6.2.1-自激振荡的原理

合集下载

6.2.1自激振荡的判断练习

6.2.1自激振荡的判断练习

• 3、vf=vs • 4、正弦波交流电压输出到RL。 • 5、Cb反馈信号耦合电容。
Hale Waihona Puke 开关S突然接通到2• 什么是自激现象: • 反馈电压代替 vs,正反馈作用,自动维 持振荡,输出正弦波。
自激振荡的条件
• 一、正反馈:相位平衡
• 二、有反馈信号,放大器处于放大状态: 振幅平衡
练习一:判断放大器是否处于放大 状态
例题:
在图1所示电路中,考虑交流通路时,反馈信号被发
射极电容Ce短路,反馈信号消失,不满足振幅条件,
不能产生自激振荡。
练习二、判断正反馈
判断是否是正反馈: 用瞬时极性法判断 满足相位条件。
分析: (1)V处于截止状态,振 幅条件不满足 (2)用瞬时极性法判别为 负反馈。 (3)不能产生自激振荡
教材例题
教材习题6-1(a)
6-1(b)
自激振荡的条件
练习
振荡器电路的结构分析
互感线圈的极性判别 初级线圈 次级线圈 磁棒
同极性端
1
2
3 4
i ic u
C
+1 –2 +3
iL
L R
反馈信号 通过互感 线圈引出
–4
开关S接通1
1、vs为信号源,开关S 接通1,vs补充能量维持 LC回路的正弦波振荡。 2、vf是反馈电压,送到 三极管的基极。

自激振荡原因及消除方法

自激振荡原因及消除方法

自激振荡的引起,主要是因为集成运算放大器内部是由多级直流放大器所组成,由于每级放大器的输出及后一级放大器的输入都存在输出阻抗和输入阻抗及分布电容,这样在级间都存在R-C相移网络,当信号每通过一级R-C网络后,就要产生一个附加相移.此外,在运放的外部偏置电阻和运放输入电容,运放输出电阻和容性负载反馈电容,以及多级运放通过电源的公共内阻,甚至电源线上的分布电感,接地不良等耦合,都可形成附加相移.结果,运放输出的信号,通过负反馈回路再叠加增到180度的附加相移,且若反馈量足够大,终将使负反馈转变成正反馈,从而引起振荡.。

自激振荡的条件

自激振荡的条件

自激振荡的条件自激振荡是指在没有外部刺激的情况下,系统出现自发的振荡现象。

在物理学、工程学、生物学等领域都有自激振荡的研究。

本文将以自激振荡的条件为标题,探讨自激振荡的原理、条件和应用。

一、自激振荡的原理自激振荡是由于系统内部的正反馈机制而产生的。

正反馈是指系统的输出会增强自身的输入,从而加强系统内部的振荡。

当系统中的正反馈机制达到一定条件时,就会出现自激振荡的现象。

1. 正反馈回路:自激振荡必须存在正反馈回路,即系统的输出会增强自身的输入。

在这个回路中,输出信号会被放大并反馈到系统的输入端,从而引起振荡。

2. 阻尼系数小于临界值:在自激振荡的条件下,阻尼系数必须小于临界值。

阻尼系数是指系统的阻尼程度,当阻尼系数小于临界值时,系统才能产生持续的振荡。

3. 能量输入:自激振荡需要有能量输入,以维持系统的振荡。

能量输入可以来自外部环境或系统内部的能量转化。

三、自激振荡的应用1. 电子学领域:自激振荡在电子学中有广泛的应用,如放大器、振荡器和锁相环等。

其中,振荡器是一种常见的自激振荡设备,用于产生稳定的电信号。

2. 生物学领域:自激振荡在生物钟的研究中具有重要意义。

生物钟是一种生物体内部具有自激振荡机制的生物节律系统,能够调节生物体的行为和代谢。

3. 机械工程领域:自激振荡在机械工程中也有应用,如自激振荡阀门。

自激振荡阀门利用流体的自激振荡现象,实现流体的稳定控制。

四、自激振荡的研究和发展自激振荡的研究始于20世纪初,随着科学技术的不断进步,对自激振荡的研究也越来越深入。

目前,自激振荡已经在多个领域得到应用,并取得了一系列的研究成果。

自激振荡的研究不仅有助于我们对振荡现象的理解,还为技术创新和应用提供了新的思路。

通过研究自激振荡的机制和条件,可以设计和优化更加稳定和高效的振荡装置,推动科学技术的发展。

总结:自激振荡是由于系统内部的正反馈机制而产生的自发振荡现象。

它需要满足正反馈回路、阻尼系数小于临界值和能量输入等条件。

第6章 正弦波振荡电路

第6章  正弦波振荡电路

6.1
自激振荡的基本原理
6.1 .1 自激式正弦波振荡电路的组 成 6.1.2 自激式正弦波振荡的产生及 稳定条件
6.1.1 自激式正弦波振荡电路 的组成
6.1.2 自激式正弦波振荡的产 生及稳定条件
一.正弦波振荡的平衡条件
AF 1
上式包含了两个方面的意义,即 产生振荡的两个条件: • • A • F =1 (1)振幅平衡条件 (2)相位平衡条件 A+F=2nπ
6.3
石英晶体振荡电路
6.3.1 石英晶体谐振器 6.3.2 石英晶体振荡电路
6.3.1
石英晶体谐振器
一.石英晶体的基本特性
石英晶片具有压电效应和反压电效应。 当外加交变电压的频率与晶片的固有频率 相等时,能够形成压电谐振。 压电谐振与LC回路的谐振现象十分相 似,因此石英晶体又称为石英晶体谐振器。
6.2.1 互感耦合式振荡电路
当频率 f=fo 时, LC 回路的 谐振阻抗为纯电阻,由互 感线圈的同名端可知,反 馈信号与输出电压极性相 反,即F= 180° 于是有A+F=360° L2 、 Cb 反馈网络构成的正 反馈,因此满足振荡的相 位条件。
6.2.1 互感耦合式振荡电路
(2)起振及平衡的振幅条件 为 了 满 足 振荡 的 振幅 条 件 AF≥1 ,对三极管的 β 值也 有一定的要求,一般只要β值 较大,就能满足此条件。反 馈线圈匝数越多,耦合越强 ,电路越易起振。
6.5 本章小结
五.石英晶体振荡器 利用石英谐振器的压电效用来选频. 具有很高的品质因数和温度稳定性好的 特点.一般用在频率稳定度很高的场合, 适合产生高频信号.
6.5 本章小结
六.RC振荡电路 RC振荡电路是用RC电路作选频网络, 由于其品质因数较低,受放大电路的输 入、输出电阻及晶体管极间电容的影响 较大,因此振荡频率不高,产生的频率 一般在几百千赫以下,常用作低频信号 源。

自激振动

自激振动

自激振动原理简介自激振动 self-excited oscillation 由静能源的能量产生的持续而稳定的周期振动[1]。

在振幅小的期间,振动能量可平均地得到补充;在振幅增大期间,耗散的能量组成,被包含在振动系统中,此时补充的能量与耗散的能量达到平衡而接近一定振幅的振动。

心脏的搏动、颤抖、性周期等一些在生物中所看到的周期现象,有许多是自激振动。

详细内容自激振动系统为能把固定方向的运动变为往复运动(振动)的装置,它由三部分组成:①能源,用以供给自激振动中的能量消耗;②振动系统;③具有反馈特性的控制和调节系统。

振动系统和控制系统间的联系,有纯机械的联系,也有力学的或物理特性的联系。

分析自激振动时,必须研究这种联系和反馈过程,才能更好地了解自激振动的特性,提出改进措施。

自激振动的稳定状态由能量平衡确定,即从能源送入振动系统的能量等于系统所消耗的能量。

在这一点上可分为两种情形:如果自激振动的频率是给定的,那么能量平衡的条件就确定自激振动的稳定振幅;如果自激振动的振幅是给定的,那么能量平衡的条件就确定自激振动的频率。

自激励分类自激励分为软自激和硬自激两种。

在前一种场合,系统从静止状态独立地起振。

在后一种场合,为了激励系统,需要给予一定量的起始推力。

自激振动在许多情况下用到负阻的概念。

这个概念和相位关系联系着。

在普通情况下(正阻),电压与电流(或力与速度)同相。

正阻是能量的消耗者。

如果在系统的某一元件上发现电压与电流反相,那么这个元件就可能是振动的源泉,这个元件就是负阻。

自激振动系统分成近似正弦系统和张弛振动系统两类。

第一类的特征是自激振动的波形近似于正弦曲线。

第二类是显著的非正弦波形有时甚至是断裂波形。

在张弛系统里,阀的作用由储能器的两个能量值间的落差表达出来;在一个量值上阀打开,而在另一个量值上关闭。

对自激振动的实际研究必须解决两个基本问题:如果自激振动是需要的,就要研究如何得到所需频率,功率和波形的振动;如果自激振动是有害的,就要研究如何设法消除它。

自激振荡式雷达发射机原理

自激振荡式雷达发射机原理

自激振荡式雷达发射机原理全文共四篇示例,供读者参考第一篇示例:自激振荡式雷达发射机原理雷达技术是一种利用电磁波进行探测和定位的技术,在军事、民用领域都有着广泛的应用。

雷达的核心部件之一就是发射机,它负责产生并发射出一定频率和功率的电磁波信号。

自激振荡式雷达发射机是一种常见的雷达发射机类型,其原理复杂但却十分重要。

自激振荡式雷达发射机通过激励一个被放大器所放大的信号来产生自激振荡。

自激振荡是指在无外部激励的情况下,电路器件自身就能产生并保持振荡的一种现象。

在雷达发射机中,自激振荡是指由被放大器的反馈带来的振荡。

下面将详细介绍自激振荡式雷达发射机的工作原理。

需要了解被放大器的作用。

被放大器是一个放大电磁波信号的器件,比如微波管、晶体管等。

在雷达发射机中,被放大器通常与反馈回路连接在一起,以实现自激振荡。

当输入信号进入到被放大器时,被放大器会增大这个信号,并将其输出。

输出信号中的一部分会经过反馈回路返回到被放大器的输入端,这就形成了一个反馈回路。

在自激振荡式雷达发射机中,反馈回路的设计十分重要。

合适的反馈回路可以实现稳定的振荡,确保发射信号频率和功率的稳定性。

一般来说,反馈回路设计的关键在于选择合适的元件以及调整它们的参数,比如电容和电阻的数值。

通过不断的实验和调试,可以找到最佳的反馈回路设计。

需要考虑信号的输出。

当自激振荡发生时,被放大器会不断地放大信号并输出。

输出信号会被送到天线中,最终转换成电磁波信号发送出去。

这些电磁波信号会沿着一定的路径传播,并被接收接收天线接收。

通过对接收到的信号进行处理和分析,就可以获取目标物体的信息,比如距离、速度等。

自激振荡式雷达发射机是一种重要的雷达发射机类型,通过反馈回路实现自激振荡,产生并发射出电磁波信号。

其工作原理复杂但十分精密,需要合理设计和调试反馈回路,确保稳定的振荡和输出信号。

通过不断的研究和实践,自激振荡式雷达发射机已经被广泛应用于雷达系统中,为军事、民用领域提供了重要的技术支持。

模拟电子技术电子教案第六章正弦波振荡电路教案

模拟电子技术电子教案第六章正弦波振荡电路教案

6.信号发生电路【重点】自激振荡的条件、正弦波振荡电路组成及判断电路能否振荡方法。

【难点】判断电路能否振荡方法。

6.1正弦波振荡电路基本概念6.1.1 自激振荡的条件1.自激振荡现象振荡电路首先应是放大电路。

2.1=F A1=F AφA +φF =±26.1.2 自激振荡的建立及稳定过程在起振时电路必须满足F A>1的条件。

电路起振后,振荡幅度也不会由于正反馈而无止境地增长下去,这是因为基本放大器中的三极管等器件本身的非线性或反馈支路本身与输入关系的非线性,放大倍数或反馈系数在振幅增大到一定程度时就会降低。

6.1.3 正弦波振荡电路组成及分析方法1.振荡电路组成 (1)放大电路。

(2)正反馈网络。

(3)选频网络。

(4)稳幅环节。

2.振荡电路分析方法(1)分析电路是否包含振荡电路四个组成部分。

(2)判断放大电路能否正常工作(是否有合适的静态工作点,动态信号能否输入、输出)。

(3)判断电路能否振荡(相位平衡条件,用瞬时极性法判断)。

(4)分析起振幅值条件(满足AF >1的幅值条件)。

(5)稳幅与稳频电路,稳幅是指起振、增幅、等幅的振荡建立过程。

(6)估算振荡频率。

自激振荡的产生o【重点】变压器反馈式、电感三点式、电容三点式正弦波振荡电路工作原理及特点,估算振荡频率。

【难点】石英晶体振荡电路工作原理。

6.2 LC 正弦波振荡电路6.2.1 LC 并联谐振电路的选频特性电路复阻抗Z 为L R CL R C Z ωωωωj j 1)j (j 1+++=通常L ω>> R ,故上式可简化为)1j(CL R CL Z ωω-+=1.谐振频率及复阻抗LCf π=210 RC L Z =02.品质因数CL R CR RLQ 1100===ωω3.选频特性6.2.2变压器反馈式振荡电路1.电路组成2.振荡条件及振荡频率L+V CCLC 并联谐振电路LLC Zωa.幅频特性LCf π=213.电路特点变压器反馈式振荡电路的特点是结构简单,容易起振,改变电容大小可方便地调节振荡频率,调频范围较宽,工作频率通常在几兆赫兹,但电路输出波形不理想,输出波形中含有较多高次谐波成分。

自激多谐振荡电路原理

自激多谐振荡电路原理

自激多谐振荡电路原理自激多谐振荡电路是一种能够产生多个频率的谐振振荡信号的电路。

它由一个自激振荡器和一个滤波器组成。

在振荡器中,精心设计的反馈回路使得电路产生自激振荡。

振荡信号经过滤波器后,可以得到所需的谐振频率信号。

自激多谐振荡电路常用于无线通信、医疗设备、音频处理等领域。

其工作原理如下:首先,对于自激振荡器的设计,需要选择适当的振荡元件。

常见的振荡元件有晶体、陶瓷谐振器或者电感、电容构成的LC谐振器。

这些振荡元件的选择与所需的频率息息相关。

在设计自激振荡电路时,需要设计一个适当的反馈回路,以产生正反馈。

这样才能实现电路的自激振荡。

具体来说,反馈回路将一部分输出信号送回到输入端,增强原始信号。

这个过程使得电路不断产生能量,并产生谐振振荡信号。

在实际应用中,通常使用滤波器对振荡信号进行进一步处理。

滤波器根据需要,可以选择不同的滤波方式,例如低通滤波器、高通滤波器或者带通滤波器。

滤波器的作用是为了得到所需的谐振频率信号,同时过滤掉其他频率成分。

为了实现多谐振荡,可以在电路中引入多个振荡元件,每个元件对应一个频率。

这样就可以同时产生多个谐振频率信号。

这些信号通过滤波器进行处理后,可以用于不同的应用。

在无线通信领域,这些信号可以用于不同的信道,从而实现同时传输多个信息。

在音频处理中,可以使用这些信号进行声音合成或者音乐演奏。

值得注意的是,自激多谐振荡电路的设计需要结合各个元件的特性,并且需要进行精确的参数调整。

其中,振荡元件的选择、反馈回路的设计以及滤波器的设置都是需要仔细考虑的。

只有在这些方面做到合理设计和良好调整,才能实现电路的稳定工作和所需的多谐振荡信号。

总结起来,自激多谐振荡电路是一种能够产生多个谐振频率信号的电路。

它通过自激振荡的方式产生能量,并通过精心设置的反馈回路和滤波器,得到所需的多谐振荡信号。

这种电路在无线通信、医疗设备、音频处理等领域有广泛应用。

但是设计和调整这种电路需要综合考虑振荡元件、反馈回路和滤波器的特性,以确保电路的稳定工作和所需的多谐振荡效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§ 6.2.1 自激振荡的原理
教学目的、要求: 1、熟记自激振荡的条件
2、理解自激振荡的工作原理教学重点:自激振荡的条件
教学难点:自激振荡的原理及判别
授课方法:讲授法练习法
教学参考及教具(含电教设备):多媒体黑板板书设计:
.阻尼振荡:电容上电压每经一次振荡都
将减小,最后停振。

.等幅振荡:正弦振荡器的工作原理。

.阻尼振荡:电容上电压每经一次振荡都将减小,最后停振。

.等幅振荡:正弦振荡器的工作原理。

LC
f 2π1
0=
注:电流与电压是按正弦规律变化的。

振荡器
用反馈信号代替原有的外加信号源V S 。

.自激:没有外部输入信号,由于电路内部正反馈作用而自动维持.相位平衡条件指放大器的反馈信号与输入信号必须同相位,即相)的偶数倍 ϕ = 2n π(n 是整数,相位差。

.振幅平衡条件,指放大器的反馈信号必须达到一定的幅度。

> 原输入端信号。

振荡建立好:反馈信号 = 原输入端信号。

分析:
(1)V处于截止状态,振幅条件不满足(2)用瞬时极性法判别为负反馈。

(3)不能产生自激振荡
教学过程
学生活动
学时分配
小结:
1.LC 回路的自由振荡
2.自激振荡产生的条件 作业:
2。

相关文档
最新文档