运算放大电路可能遇到自激振荡和阻塞现象解决办法

合集下载

运放电路输入端加电容电路自激振荡的原因

运放电路输入端加电容电路自激振荡的原因

运放电路输入端加电容电路自激振荡的原因1. 概述运放电路是电子电路中常用的一种放大电路,具有高输入阻抗、低输出阻抗、大增益等优点,广泛应用于电子设备中。

然而,在一些情况下,运放电路的输入端加电容后会出现自激振荡的现象,给电路稳定性和性能带来负面影响。

本文将简要分析运放电路输入端加电容电路自激振荡的原因,并探讨解决方法。

2. 运放电路输入端加电容电路概述运放电路通常由运放芯片、电阻、电容等元器件组成,用于信号放大、滤波、积分、微分等功能。

当在运放电路的输入端加上电容后,原理上是为了在输入端滤除直流信号,只透过交流信号,以起到滤波和对称交流信号的作用。

但在实际应用中,有时候会发现运放电路输入端加电容后出现自激振荡现象。

3. 自激振荡的原因(1)相位延迟:在运放电路中,当输入端加电容时,由于电容器的特性,导致输入信号的相位延迟。

当输入信号的相位延迟到达运放电路的反馈环路时,可能引起电路的共振和自激振荡。

(2)反馈路径:在运放电路中,反馈路径如果设计不当,或者在输入端加电容后,在反馈路径中出现相位差,也可能会导致自激振荡的问题。

特别是在高频段,更容易出现这种情况。

4. 解决方法(1)增加补偿电容:在运放电路输入端加电容后出现自激振荡时,可以考虑增加补偿电容来抑制振荡。

适当增加补偿电容,可以起到抑制高频振荡的作用,提高电路的稳定性。

(2)选择合适的运放芯片:在设计运放电路时,选择合适的运放芯片也是避免自激振荡的重要方法。

一些特殊应用场景下,可能需要选择特殊结构和参数的运放芯片,以满足要求。

(3)优化反馈网络:在运放电路设计中,要合理设计反馈网络,避免相位差引起的自激振荡。

通过优化反馈网络的结构和参数,可以有效地降低电路的振荡风险。

5. 结论运放电路输入端加电容电路自激振荡的原因主要在于相位延迟和反馈路径设计不当。

为了解决这一问题,可以采取增加补偿电容、选择合适的运放芯片和优化反馈网络等方法。

在实际设计中,需要对电路的稳定性和性能进行充分的考虑,合理选择元器件和参数,以避免自激振荡的问题。

消除自激振荡的方法

消除自激振荡的方法

消除自激振荡的方法自激振荡是指一个系统在没有外界输入的情况下,由于系统内部的反馈作用而导致的自我激励和持续振荡。

在电路设计和信号处理等领域中,自激振荡往往是一个不希望出现的现象,因为它会对系统的正常工作产生干扰和噪声。

下面将介绍几种常见的消除自激振荡的方法。

1. 反馈网络设计优化:自激振荡的本质是正反馈环路中的增益大于1,因此,通过优化反馈网络,减小增益,可以有效降低自激振荡的程度。

具体做法包括:增加衰减接入点、增加负反馈、增加衰减元件等。

2. 阻尼:在自激振荡系统中,阻尼是一个重要的参数。

通过增加阻尼或调整阻尼参数,可以有效减弱或消除系统的振荡倾向。

具体方法包括使用合适的阻尼器件、调整系统参数,使系统处于临界阻尼状态等。

3. 增益控制:增益是自激振荡的关键因素之一。

通过减小或控制增益,可以降低系统振荡的幅度或频率。

具体方法有:使用可调节增益的元件、调整放大器的增益、使用自动增益控制电路等。

4. 调整系统参数:自激振荡往往是由于系统内部参数的变化引起的。

通过调整系统的参数,可以改变系统的运行状态,从而降低或消除自激振荡。

调整系统参数的方法包括:选择合适的元器件、调整电容、电感、电阻等参数、改变工作频率等。

5. 使用滤波器:滤波器可以有效消除系统中的噪声和干扰,从而降低自激振荡的程度。

通过选择适当的滤波器类型和参数,可以滤除系统中的振荡信号,从而减小或消除自激振荡的影响。

6. 引入衰减:通过引入合适的衰减元件或衰减网络,可以有效减弱或消除系统的振荡。

衰减元件的选择和参数的调整需要根据具体的系统要求和振荡特性进行,以达到最佳的抑制效果。

7. 优化布局和物理设计:布局和物理设计对于电路系统的稳定性和振荡抑制起到重要作用。

通过合理布局电路,避免电源和信号共用线路,减小器件之间的耦合等措施,可以有效减少自激振荡的发生。

总之,消除自激振荡的方法包括优化反馈网络设计、增加阻尼、调整增益、调整系统参数、使用滤波器、引入衰减和优化布局和物理设计等。

放大器自激振荡的原因

放大器自激振荡的原因

放大器自激振荡的原因放大器自激振荡是指在一些特定的条件下,放大器的输出信号被反馈到输入端,进而导致放大器产生不稳定的振荡现象。

自激振荡是电子电路中一个非常普遍且有时也是非常令人困扰的问题。

本文将探讨放大器自激振荡的原因并提供一些可能的解决方案。

放大器自激振荡的原因可以归结为两种情况:正馈和负馈。

正馈是指放大器输出信号的一部分被反馈回到输入端,增强了输入信号,从而产生振荡。

而负馈则是指放大器输出信号的一部分被反馈回到输入端,并与输入信号相减,抑制了输入信号,从而产生振荡。

在电路中,可能导致放大器自激振荡的因素有很多,下面将介绍其中一些常见的情况:1. 错误连接或接地不良:在电路中的错误连接或接地不良可能导致信号回路不正常地工作,导致自激振荡。

例如,信号源错误地连接到输出端口,或者接地线和信号线没有良好的接触。

2. 高增益:当放大器具有很高的增益时,即使很小的反馈信号也足以导致振荡。

这是因为放大器的增益过大,反馈信号会在电路中不断放大,最终导致振荡。

3. 回路导通:如果放大器的输入和输出端之间存在低阻抗的回路,那么信号可能会直接从输出到输入端,导致振荡。

这种情况通常是由于电路布线错误或元器件失效导致的。

4. 导线或元器件的电感:导线或元器件的电感会导致信号在电路中反复振荡,从而引起自激振荡。

这种情况通常在高频电路中更为常见。

5. 电源波动:当电源电压发生波动时,可能会产生与电源频率相同的振荡信号。

这是因为波动的电源会影响放大器的工作点,进而导致振荡。

解决放大器自激振荡的问题可以采取以下方法:1. 确认电路连接正确:确保所有的电路连接正确,并检查接地线和信号线的连接状态。

如果有问题,及时修复。

2. 降低放大器增益:通过减小放大器的增益,可以降低反馈信号的大小,从而减少振荡的可能性。

3. 确保回路不导通:对于可能导致回路直通的元器件或导线进行排查,确保电路中不存在不必要的低阻抗回路。

4. 使用低电感元器件:通过选择低电感的导线和元器件,可以减少信号的振荡。

放大电路产生自激振荡的原因

放大电路产生自激振荡的原因

放大电路产生自激振荡的原因引言:放大电路是电子设备中常见的一个模块,它的作用是将输入信号放大到所需的幅度。

然而,在某些情况下,放大电路会产生自激振荡,导致设备的正常工作受到影响。

本文将探讨放大电路产生自激振荡的原因,并提出相应的解决方法。

一、放大电路的基本原理放大电路由放大器、反馈电路和输入输出电路组成。

其中,放大器负责放大输入信号,反馈电路将一部分输出信号反馈到放大器的输入端,输入输出电路则负责将信号输入到放大器并输出放大后的信号。

二、自激振荡的定义自激振荡是指放大电路在没有外部输入信号的情况下,输出信号出现振荡的现象。

自激振荡会导致放大器输出的信号失真,影响设备的正常工作。

三、放大电路产生自激振荡的原因1. 振荡回路增益过高当放大电路的振荡回路增益过高时,反馈信号将不断放大,导致系统进入不稳定状态。

这种情况下,即使没有外部输入信号,放大器仍会产生自激振荡。

2. 反馈电路相位条件失调反馈电路的相位条件是产生自激振荡的关键。

当反馈电路的相位延迟与放大器的相位延迟相等时,反馈信号将持续放大,引起自激振荡。

相位条件失调可能是由于电路设计错误或元器件参数不匹配所致。

3. 电源噪声干扰电源噪声是放大电路产生自激振荡的常见原因之一。

电源噪声会通过电源线传播到放大器,引起电路的不稳定性,从而产生自激振荡。

4. 电路共振当放大电路中的电感、电容和阻抗之间存在共振现象时,会导致电路产生自激振荡。

共振频率是电路的固有频率,当外部输入信号与共振频率接近或等于时,电路会自发产生振荡。

四、放大电路产生自激振荡的解决方法1. 控制振荡回路增益为避免振荡回路增益过高,可以通过增加衰减器或降低放大器的增益来控制振荡回路的总增益。

这样可以降低反馈信号的放大程度,减少自激振荡的可能性。

2. 优化反馈电路设计反馈电路的相位条件是产生自激振荡的关键。

可以通过优化反馈电路的设计,使反馈信号的相位延迟与放大器的相位延迟相等,从而避免自激振荡的发生。

负反馈放大电路自激振荡产生原因及消除方法探讨

负反馈放大电路自激振荡产生原因及消除方法探讨

负反馈放大电路自激振荡产生原因及消除方法探讨
负反馈放大电路自激振荡产生的原因
1. 相位延迟:负反馈放大器中使用的反馈网络可能引入相位延迟,这会导致反馈信号与输入信号之间的相位差超过180度,从而产生自激振荡。

2. 反馈网络频率响应:反馈网络可能引入不稳定的频率响应,使得放大电路在某些频率上产生正反馈,导致自激振荡。

3. 线路耦合:放大电路中的不完全隔离的耦合元件(例如电感、电容等)可能引入正反馈,从而导致自激振荡。

负反馈放大电路自激振荡的消除方法
1. 增大带宽:在设计负反馈放大电路时,可以选择高带宽的放大器和反馈网络,以减小相位延迟和频率响应的影响。

2. 调整相位:通过调整反馈网络的相位延迟,使反馈信号与输入信号的相位差稳定在180度以下,从而防止自激振荡的产生。

3. 添加稳定器:在放大电路中添加稳定器,可以减小放大器的正反馈增益,在一定范围内保持负反馈,以防止自激振荡。

4. 良好的布线和接地:合理设计和布线可以减小线路耦合的影响,从而降低自激振荡的可能性。

5. 使用抗激励装置:在放大电路中添加抗激励装置,通过主动抑制自激振荡的产生,例如在放大器输入端加入一个抗激励电路。

需要注意的是,负反馈放大电路自激振荡的具体原因和消除方法可能因具体的电路结构和元件选择而有所不同,因此在实际应用中,需要根据具体情况进行分析和处理。

运算放大电路可能遇到自激振荡和阻塞现象解决办法

运算放大电路可能遇到自激振荡和阻塞现象解决办法

运算放大电路1.运放的阻塞现象和自激振荡及它们消除措施电路图集成运放出现阻塞现象时,放大电路将失往放大能力,相当于信号被运放阻断一样。

例如电压跟随器就常发生阻塞现象,这是由于跟随器的输进、输出电压幅度相等,其输进信号的幅度一般较大(跟随器作为输出级时),假如运放输进级偏置电压不大于输进信号的峰一峰值,则输进级在输进信号峰值时会变为饱和状态,当出现饱和时,输进、输出电压变为同相,负反馈就变为正反馈。

显然,正反馈将导致输进级一直处于饱和状态,输进信号将不能正常输出,这就造成了阻塞现象。

为了进一步说明阻塞现象的成因,举例如下:图(a)为晶体管输进型运放的输进级电路,现假定共模输进电压范围小于+8V,并假定输出信号的电压振幅为+14V。

若运放接成电压跟随器,参见图(b),现有一个大于8V的信号加于同相输进端(对应③脚),当输进信号处于正半周时,输出电压V o也为正值,这个电压V o经反馈加在输进差动放大电路Q2的基极,此时Q2将处于饱和导通状态(集电结处于正向偏置),因此+Vs通过Q2的集电极电阻直接加在运放的输出端,使运放出现阻塞现象。

一旦发生阻塞,只能采用切断电源的方法来破坏正反馈。

即为恢复运放正常工作,需暂时切断电源。

这种阻塞现象具有极大的危险性,它可能使器件迅速损坏,其原因是:由图(a)知输进级采用NPN型晶体管组成差动放大电路,由于输进信号幅度超过共模电压的答应范围,电路将在信号正峰值时出现阻塞,若信号源内阻较低,反馈电阻也较小,流过Q2集电结的电流就过大,有可能烧坏晶体管Q2,使集成运放损坏。

另外,在输出端上不论什么原因产生的输出瞬时过压也会造成阻塞现象。

消除阻塞现象的方法一般可分为两类:限制输进电压法和防止输出瞬时过压法。

图(b)所示电路即为限制输进电压钳位法,图中±Vcm 为共模输进电压上、下限极限值,运用二极管D1和D2实现将输进电压钳位在±Vcm之间。

这个方法具有通用性。

如何避免运放负反馈产生的自激振荡

如何避免运放负反馈产生的自激振荡

如何避免运放负反馈产生的自激振荡为了避免运放负反馈产生的自激振荡,我们可以采取一些措施。

下面是一些常见的方法:1.合理设计运放电路:在设计运放电路时,应该合理选择运放的增益和频率特性,以及选择适当的负载和反馈网络。

同时,在布局和布线时应注意减少信号的干扰和串扰,以减小潜在的振荡风险。

2.使用稳定的运放:运放的稳定性是避免振荡的关键。

一般情况下,选择稳定的运放可以有效地降低振荡风险。

选择具有可靠性和良好性能的运放品牌和型号,同时也要遵循供应商的设计建议和规范。

3.设计适当的补偿网络:运放的频率补偿是避免振荡的重要手段之一、为了确保运放的稳定性,可以对运放进行频率补偿。

通常,运放的补偿电容和电阻以及其他元器件的选择和布局都需要仔细考虑。

合理设计和布局补偿网络可以帮助减少振荡风险。

4.控制运放的增益:运放的增益是决定振荡的重要因素之一、过高的增益可能导致运放的自激振荡。

因此,可以通过降低运放的增益来避免振荡。

可以通过增加负反馈电阻或减小输入信号的幅度来实现这一目标。

当然,需要根据具体的系统要求进行综合考虑。

5.控制信号的相位:信号的相位也是导致振荡的重要因素之一、当信号的相位满足一定的条件时,振荡就会发生。

因此,在设计运放电路时,应尽量避免相位满足振荡的条件。

可以通过合理选择反馈网络的相位,或采取其他措施来调整信号的相位。

6.使用适当的滤波器:滤波器的设计和应用可以帮助减小振荡的风险。

在设计运放电路时,可以考虑使用低通滤波器或带通滤波器来滤除高频噪音和干扰。

同时,通过合理选择滤波器的类型、参数和布局等,可以进一步减小振荡风险。

综上所述,为了避免运放负反馈产生的自激振荡,我们可以从设计合理的电路、选择稳定的运放、设计适当的补偿网络、控制运放的增益和信号的相位,以及使用适当的滤波器等方面入手进行防范和控制。

当然,在实际设计和应用过程中,还需要结合具体的系统需求和环境特点,以及仿真和测试等手段进行验证和优化。

开关电源IC中误差放大器的自激振荡及解决方法

开关电源IC中误差放大器的自激振荡及解决方法
c mp n ae n t o k t o n e a tt e p l r ae y c mp n n s a d t e oh r fc os o ti e h o g x e i n ,ti o e s t e w r o c u tr c h oe c e td b o o e t n h te tr u s .T r u h e p r a d me t h s c mp n ai g meh d i e e t e i e t i i g t e s l e ctd o c l t n o e s t t o s f c i r s a n n h ef x i s i ai . n v n r - e l o Ke r s s t h d we u p y; io mp i e ;s l e ct d o c l t n h s o e s t y wo d : wi mo e p c o rs p l eT ra l r ef x i s i ai ;p a e c mp n a e i f - e l o
误 差 放 大 器 的 自激 振 荡 。
关 键 词 :开 关 电 源 ;误 差 放 大 器 ;自激 振 荡 ;相 位 补 偿
中图 分 类 号 : N 2 T 72
文 献标 识码 : A
文 章 编 号 :1 7 ~ 2 6 2 1 )8 0 6 — 3 64 6 3 (0 I0 — 17 0
L h o , I ig Z N e u I a - LUPn , HA G K  ̄ n Z  ̄i
(c olfI oma o nier g Z e gh uU i r t,h nz u4 00 ,C ia Sh o o n r t nE gnei ,h nz nv sy Z egh 5 0 2 hn ) f i n o ei o
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算放大电路
1.运放的阻塞现象和自激振荡及它们消除措施电路图
集成运放出现阻塞现象时,放大电路将失往放大能力,相当于信号被运放阻断一样。

例如电压跟随器就常发生阻塞现象,这是由于跟随器的输进、输出电压幅度相等,其输进信号的幅度一般较大(跟随器作为输出级时),假如运放输进级偏置电压不大于输进信号的峰一峰值,则输进级在输进信号峰值时会变为饱和状态,当出现饱和时,输进、输出电压变为同相,负反馈就变为正反馈。

显然,正反馈将导致输进级一直处于饱和状态,输进信号将不能正常输出,这就造成了阻塞现象。

为了进一步说明阻塞现象的成因,举例如下:图(a)为晶体管输进型运放的输进级电路,现假定共模输进电压范围小于+8V,并假定输出信号的电压振幅为+14V。

若运放接成电压跟随器,参见图(b),现有一个大于8V的信号加于同相输进端(对应③脚),当输进信号处于正半周时,输出电压V o也为正值,这个电压V o经反馈加在输进差动放大电路Q2的基极,此时Q2将处于饱和导通状态(集电结处于正向偏置),因此+Vs通过Q2的集电极电阻直接加在运放的输出端,使运放出现阻塞现象。

一旦发生阻塞,只能采用切断电源的方法来破坏正反馈。

即为恢复运放正常工作,需暂时切断电源。

这种阻塞现象具有极大的危险性,它可能使器件迅速损坏,其原因是:由图(a)知输进级采用NPN型晶体管组成差动放大电路,由于输进信号幅度超过共模电压的答应范围,电路将在信号正峰值时出现阻塞,若信号源内阻
较低,反馈电阻也较小,流过Q2集电结的电流就过大,有可能烧坏晶体管Q2,使集成运放损坏。

另外,在输出端上不论什么原因产生的输出瞬时过压也会造成阻塞现象。

消除阻塞现象的方法一般可分为两类:限制输进电压法和防止输出瞬时过压法。

图(b)所示电路即为限制输进电压钳位法,图中±Vcm 为共模输进电压上、下限极限值,运用二极管D1和D2实现将输进电压钳位在±Vcm之间。

这个方法具有通用性。

当运放的电压放大倍数大于l时,其钳位电平值应降低相应的倍数。

运放震荡自激的原因:
1、环路增益大于1
2、反馈前后信号的相位差在360度以上,也就是能够形成正反馈。

参考《自控原理》和《基于运算放大器和模拟集成电路的电路设计》自激振荡的引起,主要是因为集成运算放大器内部是由多级直流放大器所组成,由于每级放大器的输出及后一级放大器的输入都存在输出阻抗和输入阻抗及分布电容,这样在级间都存在R-C相移网络,当信号每通过一级R-C网络后,就要
产生一个附加相移.此外,在运放的外部偏置电阻和运放输入电容,运放输出电阻和容性负载反馈电容,以及多级运放通过电源的公共内阻,甚至电源线上的分布电感,接地不良等耦合,都可形成附加相移.结果,运放输出的信号,通过负反馈回路再叠加增到180度的附加相移,且若反馈量足够大,终将使负反馈转变成正反馈,从而引起振荡. 具体一点可能 1.可能运放是分布电容和电感引起的 2. 运放驱动容性负载导致。

3.可能是反馈过深引起的解决方法: 1. 环内补偿运放反馈电阻并接反馈电容: 小电容叫做移相电容,防止运放自激的一般取0点几皮法到几十皮法几百皮法,看工作的频率以及运放的型号来定
简单点说加的电容越大,带宽越窄防止振荡Rf和运放的输入电容及杂散电容形成极点,如果该极点在运放使用的频率范围内就可能使运放产生振荡;加入Cf后,Cf和Rf产生零点,用来抵消极点。

一般取值Cf>Ci,Ci为运放的输入电容和输入脚杂散总电容。

2. 环路外补偿法、在运放的输出端串上一个小电阻再连到后级,十几欧到几十欧之间既可,具体值与后级电路的输入电容有关,可尝试不同的电阻值,获得稳定的输出PS: 1.电源供电稳定,最好并联0.1uf ,10uf等电容2.放大倍数不能过大,放大级数也不要超过四级
实验或测试之前,若用示波器接在运放输出端,有时可以看到频率较高且近似正弦波的波形,偶尔也出现低频振荡的情况.可根据产生振荡的原理采取不同的方法解决: (1)反馈极性是否接错或负反馈太强.若将负反馈错接成正反馈则极易产生振荡.另外,负反
馈愈强也愈易产生自激. (2)若输出端接有的电容性负载,由于容性负载加强了电路的相移,所以更易自激.可以用另一个RC环节来补偿相移,如果补偿得好自激振荡就会消除.
(3)接线杂散电容过大.当输人回路为高阻时,由接线到地或接线之间的杂散电容与电阻组成的滞后环节,将使组件变得不稳定.为此可在RF两端并联一个电容CF,或者在运放的输人端并联一个RC支路,这两个环节都属于超前校正的性质,即它们产生的相位超前作用将有可能抵消前面所述杂散电容所起的相位滞后作用,从而使运放稳定. (4)电源接线旁路措施不够.电源引线不仅具有一定电阻,还有一定的电感和分布电容,因此当有许多运放接到同一根电源线时,,将通过这些因素产生相互之间的影响,解决的办法是在印刷电路板插座上的正负电源的接线端与地之间接上几十uF的电解电容和0.01uF的陶瓷电容相并联,如果运放是作为宽频放大,须选用低电感量的电容.。

相关文档
最新文档