合函数的单调性可得,f(x)在[a+3,a+4]上是增函数,故f(x)≤1在[a+3,a+4]上恒成立可化为f(a+4)≤1,即log a(2a2-12a+16)≤1,即2a2-12a+16≤a,解得,13−√414≤a≤ 13+√414,∵ 13−√414>32,故无解;综上所述,实数a的值范围为(0,1).【点评】:本题考查了复合函数的单调性的判断与应用,利用了分类讨论的思想及转化思想,同时考查了恒成立问题及存在性问题,属于中档题.。

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

2020-2021学年上学期高一数学期末模拟卷03(人教A版新教材)(浙江专用)【解析版】

数学模拟试卷03第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·河北高二学业考试)已知集合{}012M =,,,{}1,2N =,则M N ⋃=( ).A .{}1,2B .{}0C .{}0,1,2D .{}0,1【答案】C 【解析】由并集定义可得:{}0,1,2M N =.故选:C.2.(2019·浙江高二学业考试)已知a ,b 是实数,则“a b >”是“22a b >”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】若a b >,则a b b >≥,即a b >,故22a b >. 取1,2a b ==-,此时22a b >,但a b <, 故22a b >推不出a b >, 故选:A.3.(2019·伊宁市第八中学高一期中)若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭【答案】D 【解析】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D.4.(2020·黑龙江哈尔滨市第六中学校高三开学考试(理))设2313a ⎛⎫= ⎪⎝⎭,532b =,21log 3c =,则( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】C 【解析】23110133⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,503221>=,221log log 103<=, ∴c a b <<. 故选:C5.(2020·江苏南通市·高三期中)已知角α的终边经过点()3,4P ,则πcos 24α⎛⎫+= ⎪⎝⎭( )A .50-B .50C .50-D .50【答案】A 【解析】角α的终边经过点()3,4P ,5OP ∴==,由三角函数的定义知:3cos 5α=,4sin 5α, 2237cos 22cos 121525αα⎛⎫∴=-=⨯-=- ⎪⎝⎭,4324sin 22sin cos 25525ααα==⨯⨯=,()()π724cos 2cos2cos sin 2sin 4442525ππααα∴+=-=-=.故选:A.6.(2020·甘肃兰州市·西北师大附中高三期中)函数()f x 在[)0,+∞单调递增,且()3f x +关于3x =-对称,若()21f -=,则()21f x -≤的x 的取值范围( )A .[]22-,B .(][),22,-∞-+∞C .()[),04,-∞+∞D .[]0,4【答案】D 【解析】因为()3f x +关于3x =-对称,所以()f x 关于y 轴对称,所以()()221f f -==, 又()f x 在[)0,+∞单调递增,由()21f x -≤可得222x -≤-≤,解得:04x ≤≤, 故选:D7.(2020·浙江高一期末)对于函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭,有以下四种说法: ①函数的最小值是32-②图象的对称轴是直线()312k x k Z ππ=-∈ ③图象的对称中心为,0()312k k Z ππ⎛⎫-∈⎪⎝⎭ ④函数在区间7,123ππ⎡⎤--⎢⎥⎣⎦上单调递增. 其中正确的说法的个数是( ) A .1 B .2C .3D .4【答案】A 【解析】函数()12sin 3()42f x x x R π⎛⎫=-++∈ ⎪⎝⎭, 当3=42x ππ+时,即=12x π,函数()f x 取得最小值为132122-⨯+=-,故①正确;当342x k πππ+=+时,即=,123k x k Z ππ+∈,函数()f x 的图象的对称轴是直线=,123k x k Z ππ+∈,故②错误; 当34x k ππ+=时,即,123k x k Z ππ=-+∈,函数()f x 的图象的对称中心为1,,1232k k Z ππ⎛⎫-+∈ ⎪⎝⎭,故③错误; 当3232242k x k πππππ+≤+≤+,即2523,123123k k x k Z ππππ+≤≤+∈,函数()f x 的递增区间为252,,123123k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当1k =-时,()f x 的递增区间为7,124ππ⎡⎤--⎢⎥⎣⎦,故④错误. 故选:A8.(2020·山西吕梁市·高三期中(文))函数1()11f x x=+-的图象与函数()2sin 1(24)g x x x π=+-的图象所有交点的横坐标之和等于( ) A .8 B .6C .4D .2【答案】A 【解析】由函数图象的平移可知, 函数1()11f x x=+-与函数()2sin 1g x x π=+的图象都关于(1,1)M 对称. 作出函数的图象如图,由图象可知交点个数一共8个(四组,两两关于点(1,1)对称), 所以所有交点的横坐标之和等于428⨯=.故选:A9.(2020·山西吕梁市·高三期中(文))已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)-C .(1,0)-D .[1,0)-【答案】B 【解析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可.解:因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩, 当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202x xa e a e +==-即有一个根即可,因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-,故选:B.10.(2020·河北高二学业考试)已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2log 1f x x =+,则不等式()2f x ≤的解集是( ). A .[]3,3- B .[]4,4-C .(][),33,-∞-+∞D .(][),44,-∞-⋃+∞【答案】A 【解析】0x ≥时,()()2log 1f x x =+,()f x ∴在[)0,+∞上单调递增,又()f x 是定义在R 上的奇函数,()f x ∴在R 上单调递增,易知()()223log 31log 42f =+==,()()332f f -=-=-, 由()2f x ≤, 解得:()22f x -≤≤, 由()f x 在R 上单调递增, 解得:33x -≤≤,()2f x ∴≤的解集是[]3,3-.故选:A.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2020·上海青浦区·高三一模)圆锥底面半径为1cm ,母线长为2cm ,则其侧面展开图扇形的圆心角θ=___________.【答案】π; 【解析】因为圆锥底面半径为1cm ,所以圆锥的底面周长为2cm π, 则其侧面展开图扇形的圆心角22πθπ==, 故答案为:π.12.(2020·浙江宁波市·高三期中)设2log 3a =,则4a =______(用数值表示),lg 36lg 4=______.(用a 表示)【答案】9 1a + 【解析】2log 3a =,22394429log log a ∴===,4222236log 36log 6log (23)log 2log 314lg a lg ===⨯=+=+, 故答案为:9,1a +.13.(2020·深圳科学高中高一期中)某移动公司规定,使用甲种卡,须付“基本月租费”(每月需交的固定费用)30元,在国内通话时每分钟另收话费0.10元;使用乙种卡,不收“基本月租费”,但在国内通话时每分钟话费为0.2元.若某用户每月手机费预算为50元,则使用__________种卡才合算;若要使用甲种卡合算,则该用户每月手机费预算(元)的区间为__________. 【答案】乙 (60,)+∞ 【解析】由题意,设月通话时间为t 分钟,有甲费用为300.1t +,乙费用为0.2t , ∴每月手机费预算为50元,则:由300.150t +=知,甲的通话时间为200分钟, 由0.250t =知,乙的通话时间为250分钟, ∴用户每月手机费预算为50元,用乙种卡合算;要使用甲种卡合算,即月通话时间相同的情况下甲费用更低,即300.10.2t t +<, 解得300t >时,费用在(60,)+∞. 故答案为:乙,(60,)+∞14.(2020·商丘市第一高级中学高一期中)设函数()112,1,1x e x f x x x -⎧<⎪=⎨⎪≥⎩则()3f x ≤成立的x 的取值范围为______. 【答案】(],9-∞ 【解析】当1x <时,由13x e -≤得1ln3x ≤+,所以1x <; 当1≥x 时,由213x ≤得9x ≤,所以19x ≤≤. 综上,符合题意的x 的取值范围是(,9]-∞. 故答案为:(,9]-∞.15.(2020·辽宁本溪市·高二月考)摩天轮是一种大型转轮状的机械建筑设施,稳坐于永乐桥之上的“天津之眼”作为世界上唯一一座建在桥上的摩天轮,其巧夺天工和奇思妙想确是当之无愧的“世界第一”.如图,永乐桥摩天轮的直径为110m ,到达最高点时,距离地面的高度为120m ,能看到方圆40km 以内的景致,是名副其实的“天津之眼”.实际上,单从高度角度来看,天津之眼超越了曾大名鼎鼎的伦敦之眼而跃居世界第一.永乐桥摩天轮设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要30min .游客甲坐上摩天轮的座舱,开始转到min t 后距离地面的高度为m H ,则转到10min 后距离地面的高度为______m ,在转动一周的过程中,H 关于t 的函数解析式为______.【答案】1852 π55cos 6515H t =-+,030t ≤≤. 【解析】如图,设座舱距离地面最近的位置为点P ,以轴心O 为原点,与地面平行的直线为x 轴,建立直角坐标系.设0min t =时,游客甲位于点()0,55P -,以OP 为终边的角为π2-; 根据摩天轮转一周大约需要30min , 可知座舱转动的角速度约为πmin 15rad , 由题意可得πππ55sin 6555cos 6515215H t t ⎛⎫=-+=-+⎪⎝⎭,030t ≤≤.当10t =时,π18555cos 1065152H ⎛⎫=-⨯+= ⎪⎝⎭. 故答案为:1852;π55cos 6515H t =-+,030t ≤≤ 16.(2020·浙江建人专修学院高三三模)已知2,0()(),0x x f x f x x ⎧≥=⎨--<⎩,若4log 3a =,则()f a =___________;()1f a -=___________.3 233-因为4log 3a =,所以43a =,即2a =01a <<,所以()2a f a ==1(1)(1)2a f a f a --=--=-==3-17.(2020·上海虹口区·高三一模)已知(0,)απ∈,且有12sin2cos2αα-=,则cos α=___________.【解析】2212sin 2cos214sin cos 12sin sin 2sin cos αααααααα-=⇒-=-⇒=,因为(0,)απ∈,所以sin 0α≠,因此由2sin 2sin cos sin 2cos tan 2(0,)2πααααααα=⇒=⇒=⇒∈,而22sin cos 1(1)αα+=,把sin 2cos αα=代入(1)得:22214cos cos 1cos cos 5αααα+=⇒=⇒=(0,)2πα∈,因此cos α=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·黑龙江工农�鹤岗一中高二期末(文))函数()22xxaf x =-是奇函数. ()1求()f x 的解析式;()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,求m 的取值范围.【答案】(1)()122xxf x =-;(2)5m <-.() 1函数()22x x af x =-是奇函数, ()()1222222x x x x x x a af x a f x --∴-=-=-+=-+=-,故1a =, 故()122xx f x =-; ()2当()0,x ∈+∞时,()24x f x m ->⋅+恒成立,即21(2)42x xm +<-⋅在()0,x ∈+∞恒成立,令()2(2)42x xh x =-⋅,(0)x >,显然()h x 在()0,+∞的最小值是()24h =-, 故14m +<-,解得:5m <-.19.(2020·宁夏长庆高级中学高三月考(理))已知函数()22sin cos 22222x x x f x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的最小值及单调减区间.【答案】(1)最小正周期为2π;(2)()min f x =()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)1cos ()2sin cos 222x x xf x +=+sin x x =+12sin cos 2sin 223x x x π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以()f x 的最小正周期为2π. (2)因为[]0,x π∈,所以4,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以当433x ππ+=,即x π=时,函数()f x 取得最小值由4233x πππ≤+≤,得6x ππ≤≤,所以函数()f x 的单调递减区间为,6ππ⎡⎤⎢⎥⎣⎦. 20.(2019·河北师范大学附属中学高一期中)已知二次函数()f x 的图象经过点()4,4-,方程()0f x =的解集为{}0,2.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出m ,n 的值;若不存在,说明理由.【答案】(1)21()2f x x x =-+;(2)存在;2m =-,0n =. 【解析】(1)由已知,设()()2f x ax x =-.因为()f x 的图象经过点()4,4-,所以()4442a -=-,解得12a =-, 即()f x 的解析式为21()2f x x x =-+; (2)假设满足条件实数m ,n 的存在, 由于221111()(1)2222f x x x x =-+=--+≤,因此122n ≤,即14n ≤. 又()f x 的图象是开口向下的抛物线,且对称轴方程1x =,可知()f x 在区间[],m n 上递增,故有()2()2f m m f n n=⎧⎨=⎩,并注意到14m n <≤,解得2m =-,0n =. 综上可知,假设成立,即当2m =-,0n =时,()f x 的定义域和值域分别为[],m n 和[]2,2m n .21.(2020·山西吕梁市·高三期中(文))已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min 7x x π-=,求ϕ的值. 【答案】(1)37π;(2)14π. 【解析】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤. 又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭; 4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min 314x x πϕ-+=. 即314714πππϕ=-=.22.(2020·安徽省蚌埠第三中学高一月考)设函数()()21x x a t f x a--=(0a >,且1a ≠)是定义域为R 的奇函数.(1)求t 的值;(2)若函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,是否存在正数()1m m ≠,使函数()()22log x x m g x a a mf x -⎡⎤=+-⎣⎦在[]21,log 3上的最大值为0,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)2t =;(2)不存在,理由见解析.【解析】(1)∵()f x 是定义域为R 的奇函数,∴()00f =,∴2t =;经检验知符合题意.(2)函数()f x 的图象过点31,2⎛⎫ ⎪⎝⎭,所以2132a a -=, ∴2a =(12a =-舍去), 假设存在正数m ,且1m ≠符合题意,由2a =得()()22log 2222x x x x m g x m --⎡⎤=+--⎣⎦, 设22x x t -=-,则()()22222222x x x x m t mt -----+=-+,∵[]21,log 3x ∈,2[2,3]x ∈,∴38,23t ⎡⎤∈⎢⎥⎣⎦,记()22h t t mt =-+, ∵函数()g x 在[]21,log 3上的最大值为0,∴(i )若01m <<时,则函数()22h t t mt =-+在38,23⎡⎤⎢⎥⎣⎦有最小值为1, 由于对称轴122m t =<,∴()min 31731312426h t h m m ⎛⎫==-=⇒= ⎪⎝⎭,不合题意. (ii )若1m 时,则函数()220h t t mt =-+>在38,23⎡⎤⎢⎥⎣⎦上恒成立,且最大值为1,最小值大于0, ①()max 1252512212736873241324m m m h t h m ⎧⎧<≤<≤⎪⎪⎪⎪⇒⇒=⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩, 而此时7338,24823m ⎡⎤=∈⎢⎥⎣⎦,又()min 73048h t h ⎛⎫=< ⎪⎝⎭, 故()g x 在[]21,log 3无意义, 所以7324m =应舍去; ②()max 25252126313126m m h t h m ⎧⎧>>⎪⎪⎪⎪⇒⇒⎨⎨⎛⎫⎪⎪=== ⎪⎪⎪⎩⎝⎭⎩m 无解, 综上所述:故不存在正数m ,使函数()g x 在[]21,log 3上的最大值为0.。

2022-2023北京人大附中高一(上)期中数学试卷【答案版】

2022-2023北京人大附中高一(上)期中数学试卷【答案版】

2022-2023学年北京市人大附中高一(上)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.下列表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={(x ,y )|y =x },N ={y |y =x }C .M ={1,2},N ={2,1}D .M ={2,4},N ={(2,4)}2.以下函数中是偶函数且在区间(0,+∞)上单调递减的函数是( )A .y =1x 2B .y =1xC .y =x 2D .y =x 3.函数f(x)=x x 2+1的图象大致是( ) A . B .C .D .4.若x 1+x 2=3,x 12+x 22=5,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣3x +2=0B .x 2+3x ﹣2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=05.已知a >b >c ,则下列说法一定正确的是( )A .ab >bcB .|a |>|b |>|c |C .ac 2>bc 2D .2a >b +c6.若命题“∃x ∈R ,一元二次不等式x 2+mx +1<0”为假命题,则实数m 的取值范围( )A .m ≤﹣2或m ≥2B .﹣2<m <2C .m <﹣2或m ≥2D .﹣2≤m ≤27.定义域与对应法则称为函数的两个要素.下列各对函数中,图象完全相同的是( )A .f(x)=(√x)2与g (x )=xB .f(x)=x 4−1x 2+1与g (x )=x 2﹣1C .f(x)=√x 2与g (x )=xD .f(x)=√x x 与g (x )=1 8.“ab >0”是“b a +a b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.设函数f (x )=x+3x+1,则下列函数中为奇函数的是( )A .f (x ﹣1)﹣1B .f (x ﹣1)+1C .f (x +1)﹣1D .f (x +1)+110.人大附中学生计划在实验楼门口种植蔬菜,现有12米长的围栏,准备围成两边靠墙(墙足够长)的菜园,若P处有一棵树(不考虑树的粗细)与两墙的距离分别是2m和am(0<a≤10),设此矩形菜园ABCD的最大面积为u,若要求将这棵树围在菜园内(包括边界),则函数u=f(a)(单位:m2)的图象大致是()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分请把结果填在答题纸上的相应位置)11.函数f(x)=√3−xx的定义域为.12.马上进入红叶季,香山公园的游客量将有所增加,现在公园采取了“无预约,不游园”的措施,需要通过微信公众号提前预约才能进入公园.根据以上信息,“预约”是“游园”的条件.(填充分不必要条件、必要不充分条件、充分必要或者既不充分也不必要).13.已知一元二次方程(a﹣2)x2+4x+3=0有一正根和一负根,则实数a的取值范围为.14.已知函数f(x)=2x−1,g(x)=kx+2(k>0),若∀x1∈[2,3],∃x2∈[﹣1,2],使f(x1)=g(x2)成立,则实数k的取值范围是..15.函数f(x)=ax2﹣(a+1)x+1,x∈(−12,12),若f(x)在定义域上满足:①没有奇偶性;②不单调;③有最大值,则a的取值范围是.三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.(10分)已知集合A={1,2,3},B={x|ax﹣1≥0}.(1)当a=2时,求A∩B与A∪B;(2)若_____,求实数a的取值范围.请从①A∩B=A;②∀x∈A,x∉B;③“x∈B”是“x∈A”的必要条件;这三个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)17.(12分)设函数f(x)=2x2﹣ax+4(a∈R).(1)当a=9时,求不等式f(x)<0的解集;(2)若不等式f(x)≥0对∀x∈(0,+∞)恒成立,求实数a的取值范围.18.(13分)已知函数f(x)=x2+a(a∈R).x(1)判断f(x)的奇偶性并证明;(2)若a=2,判断f(x)在[1,+∞)的单调性,并用单调性定义证明.一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.已知集合A ={x |﹣5<x <﹣3},B ={x |2a ﹣3<x <a ﹣2},若A ∪B =A ,则实数a 的取值范围是( )A .[1,+∞)B .{﹣1}C .[1,+∞)∪{﹣1}D .R20.已知x >0,y >0,(√x)3+2022√x =a ,(√y −2)3+2022(√y −2)=−a ,则x +y 的最小值是( )A .1B .√2C .2D .421.f (x )=x (x +1)(x +2)(x +3)的最小值为( )A .﹣1B .﹣1.5C .﹣0.9375D .前三个答案都不对22.若集合A 的所有子集中,任意子集的所有元素和均不相同,称A 为互斥集.若A ={a ,b ,c }⊆{1,2,3,4,5},且A 为互斥集,则1a +1b +1c 的最大值为( ) A .116 B .1312 C .74 D .4760二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23.关于x 的方程x (x−1)=(k−2x)(x 2−x)的解集中只含有一个元素,k = .24.已知k ≥0,函数y ={−x +k +1,x ≥02−x+k,x <0有最大值,则实数k 的取值范围是 . 25.对于集合A ,称定义域与值域均为A 的函数y =f (x )为集合A 上的等域函数.①若A ={1,2},则A 上的等域函数有 个;②若∃A =[m ,n ],使f (x )=a (x ﹣1)2﹣1为A 上的等域函数,a 的取值范围是 .三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答䋈写在答题纸上的相应位置.)26.(15分)对于正整数集合A ,记A ﹣{a }={x |x ∈A ,x ≠a },记集合X 所有元素之和为S (X ),S (∅)=0.若∃x ∈A ,存在非空集合A 1、A 2,满足:①A 1∩A 2=∅;②A 1∪A 2=A ﹣{x };③S (A 1)=S (A 2)称A 存在“双拆”.若∀x ∈A ,A 均存在“双拆”,称A 可以“任意双拆”.(1)判断集合{1,2,3,4}和{1,3,5,7,9,11}是否存在“双拆”?如果是,继续判断可否“任意双拆”?(不必写过程,直接写出判断结果);(2)A ={a 1,a 2,a 3,a 4,a 5},证明:A 不能“任意双拆”;(3)若A 可以“任意双拆”,求A 中元素个数的最小值.2022-2023学年北京市人大附中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.下列表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={(x,y)|y=x},N={y|y=x}C.M={1,2},N={2,1}D.M={2,4},N={(2,4)}解:对于A,集合M,N表示的点坐标不同,故A错误,对于B,集合M表示点集,集合N表示数集,故B错误,对于C,由集合的无序性可知,M=N,故C正确,对于D,集合M表示数集,集合N表示点集,故D错误.故选:C.2.以下函数中是偶函数且在区间(0,+∞)上单调递减的函数是()A.y=1x2B.y=1x C.y=x2D.y=x解:y=1x2是偶函数,在区间(0,+∞)上单调递减,满足题意,A正确;y=1x是奇函数,不正确;y=x2在区间(0,+∞)上是增函数;不正确;y=x是奇函数,不正确.故选:A.3.函数f(x)=xx2+1的图象大致是()A.B.C.D.解:函数f(x)=xx2+1的定义域为R,f(﹣x)=−xx2+1=−f(x),可得f(x)为奇函数,其图象关于原点对称,可排除选项C;当x>0时,f(x)>0,可排除选项A、D.故选:B .4.若x 1+x 2=3,x 12+x 22=5,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣3x +2=0B .x 2+3x ﹣2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0解:∵x 1+x 2=3,x 12+x 22=5,∴2x 1x 2=(x 1+x 2)2−(x 12+x 22)=9﹣5=4,解得x 1x 2=2,∵x 1+x 2=3,x 1x 2=2,∴x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:A .5.已知a >b >c ,则下列说法一定正确的是( )A .ab >bcB .|a |>|b |>|c |C .ac 2>bc 2D .2a >b +c解:因为a >b >c ,则a >b 且a >c ,所以a +a >b +c ,即2a >b +c ,故D 正确,当b <0时,ab <bc ,故A 错误,当a =﹣1,b =﹣2,c =﹣3时,|a |<|b |<|c |,故B 错误,当c =0时,ac 2=bc 2,故C 错误,故选:D .6.若命题“∃x ∈R ,一元二次不等式x 2+mx +1<0”为假命题,则实数m 的取值范围( )A .m ≤﹣2或m ≥2B .﹣2<m <2C .m <﹣2或m ≥2D .﹣2≤m ≤2 解:由题意可知,“∀x ∈R ,一元二次不等式x 2+mx +1≥0”为真命题,所以Δ=m 2﹣4≤0,解得﹣2≤m ≤2,故选:D .7.定义域与对应法则称为函数的两个要素.下列各对函数中,图象完全相同的是( )A .f(x)=(√x)2与g (x )=xB .f(x)=x 4−1x 2+1与g (x )=x 2﹣1 C .f(x)=√x 2与g (x )=xD .f(x)=√x x 与g (x )=1解:对于A ,f (x )的定义域为[0,+∞),g (x )的定义域为R ,故A 错误,对于B ,f(x)=x 4−1x 2+1=x 2﹣1,g (x )=x 2+1,f (x )与g (x )的定义域,值域,映射关系均相同, 故f (x )与g (x )图象完全相同,故B 正确,对于C ,f (x )的值域为[0,+∞),g (x )的值域为R ,故C 错误,对于D ,f (x )的定义域为{x |x ≠0},g (x )的定义域为R ,故D 错误.故选:B .8.“ab >0”是“b a +a b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解:由ab >0可得{a >0b >0或{a <0b <0, 当{a >0b >0时,由基本不等式可得b a +a b ≥2,当a =b 时,等号成立; 当{a <0b <0时,b a >0,a b >0,由基本不等式可得b a +a b ≥2,所以充分性满足; 当b a +a b ≥2时,设t =b a ,则有t +1t ≥2,由对勾函数的性质可得t >0,即b a >0,可得ab >0,所以必要性满足.故“ab >0”是“b a +a b ≥2”的充要条件.故选:C .9.设函数f (x )=x+3x+1,则下列函数中为奇函数的是( ) A .f (x ﹣1)﹣1 B .f (x ﹣1)+1C .f (x +1)﹣1D .f (x +1)+1 解:因为f (x )=x+3x+1=1+2x+1的图象关于(﹣1,1)对称,则f (x ﹣1)﹣1的图象关于原点对称,即函数为奇函数.故选:A .10.人大附中学生计划在实验楼门口种植蔬菜,现有12米长的围栏,准备围成两边靠墙(墙足够长)的菜园,若P 处有一棵树(不考虑树的粗细)与两墙的距离分别是2m 和am (0<a ≤10),设此矩形菜园ABCD 的最大面积为u ,若要求将这棵树围在菜园内(包括边界),则函数u =f (a )(单位:m 2)的图象大致是( )A .B .C .D .解:由题意,设CD =x ,则AD =12﹣x ,所以矩形菜园ABCD 的面积S =x (12﹣x )=﹣x 2+12x =﹣(x ﹣6)2+36,因为要将这棵树围在菜园内,所以{x ≥212−x ≥a,解得:2≤x ≤12﹣a , 当12﹣a >6,也即0<a <6时,在x =6处矩形菜园ABCD 的面积最大,最大面积u =S max =36,当12﹣a ≤6,也即6≤a ≤10时,在x =12﹣a 处矩形菜园ABCD 的面积最大,最大面积u =S max =a (12﹣a ),综上:u =f (a )={36,0<a <6a(12−a),6≤a <10, 根据函数解析式可知,选项B 符合.故选:B .二、填空题(本大题共5小题,每小题5分,共25分请把结果填在答题纸上的相应位置)11.函数f(x)=√3−x x 的定义域为 (﹣∞,0)∪(0,3] .解:因为f(x)=√3−x x, 所以{3−x ≥0x ≠0,解得x ≤3且x ≠0, 即函数的定义域为(﹣∞,0)∪(0,3].故答案为:(﹣∞,0)∪(0,3].12.马上进入红叶季,香山公园的游客量将有所增加,现在公园采取了“无预约,不游园”的措施,需要通过微信公众号提前预约才能进入公园.根据以上信息,“预约”是“游园”的 充分必要 条件.(填充分不必要条件、必要不充分条件、充分必要或者既不充分也不必要). 解:园采取了“无预约,不游园”的措施,意思就是说:游园的前提时预约,只有预约了才可以游园,不预约就不能游园.所以:“预约”是“游园”的 充分必要条件.故答案为:充分必要.13.已知一元二次方程(a ﹣2)x 2+4x +3=0有一正根和一负根,则实数a 的取值范围为 (﹣∞,2) . 解:一元二次方程(a ﹣2)x 2+4x +3=0有一正根和一负根,所以{a −2≠0Δ=16−12(a −2)>03a−2<0,解得a <2, 即实数a 的取值范围为(﹣∞,2).故答案为:(﹣∞,2).14.已知函数f(x)=2x−1,g (x )=kx +2(k >0),若∀x 1∈[2,3],∃x 2∈[﹣1,2],使f (x 1)=g (x 2)成立,则实数k 的取值范围是 [1,+∞) .解:已知函数f(x)=2x−1,g (x )=kx +2(k >0),若∀x 1∈[2,3],∃x 2∈[﹣1,2],使f (x 1)=g (x 2)成立,因为函数f(x)=2x−1在x ∈[2,3]上单调递减,所以f (x )max =f (2)=2,f (x )min =f (3)=1,可得f (x 1)∈[1,2],又因为g (x )=kx +2(k >0)在x ∈[﹣1,2]上单调递增,所以g (x )max =g (2)=2k +2,g (x )min =g (﹣1)=﹣k +2,所以g (x 2)∈[﹣k +2,2k +2],若x 1∈[2,3],∃x 2∈[﹣1,2],使f (x 1)=g (x 2)成立,所以[1,2]⊆[﹣k +2,2k +2],所以{−k +2≤12k +2≥2⇒⇒{k ≥1k ≥0,所以k ≥1. 实数k 的取值范围是:[1,+∞).故答案为:[1,+∞).15.函数f (x )=ax 2﹣(a +1)x +1,x ∈(−12,12),若f (x )在定义域上满足:①没有奇偶性;②不单调;③有最大值,则a 的取值范围是 (−∞,−1)∪(−1,−12) .解:由①可知,a +1≠0,即a ≠﹣1;由③可知,a <0;由②可知,−12<a+12a<12,即−1<a+1a<1,又a<0,则a<a+1<﹣a,解得a<−1 2;综上,实数a的取值范围为(−∞,−1)∪(−1,−12 ).故答案为:(−∞,−1)∪(−1,−12 ).三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.(10分)已知集合A={1,2,3},B={x|ax﹣1≥0}.(1)当a=2时,求A∩B与A∪B;(2)若_____,求实数a的取值范围.请从①A∩B=A;②∀x∈A,x∉B;③“x∈B”是“x∈A”的必要条件;这三个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)解:(1)当a=2时,A={1,2,3},B={x|x≥12 },A∩B={1,2,3},A∪B={x|x≥12};(2)若选①A∩B=A,则A⊆B,当a=0时,B=∅,不符合题意,当a<0时,B={x|x≤1a},不合题意;当a>0时,B={x|x≥1a},则1a≤1,解得a≥1,故a的取值范围为{a|a≥1};若选②∀x∈A,x∉B;当a=0时,B=∅,符合题意,当a<0时,B={x|x≤1a},符合题意;当a>0时,B={x|x≥1a},则1a>3,解得0<a<1 3,故a的取值范围为{a|a<13 };③若选“x∈B”是“x∈A”的必要条件,则A⊆B,当a=0时,B=∅,不符合题意,当a <0时,B ={x |x ≤1a},不合题意;当a >0时,B ={x |x ≥1a },则1a ≤1, 解得a ≥1,故a 的取值范围为{a |a ≥1}.17.(12分)设函数f (x )=2x 2﹣ax +4(a ∈R ).(1)当a =9时,求不等式f (x )<0的解集;(2)若不等式f (x )≥0对∀x ∈(0,+∞)恒成立,求实数a 的取值范围.解:(1)函数f (x )=2x 2﹣ax +4(a ∈R ),当a =9时,f (x )<0,即2x 2﹣9x +4<0,整理得(2x ﹣1)(x ﹣4)<0,解得12<x <4, 故所求不等式的解集为(12,4);(2)f (x )≥0对∀x ∈(0,+∞)恒成立,即2x 2﹣ax +4≥0在x ∈(0,+∞)上恒成立,即a ≤2x +4x 在x ∈(0,+∞)上恒成立,即a ≤(2x +4x )min ,又2x +4x ≥2√2x ×4x =4√2(当且仅当2x =4x 即x =√2时,取“=“). 所以a ≤4√2,故实数a 的取值范围为(−∞,4√2].18.(13分)已知函数f(x)=x 2+a x (a ∈R).(1)判断f (x )的奇偶性并证明;(2)若a =2,判断f (x )在[1,+∞)的单调性,并用单调性定义证明.解:(1)当a =0时,f (x )=x 2为偶函数,当a ≠0时,f (x )=x 2+a x 为非奇非偶函数;证明如下:当a =0时,f (x )=x 2,则f (﹣x )=(﹣x )2=x 2,即f (x )为偶函数,当a ≠0时,f (x )=x 2+a x ,则f (﹣x )=(﹣x )2−a x =x 2−a x ≠±f (x ),即为非奇非偶函数; (2)a =2时,f (x )=x 2+2x ,设1≤x 1<x 2,则x 1﹣x 2<0,x 1+x 2−2x 1x 2>0,则f (x 1)﹣f (x 2)=x 12−x 22+2x 1−2x 2=(x 1﹣x 2)(x 1+x 2−2x 1x 2)<0, 所以f (x 1)<f (x 2),故f (x )在[1,+∞)单调递增. 一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.已知集合A ={x |﹣5<x <﹣3},B ={x |2a ﹣3<x <a ﹣2},若A ∪B =A ,则实数a 的取值范围是( )A .[1,+∞)B .{﹣1}C .[1,+∞)∪{﹣1}D .R解:∵A ∪B =A ,∴B ⊆A ,①B =∅时,2a ﹣3≥a ﹣2,解得a ≥1;②B ≠∅时,{a <12a −3≥−5a −2≤−3,解得a =﹣1;∴综上可得,a 的取值范围是a ≥1或a =﹣1.故选:C .20.已知x >0,y >0,(√x)3+2022√x =a ,(√y −2)3+2022(√y −2)=−a ,则x +y 的最小值是() A .1 B .√2 C .2 D .4解:设f (t )=t 3+2022t ,函数定义域为R ,f (﹣t )=(﹣t )3+2022×(﹣t )=﹣t 3﹣2022t =﹣f (t ),∴f (t )是奇函数,∀t 1<t 2,有t 13<t 23,则f (t 1)﹣f (t 2)=t 13+2022t 1﹣(t 23+2022t 2)<0,即f (t 1)<f (t 2). ∴函数f (t )是增函数,由x >0,y >0,(√x)3+2022√x =a ,(√y −2)3+2022(√y −2)=−a ,所以√x +√y −2=0,可得√x +√y =2,两边同时平方再利用基本不等式,有4=x +y +2√xy ≤2(x +y ),当且仅当x =y =1时取等号,所以x +y 的最小值为2,故选:C .21.f (x )=x (x +1)(x +2)(x +3)的最小值为( )A .﹣1B .﹣1.5C .﹣0.9375D .前三个答案都不对解:y =x (x +1)(x +2)(x +3)=[x (x +3)][(x +1)(x +2)]=(x 2+3x )[(x 2+3x )+2],令a =x 2+3x =(x +32)2−94≥−94.y =a 2+2a =(a +1)2﹣1,∵a ≥−94,∴a =﹣1时,y 有最小值﹣1.故选:A .22.若集合A 的所有子集中,任意子集的所有元素和均不相同,称A 为互斥集.若A ={a ,b ,c }⊆{1,2,3,4,5},且A 为互斥集,则1a +1b +1c 的最大值为( ) A .116 B .1312 C .74 D .4760解:∵A 为{1,2,3},{1,2,4},[1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},且A 为互斥集,∴A 为{1,2,4},{1,2,5},{1,3,5},{2,3,4},{2,4,5},{3,4,5},要想1a +1b +1c 取得最大值,则a ,b ,c 要最小, 此时a ,b ,c ∈{1,2,4},令a =1,b =2,c =4,则1a +1b +1c =11+12+14=74. 故选:C .二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23.关于x 的方程x (x−1)=(k−2x)(x 2−x)的解集中只含有一个元素,k = ﹣1或0或3 .解:∵x (x−1)=(k−2x)(x 2−x)的解集中只含有一个元素,∴x ﹣1≠0,且 x =k−2x x, ∴x ≠0,且 x 2+2x ﹣k =0有一个实数根,结合x ≠0且x ≠1,可得k =﹣1或k =0或k =3.故答案为:﹣1或0或3.24.已知k ≥0,函数y ={−x +k +1,x ≥02−x+k,x <0有最大值,则实数k 的取值范围是 [1,+∞) . 解:因为k ≥0,函数y ={−x +k +1,x ≥02−x+k,x <0有最大值, 易知x ≥0时,f (x )=﹣x +k +1单调递减,故此时f (x )≤f (0)=k +1;当x <0时,f (x )=2−x+k 单调递增,结合x →0﹣时,f (x )→2k,所以由题意只需k +1≥2k 即可,解得k ≥1,或k ≤﹣2(舍),故k 的取值范围为[1,+∞).故答案为:[1,+∞).25.对于集合A ,称定义域与值域均为A 的函数y =f (x )为集合A 上的等域函数.①若A ={1,2},则A 上的等域函数有 2 个;②若∃A =[m ,n ],使f (x )=a (x ﹣1)2﹣1为A 上的等域函数,a 的取值范围是 {a |−18<a <0或0<a ≤1} .解:定义域与值域均为A 的函数y =f (x )为集合A 上的等域函数,(1)所以若 f (x )=x ,则 f (1)=1,f (2)=2,所以f (x )=x 的定义域与值域均为A ={1,2},同理若f (1)=2,f (2)=1,也满足题意,所以A 上的等域函数有2个;若a <0,则f (x )=a (x ﹣1)2﹣1≤﹣1<0,因此 n <0,从而f (x )在[m ,n ]上单调递增,{f(m)=m f(n)=n, 所以f (x )=a (x ﹣1)2﹣1=x 有两个不等的负实根,即方程ax 2﹣(2a +1)x +a ﹣1=0有2个不等的负实根,所以{ Δ=(2a +1)2−4a(a −1)>0x 1+x 2=2a+1a <0x 1x 2=a−1a >0,解得−18<a <0; 若a =0,则f (x )=﹣1,不合题意;a >0 时,①若m ≤1≤n ,则f (x )min =﹣1,因此m =﹣1,f (﹣1)=4a ﹣1,f (n )=a (n ﹣1)2﹣1,若1≤n ≤3,则n =f (﹣1)=4a ﹣1,令1≤4a ﹣1≤3,解得12≤a ≤1, 若n >3,则f (n )=n ,所以方程f (x )=a (x ﹣1)2﹣1=x 有大于3的实数根,即方程ax 2﹣(2a +1)x +a ﹣1=0有大于3的实数根,即Δ=(2a +1)2﹣4a (a ﹣1)≥0,解得a ≥−18, 所以a >0时,x =2a+1±√8a+12a ,令2a+1+√8a+12a>3,解得√8a +1>4a ﹣1, 当4a ﹣1≤0时,即0<a ≤14时,不等式显然成立,当a >14时,8a +1>(4a ﹣1)2,解得0<a <1,所以14<a <1,所以0<a <1满足题意, 综上,0<a ≤满足题意;下面讨论a >1时是否存在[m ,n ]满足题意,②若n ≤1,则 f (x )在[m ,n ]上是减函数,因此{f(m)=n f(n)=m,显然m =f (n )≥﹣1, 令{a(m −1)2−1=n a(n −1)2−1=m,相减得a (m +n ﹣2)=﹣1,即m =2−1a −n ,n =2−1a −m , 因此有{a(m −1)2−1=2−1a −m a(n −1)2−1=2−1a −n , 设g (x )=a (x ﹣1)2﹣1﹣(2−1a −x )=0在[﹣1,1]上有两个不等实根,整理得g (x )=ax 2﹣(2a ﹣1)x +a +1a −3,a >1时,由于g (1)=1a −2<0,因此方程g (x )=0一个根大于1,一根小于1,不合要求; ③若1≤m <n ,则f (x )在[m ,n ]上是增函数,因此{f(m)=m f(n)=n,即f (x )=a (x ﹣1)2﹣1=x 在[1,+∞)上有两个不等实根, 即方程ax 2﹣(2a +1)x +a ﹣1=0 在[1,+∞)上有两个不等实根,设h (x )=ax 2﹣(2a +1)x +a ﹣1,则h (1)=﹣2<0,所以h (x )=0 的两根一个大于1,一个小于1,不合题意,综上,a 的取值范围是{a |−18<a <0或0<a ≤1}.故答案为:2;{a |−18<a <0或0<a ≤1}.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答䋈写在答题纸上的相应位置.)26.(15分)对于正整数集合A ,记A ﹣{a }={x |x ∈A ,x ≠a },记集合X 所有元素之和为S (X ),S (∅)=0.若∃x ∈A ,存在非空集合A 1、A 2,满足:①A 1∩A 2=∅;②A 1∪A 2=A ﹣{x };③S (A 1)=S (A 2)称A 存在“双拆”.若∀x ∈A ,A 均存在“双拆”,称A 可以“任意双拆”.(1)判断集合{1,2,3,4}和{1,3,5,7,9,11}是否存在“双拆”?如果是,继续判断可否“任意双拆”?(不必写过程,直接写出判断结果);(2)A ={a 1,a 2,a 3,a 4,a 5},证明:A 不能“任意双拆”;(3)若A 可以“任意双拆”,求A 中元素个数的最小值.解:(1)对集合{1,2,3,4},{1,2,3,4}﹣{4}={1,2,3},且1+2=3,∴集合{1,2,3,4}可以双拆,若在集合中去掉元素1,∵2+3≠4,2+4≠3,3+4≠2,∴集合{1,2,3,4}不可“任意双拆”;若集合{1,3,5,7,9,11}可以“双拆”,则在集合{1,3,5,7,9,11}去除任意一个元素形成新集合B,若存在集合B1,B2,使得B1∩B2=∅,B1∪B2=B,S(B1)=S(B2),则S(B)=S(B1)+S(B2)=2S(B1),即集合B中所有元素之和为偶数,事实上,集合B中的元素为5个奇数,这5个奇数和为奇数,不合题意,∴集合{1,3,5,7,9}不可“双拆”.(2)证明:设a1<a2<a3<a4<a5.反证法:如果集合A可以“任意双拆”,若去掉的元素为a1,将集合{a2,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a2+a5=a3+a4,①,或a5=a2+a3+a4,②,若去掉的是a2,将集合{a1,a3,a4,a5}分成两个交集为空集的子集,且两个子集元素之和相等,则有a1+a5=a3+a4,③,或a5=a1+a3+a4,④,由①﹣③可得a1=a2,矛盾;由②﹣③得a1=﹣a2,矛盾;由①﹣④可得a1=﹣a2,矛盾;由②﹣④可得a1=a2,矛盾.∴A不能“任意双拆”;(3)设集合A={a1,a2,a3,•,a n},由题意可知S(A)﹣a i(i=1,2,•,n)均为偶数,∴a i(i=1,2,•,n)均为奇数或偶数,若S(A)为奇数,则a i(i=1,2,•,n)均为奇数,∵S(A)=a1+a2+•+a n,∴n为奇数,若S(A)为偶数,则a i(i=1,2,•,n)均为偶数,此时设a i=2b i,则{b1,b2,b3,•,b n}可任意双拆,重复上述操作有限次,便可得各项均为奇数的“任意双拆”集,此时各项之和也是奇数,则集合A中元素个数n为奇数,当n=3时,由题意知集合A={a1,a2,a3}不可“任意双拆”,当n=5时,集合A={a1,a2,a3,a4,a5}不可“任意双拆”,∴n≥7,当n=7时,取集合A={1,3,5,7,9,11,13},∵3+5+7+9=11+13,1+9+13=5+7+11,1+3+5+77=7+13,1+9+11=3+5+13,3+7+9=1+5+13,1+3+5+9=7+11,则集合A可“任意双拆”,∴集合A中元素个数n的最小值为7.。

2020-2021学年广东省实验中学高一(上)期末数学试卷 (解析版)

2020-2021学年广东省实验中学高一(上)期末数学试卷 (解析版)

2020-2021学年广东省实验中学高一(上)期末数学试卷一、单项选择题(共8小题).1.设集合A={x|1≤x+1<5},B={x|x≤2},则A∩(∁R B)=()A.{x|0≤x<4}B.{x|0≤x≤2}C.{x|2<x<4}D.{x|x<4}2.下列四组函数中,表示同一函数的一组是()A.y=|x|,u=B.y=,s=()2C.D.3.已知a=log3,b=ln3,c=2﹣0.99,则a,b,c的大小关系为()A.b>a>c B.a>b>c C.c>a>b D.b>c>a4.在△ABC中,“”是“”的()A.充分必要条件B.充分而不必要条件C.必要不充分条件D.既不充分也不必要条件5.已知函数f(x+2)=2x+x﹣2,则f(x)=()A.2x﹣2+x﹣4B.2x﹣2+x﹣2C.2x+2+x D.2x+2+x﹣26.在同一直角坐标系中,函数y=,y=log a(x+)(a>0且a≠1)的图象可能是()A.B.C.D.7.函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,将其向右平移个单位长度后得到的函数解析式为()A.y=sin2x B.y=sin(2x+)C.y=sin(2x﹣)D.y=sin(2x﹣)8.方程cos x=log8x的实数解的个数是()A.4B.3C.2D.1二、多项选择题(共4小题).9.下列各式中,值为的是()A.cos2﹣sin2B.C.2sin195°cos195°D.10.已知a,b为正实数,则下列判断中正确的是()A.B.若a+b=4,则log2a+log2b的最大值为2C.若a>b,则D.若a+b=1,则的最小值是811.已知函数f(x)=|cos x|+cos|2x|,下列说法正确的是()A.若x∈[﹣π,π],则f(x)有2个零点B.f(x)的最小值为C.f(x)在区间上单调递减D.π是f(x)的一个周期12.已知函数f(x)=a sin x+b cos x,其中a,b∈R,且ab≠0,若对一切x∈R恒成立,则()A.B.C.是偶函数D.是奇函数三、填空题(本大题共4小题,每小题5分,共20分)13.已知函数(ω>0)的最小正周期是π,则ω=,单调递增区间是.14.命题“所有三角形都有内切圆”的否定是.15.已知角θ的终边在直线y=﹣3x上,则=.16.已知函数,若a、b、c、d、e(a<b<c<d<e)满足f(a)=f(b)=f(c)=f(d)=f(e),则M=af(a)+bf(b)+cf(c)+df(d)+ef(e)的取值范围为.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.计算下列各式的值:(1);(2).18.已知幂函数f(x)=(m2+2m﹣2)x m+2,且在(0,+∞)上是减函数.(1)求f(x)的解析式;(2)若(3﹣a)m>(a﹣1)m,求a的取值范围.19.已知函数.(1)求函数f(x)的最小正周期、对称轴和对称中心;(2)若锐角α满足,且β满足,求cosβ的值.20.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m2,三月底测得凤眼莲的覆盖面积为36m2,凤眼莲的覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4711).21.已知定义域为R的函数,是奇函数.(1)求a,b的值;(2)判断f(x)单调性并证明;(3)若∀t∈[﹣1,4],不等式f(t2+2)+f(2t2﹣kt)<0恒成立,求k的取值范围.22.已知函数为f(x)的零点,为f(x)图象的对称轴.(1)若f(x)在[0,2π]内有且仅有6个零点,求f(x);(2)若f(x)在上单调,求ω的最大值.参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x|1≤x+1<5},B={x|x≤2},则A∩(∁R B)=()A.{x|0≤x<4}B.{x|0≤x≤2}C.{x|2<x<4}D.{x|x<4}解:因为集合A={x|1≤x+1<5}={x|0≤x<4},B={x|x≤2},∴∁R B={x|x>2},∴A∩(∁R B)={x|2<x<4},故选:C.2.下列四组函数中,表示同一函数的一组是()A.y=|x|,u=B.y=,s=()2C.D.解:A.y=|x|和的定义域都是R,对应关系也相同,是同一函数;B.的定义域为R,的定义域为[0,+∞),定义域不同,不是同一函数;C.的定义域为{x|x≠1},m=n+1的定义域为R,定义域不同,不是同一函数;D.的定义域为{x|x≥1},的定义域为{x|x≤﹣1或x≥1},定义域不同,不是同一函数.故选:A.3.已知a=log3,b=ln3,c=2﹣0.99,则a,b,c的大小关系为()A.b>a>c B.a>b>c C.c>a>b D.b>c>a解:∵,∴a<0,∵ln3>lne=1,∴b>1,∵0<2﹣0.99<20=1,∴0<c<1,∴b>c>a,故选:D.4.在△ABC中,“”是“”的()A.充分必要条件B.充分而不必要条件C.必要不充分条件D.既不充分也不必要条件解:在△ABC中,A∈(0,π),考虑充分性,“”推不出“”,如当A=时,sin A=,所以“”不是“”的充分条件;再考虑必要性,“”⇒A∈()⇒“”,所以“”是“”的必要条件;故选:C.5.已知函数f(x+2)=2x+x﹣2,则f(x)=()A.2x﹣2+x﹣4B.2x﹣2+x﹣2C.2x+2+x D.2x+2+x﹣2解:设t=x+2,则x=t﹣2,∴f(t)=2t﹣2+t﹣2﹣2=2t﹣2+t﹣4,∴f(x)=2x﹣2+x﹣4.故选:A.6.在同一直角坐标系中,函数y=,y=log a(x+)(a>0且a≠1)的图象可能是()A.B.C.D.解:由函数y=,y=log a(x+),当a>1时,可得y=是递减函数,图象恒过(0,1)点,函数y=log a(x+),是递增函数,图象恒过(,0);当1>a>0时,可得y=是递增函数,图象恒过(0,1)点,函数y=log a(x+),是递减函数,图象恒过(,0);∴满足要求的图象为:D故选:D.7.函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<)的部分图象如图所示,将其向右平移个单位长度后得到的函数解析式为()A.y=sin2x B.y=sin(2x+)C.y=sin(2x﹣)D.y=sin(2x﹣)解:由函数图象知,A=,=﹣=,解得T=π,所以ω==2,所以函数f(x)=sin(2x+φ);因为f()=sin(+φ)=﹣sin(+φ)=﹣,所以+φ=+2kπ,k∈Z;解得φ=+2kπ,k∈Z;又0<φ<,所以φ=;所以f(x)=sin(2x+);将函数的图象向右平移个单位长度后,得y=sin[2(x﹣)+]的图象,即y=sin(2x﹣).故选:C.8.方程cos x=log8x的实数解的个数是()A.4B.3C.2D.1解:方程cos x=log8x的实数解的个数,即函数y=cos x的图象和函数y=log8x的图象交点的个数.数形结合可得函数y=cos x的图象和函数y=log8x的图象(图中红色曲线)交点的个数为3,故选:B.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.下列各式中,值为的是()A.cos2﹣sin2B.C.2sin195°cos195°D.解:对于A,cos2﹣sin2=cos=;对于B,=tan45°=;对于C,2sin195°cos195°=sin390°=sin30°=;对于D,==.故选:BC.10.已知a,b为正实数,则下列判断中正确的是()A.B.若a+b=4,则log2a+log2b的最大值为2C.若a>b,则D.若a+b=1,则的最小值是8解:已知a,b为正实数,(a+)(b+)=ab+++≥2+2=4,当且仅当a=b =1是取等号,故,所以A正确;因为正实数a,b满足a+b=4,∴4≥2,化为:ab≤4,当且仅当a=b=2时取等号,则log2a+log2b=log2(ab)≤log24=2,其最大值是2.则log2a+log2b的最大值为2,所以B正确;若a>b,a,b为正实数,有不等式性质有,所以C正确;若a+b=1,+=(+)•(a+b)=1+4++≥5+2=9,所以D不正确;故选:ABC.11.已知函数f(x)=|cos x|+cos|2x|,下列说法正确的是()A.若x∈[﹣π,π],则f(x)有2个零点B.f(x)的最小值为C.f(x)在区间上单调递减D.π是f(x)的一个周期解:根据函数f(x)=|cos x|+cos|2x|,整理得f(x)=2cos2x+|cos x|﹣1,对于A:若x∈[﹣π,π],当x=±π或时,满足函数f(x)=0,则f(x)有4个零点,故A错误;对于B:由于t∈[0,1],当t=0时,f(x)的最小值为﹣1,故B错误;对于C:利用函数的关系式转换为f(x)=g(x)+h(x),由于函数g(x)=|cos x|在(0,)上单调递减,函数h(x)=|cos2x|在(0,)上单调递减,故f(x)在区间上单调递减,故C正确;对于D:因为f(x+π)=f(x),所以f(x)的周期T=π,故D正确;故选:CD.12.已知函数f(x)=a sin x+b cos x,其中a,b∈R,且ab≠0,若对一切x∈R恒成立,则()A.B.C.是偶函数D.是奇函数解:由题意函数f(x)=a sin x+b cos x=sin(x+φ),其中a,b∈R,ab≠0.因为=1,对一切x∈R恒成立,可知f()=±1,所以+φ=kπ+,k∈Z,可得φ=kπ+,k∈Z,可得φ=,f()=sin(+),f()=sin(+),故f()>f(),或f()<f(),故A错误;因为f(x﹣)=sin(x﹣+)=sin x,所以f(x)为奇函数,故C错误;因为f(x+)=sin(x++)=sin(x+)=cos x,又因为cos x是偶函数,所以f(x)为偶函数,故D错误;f(﹣x)=sin(﹣x)=sin(x﹣),故B正确;故选:B.三、填空题(本大题共4小题,每小题5分,共20分)13.已知函数(ω>0)的最小正周期是π,则ω=2,单调递增区间是.解:由周期的求解方法可知;π=,可得ω=2;可得函数f(x)=2sin(2x+),令﹣+2kπ≤2x+≤+2kπ∴+kπ≤x≤+kπ,(k∈Z)即函数f(x)的递增区间为:[﹣+kπ,+kπ](k∈Z),故答案为2,[+kπ,+kπ](k∈Z)14.命题“所有三角形都有内切圆”的否定是“存在一个三角形没有内切圆”.解:全称命题“所有三角形都有内切圆”,它的否定是特称命题:“存在一个三角形没有内切圆”.故答案为:“存在一个三角形没有内切圆”.15.已知角θ的终边在直线y=﹣3x上,则=.解:∵角α的终边在直线y=3x上,∴tanα=3,∴====.故答案为:.16.已知函数,若a、b、c、d、e(a<b<c<d<e)满足f(a)=f(b)=f(c)=f(d)=f(e),则M=af(a)+bf(b)+cf(c)+df(d)+ef(e)的取值范围为(0,9).解:函数f(x)的图象如图所示:由图可得a+d=2,b+c=2,5<e<6,所以M=(a+b+c+d+e)f(e)=(4+e)(6﹣e)=﹣e2+2e+24=﹣(e﹣1)2+25,因为5<e<6,所以函数M在(5,6)上单调递减,又e=5时,M=9,e=6时,M=0,所以M的取值范围为(0,9),故答案为:(0,9).四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.计算下列各式的值:(1);(2).解:(1)原式=;(2)原式=3+lg100+2=3+2+2=7.18.已知幂函数f(x)=(m2+2m﹣2)x m+2,且在(0,+∞)上是减函数.(1)求f(x)的解析式;(2)若(3﹣a)m>(a﹣1)m,求a的取值范围.解:(1)∵函数是幂函数,∴m2+2m﹣2=1,即m2+2m﹣3=0,解得m=1或m=﹣3,∵幂函数f(x)在(0,+∞)上是减函数,∴m+2<0,即m<﹣2,∴m=﹣3,∴f(x)=x﹣1,(2)令g(x)=x﹣3,因为g(x)的定义域为(﹣∞,0)∪(0,+∞),且在(﹣∞,0)和(0,+∞)上均为减函数,∵(3﹣a)﹣3>(a﹣1)﹣3,∴3﹣a<a﹣1<0或0<3﹣a<a﹣1或3﹣a>0>a﹣1,解得2<a<3或a<1,故a的取值范围为:{a|2<a<3或a<1}.19.已知函数.(1)求函数f(x)的最小正周期、对称轴和对称中心;(2)若锐角α满足,且β满足,求cosβ的值.解:f(x)=sin2x﹣×(1+cos2x)+=sin2x﹣cos2x=sin(2x﹣),则(1)f(x)的最小正周期T=,由2x﹣=kπ+得2x=kπ+,得x=+,k∈Z,即函数的对称轴为{x|x=+,k∈Z}.由2x﹣=kπ得2x=kπ+,得x=+,k∈Z,即函数的对称中心为(+,0),k∈Z.(2)若锐角α满足,且β满足,则sin[2(α+)﹣]=﹣,得sin(2α+)=cos2α=﹣,即2cos2α﹣1=﹣,得2cos2α=,即cos2α=,则cosα=,sinα=,∵,∴cos(α+β)=±,当cos(α+β)=时,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα=×+×=,当cos(α+β)=﹣时,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα=﹣×+×=.20.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m2,三月底测得凤眼莲的覆盖面积为36m2,凤眼莲的覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg2≈0.3010,lg3≈0.4711).解:(1)函数y=ka x(k>0,a>1)与在(0,+∞)上都是增函数,随着x的增加,函数y=ka x(k>0,a>1)的值增加的越来越快,而函数的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型y=ka x(k>0,a>1)符合要求.根据题意可知x=2时,y=24;x=3时,y=36,∴,解得.故该函数模型的解析式为,1≤x≤12,x∈N*;(2)当x=0时,,元旦放入凤眼莲的覆盖面积是m2,由>10•,得>10,∴x>=≈5.9,∵x∈N*,∴x≥6,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.21.已知定义域为R的函数,是奇函数.(1)求a,b的值;(2)判断f(x)单调性并证明;(3)若∀t∈[﹣1,4],不等式f(t2+2)+f(2t2﹣kt)<0恒成立,求k的取值范围.解:(1)由于定义域为R的函数是奇函数,则即,解得,即有f(x)=,经检验成立;(2)f(x)在(﹣∞,+∞)上是减函数.证明:设任意x1<x2,f(x1)﹣f(x2)=﹣=,由于x1<x2,则2x1<2x2,即有>0,则有f(x1)>f(x2),故f(x)在(﹣∞,+∞)上是减函数;(3)不等式f(t2+2)+f(2t2﹣kt)<0,由奇函数f(x)得到f(﹣x)=﹣f(x),f(2t2﹣kt)<﹣f(2+t2)=f(﹣t2﹣2),再由f(x)在(﹣∞,+∞)上是减函数,则2t2﹣kt>﹣t2﹣2,即有3t2﹣kt+2>0对t∈[﹣1,4]恒成立,当t=0时,2>0,显然成立;当0<t≤4时,k<=3t+,3t+≥2,当且仅当t=时,取得等号,则k<2;当﹣1≤t<0时,k>=3t+,又3t+=﹣[(﹣3t)+]≤﹣2,当且仅当t=﹣∈[﹣1,0)时,取得等号,则k>﹣2;综上可得k的范围是(﹣2,2).22.已知函数为f(x)的零点,为f(x)图象的对称轴.(1)若f(x)在[0,2π]内有且仅有6个零点,求f(x);(2)若f(x)在上单调,求ω的最大值.解:(1)因为f(x)在[0,2π]内有且仅有6个零点,则6个零点间有周期,所以①,又8个零点间的一定比[0,2π]的区间长度大,即②,由①②可得,又为f(x)的零点,所以,k1∈Z③,为f(x)图象的对称轴,则,k2∈Z④,④﹣③可得,即ω=2(k2﹣k1)+1,因为k1∈Z,k2∈Z,所以ω为奇数,故ω=3,由③可得φ=,k1∈Z,又|φ|,所以φ=﹣,故;(2)由(1)可知,ω=2(k2﹣k1)+1,k1,k2∈Z,故ω为奇数,因为f(x)在上单调,则,解得ω≤12,所以ω的最大值可能为11,9,7,…,当ω=11时,φ=k1π,又|φ|,所以φ=﹣,故,此时函数f(x)在上不单调;当ω=9时,φ=k1π,又|φ|,所以φ=,故,此时函数f(x)在上单调递减,符合题意.综上可得,ω的最大值为9.。

2020-2021学年新教材高一数学上学期期末复习练习(四)

2020-2021学年新教材高一数学上学期期末复习练习(四)

2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。

2022-2023学年广东省广州市增城中学高一上学期期末数学试题(解析版)

2022-2023学年广东省广州市增城中学高一上学期期末数学试题(解析版)
, 函数 是奇函数,图像关于原点对称,故排除A选项;
又 ,故排除D选项;
,当 时, ,即 在 上单调递增,故排除C选项.
故选:B.
7.若函数 在R上为严格增函数,则实数a的取值范围是()
A. B. C. D.
【答案】C
【解析】
【分析】依据题给条件列出关于实数a的不等式组,解之即可求得实数a的取值范围.
画出 与 的图象,
所以 ,
即实数 的取值范围是 .
故选:B.
二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)
9.下列选项中,与 的值相等的是()
A. B.
C. D.
【答案】AC
【解析】
【分析】求得 的值,利用诱导公式,两角和差公式及二倍角公式对选项逐一化简求值,即可得出答案.
【详解】 ,
C. 的最小值是4D. 的最大值是
【答案】AD
【解析】
【分析】求得 的最小值判断选项A;求得 的范围判断选项B;求得 的最小值判断选项C;求得 的最大值判断选项D.
【详解】选项A:由正数x,y满足 ,
可得
(当且仅当 时等号成立)
则 的最小值是2,判断正确;
选项B:由正数x,y满足 ,可得

当且仅当 时等号成立,这与x为正数矛盾,
【详解】由函数 ,在R上为严格增函数故选:C
8.设 ,若 有三个不同的实数根,则实数a的取值范围是()
A. B. C. D.
【答案】B
【解析】
【分析】将 的根的个数,转化为两函数的交点个数问题,利用数形结合即得.
【详解】因为 有三个不同的实数根,等价于 与 有3个不同的交点,
故选:A.
2.已知 ,则下列结论不正确的是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年广东省广州二中高一(上)期末数学试卷一、单项选择题(共8小题).1.设集合A={1,4,x},B={1,x2}且A∪B={1,4,x},则满足条件的实数x的个数是()A.1个B.2个C.3个D.4个2.已知p:﹣2<x<2,q:﹣1<x<2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.命题“∀x≥0,x3+x≥0”的否定是()A.∀x<0,x3+x<0B.∀x<0,x3+x≥0C.∃x≥0,x3+x<0D.∃x≥0,x3+x≥04.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c5.已知sin(α﹣π)=﹣,α∈(,),则cosα=()A.B.C.D.6.已知a>0,b>0,若不等式恒成立,则m的最大值等于()A.10B.9C.8D.77.函数y=tan x+sin x﹣|tan x﹣sin x|在区间内的图象是()A.B.C.D.8.已知,,则cos2α=()A.B.C.D.二、多项选择题(共4小题).9.下列说法中错误的是()A.幂函数的图象不经过第四象限B.y=x0的图象是一条直线C.若函数的定义域为{x|x>2},则它的值域为D.若函数y=x2的值域为是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2}10.满足不等式sin x≥cos x,x∈[0,2π]的x的值可以是()A.B.C.D.11.若函数y=f(x)在区间[a,b]上的图象为一条连续不断的曲线,则下列说法中错误的有()A.若f(a)f(b)>0,则不存在实数c∈[a,b],使得f(c)=0B.若f(a)f(b)<0,则存在且只存在一个实数c∈[a,b],使得f(c)=0C.若f(a)f(b)>0,则可能存在实数c∈[a,b],使得f(c)=0D.若f(a)f(b)<0,则可能不存在实数c∈[a,b],使得f(c)=012.已知函数,为函数f(x)零点,直线为函数f(x)的对称轴,且f(x)在上单调,则ω不可能等于()A.11B.9C.8D.6三、填空题(共4小题).13.已知函数f(x)=为R上的奇函数,则n的值为.14.已知x<3,则的最大值为.15.函数y=﹣sin2x﹣4cos x+6的值域是.16.已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.四、解答题(70分)17.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则T﹣T a=(T0﹣T a)•,其中T a表示环境温度,h称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20min,那么降温到35℃时,需要多长时间?18.已知函数f(x)=ax2﹣4ax+b(a>0)在区间[0,1]上有最大值1和最小值﹣2.(1)求a,b的值;(2)若在区间[﹣1,1]上,不等式f(x)>﹣x+m恒成立,求实数m的取值范围.19.已知函数f(x)=log a(a>0,且a≠1).(1)求f(x)的定义域;(2)判断函数f(x)的奇偶性,并求函数的单调区间.20.已知函数.(1)求函数f(x)的最小正周期;(2)若函数,求函数g(x)的单调增区间.21.已知函数f(x)=cos2x+sin x•cos x,其中x∈R.(1)求使f(x)≥的x的取值范围;(2)若函数g(x)=,且对任意的0≤x1<x2≤t,恒有f(x1)﹣f (x2)<g(x1)﹣g(x2)成立,求实数t的最大值.参考答案一、单项选择题(共8小题).1.设集合A={1,4,x},B={1,x2}且A∪B={1,4,x},则满足条件的实数x的个数是()A.1个B.2个C.3个D.4个解:∵A={1,4,x},∴x≠1,x≠4且x2≠1,得x≠±1且x≠4∵A∪B={1,4,x},∴x2=x或x2=4,解之得x=0或x=±2满足条件的实数x有0,2,﹣2共3个故选:C.2.已知p:﹣2<x<2,q:﹣1<x<2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:已知p:﹣2<x<2,q:﹣1<x<2;∴q⇒p;但p推不出q,∴p是q的必要非充分条件,故选:B.3.命题“∀x≥0,x3+x≥0”的否定是()A.∀x<0,x3+x<0B.∀x<0,x3+x≥0C.∃x≥0,x3+x<0D.∃x≥0,x3+x≥0解:命题为全称命题,则命题的否定为∃x≥0,x3+x<0,故选:C.4.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c解:∵a=log54<log55=1,b=(log53)2<(log55)2,c=log45>log44=1,∴c最大,排除A、B;又因为a、b∈(0,1),所以a>b,故选:D.5.已知sin(α﹣π)=﹣,α∈(,),则cosα=()A.B.C.D.解:因为sin(α﹣π)=﹣sinα=﹣,可得sinα=,又因为α∈(,),所以cosα=﹣=﹣.故选:A.6.已知a>0,b>0,若不等式恒成立,则m的最大值等于()A.10B.9C.8D.7解:∵a>0,b>0,∴+≥⇔m≤+=5++,由a>0,b>0得,+≥2=4(当且仅当a=b时取“=”).∴5++≥9.∴m≤9.故选:B.7.函数y=tan x+sin x﹣|tan x﹣sin x|在区间内的图象是()A.B.C.D.解:函数,分段画出函数图象如D图示,故选:D.8.已知,,则cos2α=()A.B.C.D.解:因为,所以﹣<β﹣α<0,π<α+β<,又,所以sin(β﹣α)=﹣=﹣,cos(β+α)=﹣=﹣;所以cos2α=cos[(β+α)﹣(β﹣α)]=cos(β+α)cos(β﹣α)+sin(β+α)sin(β﹣α)=×(﹣)+(﹣)×(﹣)=﹣.故选:D.二、多项选择题(共4小题).9.下列说法中错误的是()A.幂函数的图象不经过第四象限B.y=x0的图象是一条直线C.若函数的定义域为{x|x>2},则它的值域为D.若函数y=x2的值域为是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2}解:对于A,由幂函数的图象知,它不经过第四象限,所以A对;对于B,因为当x=0时,x0无意,即在x=0无定义,所以B错;对于C,函数的定义域为{x|x>2},则它的值域为{y|0<y<},不是,所以C错;对于D,定义域不一定是{x|﹣2≤x≤2},如{x|0≤x≤2},所以D错.故选:BCD.10.满足不等式sin x≥cos x,x∈[0,2π]的x的值可以是()A.B.C.D.解:由三角函数的图象知,当sin x≥cos x,x∈[0,2π]时,≤x≤,故B,C,D都可以,故选:BCD.11.若函数y=f(x)在区间[a,b]上的图象为一条连续不断的曲线,则下列说法中错误的有()A.若f(a)f(b)>0,则不存在实数c∈[a,b],使得f(c)=0B.若f(a)f(b)<0,则存在且只存在一个实数c∈[a,b],使得f(c)=0C.若f(a)f(b)>0,则可能存在实数c∈[a,b],使得f(c)=0D.若f(a)f(b)<0,则可能不存在实数c∈[a,b],使得f(c)=0解:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根.根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.所以,若f(a)•f(b)>0,则不存在实数c∈[a,b],使得f(c)=0,不正确,可能有零点.如图,有两个零点,所以A不正确.若f(a)•f(b)<0,则只存在一个实数c∈[a,b],使得f(c)=0,可能由多个零点.如图,所以B不正确;若f(a)•f(b)>0,则有可能存在实数c∈[a,b],使得f(c)=0,如图:,有两个零点,所以C正确;若f(a)•f(b)<0,一定存在实数c∈[a,b],使得f(c)=0,如图:所以D错误;故选:ABD.12.已知函数,为函数f(x)零点,直线为函数f(x)的对称轴,且f(x)在上单调,则ω不可能等于()A.11B.9C.8D.6解:∵函数,为函数f(x)零点,直线为函数f(x)的对称轴,且f(x)在上单调,∴ω×(﹣)+φ=kπ,k∈Z①,ω×+φ=nπ+,n∈Z②,×≥﹣③.由①②可得ω=2(n﹣k)+1,故ω为正奇数.由③可得,ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在上不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在上单调,满足题意;故ω的最大值为9,则ω不可能等于11,6,8,故选:ACD.三、填空题(共4小题).13.已知函数f(x)=为R上的奇函数,则n的值为2.解:∵函数f(x)=为R上的奇函数,∴f(0)=0,即f(0)==0,解得n=2,故答案为:2.14.已知x<3,则的最大值为﹣1.解:∵x<3,∴x﹣3<0,∴+x=+(x﹣3)+3≤﹣2+3=﹣1,当且仅当=x﹣3即x=1时取等号,故f(x)的最大值为﹣1,故答案为:﹣1.15.函数y=﹣sin2x﹣4cos x+6的值域是[2,10].解:函数y=﹣sin2x﹣4cos x+6=﹣(1﹣cos2x)﹣4cos x+6=cos2x﹣4cos x+5=(cos x﹣2)2+1,再根据cos x∈[﹣1,1],可得当cos x=1时,函数取得最小值为2,当cos x=﹣1时,函数取得最大值为10,故函数的值域为[2,10],故答案为:[2,10].16.已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是{x|1<x<4}.若函数f(x)恰有2个零点,则λ的取值范围是(1,3]∪(4,+∞).解:当λ=2时函数f(x)=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)=的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).四、解答题(70分)17.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则T﹣T a=(T0﹣T a)•,其中T a表示环境温度,h称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20min,那么降温到35℃时,需要多长时间?解:由题意,40﹣24=(88﹣24)•⇒h=10则T﹣T a=(T0﹣T a)•,将T0=40,T a=24,T=35,代入T﹣T a=(T0﹣Ta)•35﹣24=(40﹣24)⇒t=25,答:约需要25 min,可降温到35℃.18.已知函数f(x)=ax2﹣4ax+b(a>0)在区间[0,1]上有最大值1和最小值﹣2.(1)求a,b的值;(2)若在区间[﹣1,1]上,不等式f(x)>﹣x+m恒成立,求实数m的取值范围.解:(1)f(x)=a(x2﹣4x)+b=a(x﹣2)2+b﹣4a∵a>0,∴函数图象开口向上,对称轴x=2,∴f(x)在[0,1]递减;∴f(0)=b=1,且f(1)=b﹣3a=﹣2,∴a=b=1;(2)f(x)>﹣x+m等价于x2﹣4x+1>﹣x+m,即x2﹣3x+1﹣m>0,要使此不等式在[﹣1,1]上恒成立,只需使函数g(x)=x2﹣3x+1﹣m在[﹣1,1]上的最小值大于0即可.∵g(x)=x2﹣3x+1﹣m在[﹣1,1]上单调递减,∴g(x)min=g(1)=﹣m﹣1,由﹣m﹣1>0得,m<﹣1.因此满足条件的实数m的取值范围是(﹣∞,﹣1).19.已知函数f(x)=log a(a>0,且a≠1).(1)求f(x)的定义域;(2)判断函数f(x)的奇偶性,并求函数的单调区间.解:(1)∵f(x)=log a(a>0且a≠1),∴>0,解得x>1,或x<﹣1,故函数f(x)的定义域(﹣∞,﹣1)∪(1,+∞),(2)∵f(﹣x)=log a=﹣log a=﹣f(x),∴函数为奇函数,设=u,则u=1+,因为函数u在每一个区间上均为减函数,当a>1是,函数y=log a x为增函数,故函数f(x)为减函数,当0<a<1是,函数y=log a x为减函数,故函数f(x)为增函数.20.已知函数.(1)求函数f(x)的最小正周期;(2)若函数,求函数g(x)的单调增区间.解:(1)函数=2cos2(﹣x)﹣1=cos2(﹣x)=sin2x,所以函数f(x)的最小正周期为=π.(2)=sin2x﹣(2cos2x﹣1)﹣=sin2x﹣cos2x﹣=2sin(2x﹣)﹣,令2kπ﹣≤2x﹣≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,所以函数g(x)的单调增区间为[kπ﹣,kπ+],k∈Z.21.已知函数f(x)=cos2x+sin x•cos x,其中x∈R.(1)求使f(x)≥的x的取值范围;(2)若函数g(x)=,且对任意的0≤x1<x2≤t,恒有f(x1)﹣f (x2)<g(x1)﹣g(x2)成立,求实数t的最大值.解:(1)f(x)=cos2x+sin x•cos x=cos2x+sin2x=sin(2x+),f(x)≥,即sin(2x+)≥,所以2kπ+≤2x+≤2kπ+,k∈Z,解得kπ≤x≤kπ+,k∈Z,即使f(x)≥的x的取值范围是[kπ,kπ+],k∈Z.(2)令F(x)=f(x)﹣g(x)=sin(2x+)﹣sin(2x+)=sin(2x+)﹣cos(2x+)=sin2x,因为对任意的0≤x1<x2≤t,恒有f(x1)﹣f(x2)<g(x1)﹣g(x2)成立,所以当x∈[0,t]时,F(x)=sin2x为增函数,所以2t≤,解得t≤,所以实数t的最大值为.。

相关文档
最新文档