抽样推断计算例题
抽样分布习题及答案

抽样分布习题及答案抽样分布习题及答案抽样分布是统计学中一个重要的概念,它描述了从总体中抽取样本后,样本统计量的分布情况。
在实际应用中,我们经常需要利用抽样分布来进行统计推断,因此对于抽样分布的理解和掌握是十分必要的。
本文将介绍一些常见的抽样分布习题,并提供相应的答案。
1. 问题:某公司有1000名员工,其中400人是女性。
现从中随机抽取100人,求抽取样本中女性人数的抽样分布。
解答:在这个问题中,我们可以将女性的出现看作是一个二项分布的实验,成功的概率为0.4。
因此,抽取样本中女性人数的抽样分布是一个二项分布。
根据二项分布的性质,我们可以计算出不同女性人数的概率。
2. 问题:某电商平台有1000个用户,他们的购买金额服从均值为100元,标准差为20元的正态分布。
现从中随机抽取50个用户,求抽取样本的平均购买金额的抽样分布。
解答:在这个问题中,样本的平均购买金额的抽样分布是一个服从均值为100元,标准差为20/√50元的正态分布。
根据正态分布的性质,我们可以计算出不同平均购买金额的概率。
3. 问题:某城市的居民年收入服从均值为50000元,标准差为10000元的正态分布。
现从中随机抽取200个居民,求抽取样本的平均年收入的抽样分布。
解答:在这个问题中,样本的平均年收入的抽样分布是一个服从均值为50000元,标准差为10000/√200元的正态分布。
根据正态分布的性质,我们可以计算出不同平均年收入的概率。
4. 问题:某医院每天接诊的患者数服从均值为50人,标准差为10人的泊松分布。
现从中随机抽取30天,求抽取样本的平均每天接诊的患者数的抽样分布。
解答:在这个问题中,样本的平均每天接诊的患者数的抽样分布是一个服从均值为50人,标准差为10/√30人的正态分布。
根据正态分布的性质,我们可以计算出不同平均每天接诊的患者数的概率。
通过以上几个习题的解答,我们可以看到不同问题中抽样分布的情况是不同的,需要根据具体的问题来确定抽样分布的类型和参数。
(完整版)抽样调查习题及答案

第四章习题抽样调查一、填空题1.抽样调查是遵循随机的原则抽选样本,通过对样本单位的调查来对研究对象的总体数量特征作出推断的。
2.采用不重复抽样方法,从总体为N的单位中,抽取样本容量为n的可能样本个数为N(N-1)(N-2)……(N-N+1)。
3.只要使用非全面调查的方法,即使遵守随机原则,抽样误差也不可避免会产生。
4.参数估计有两种形式:一是点估计,二是区间估计。
5.判别估计量优良性的三个准则是:无偏性、一致性和有效性。
6.我们采用“抽样指标的标准差”,即所有抽样估计值的标准差,作为衡量抽样估计的抽样误差大小的尺度。
7.常用的抽样方法有简单随机抽样、类型(分组)抽样、等距抽样、整群抽样和分阶段抽样。
8.对于简单随机重复抽样,若其他条件不变,则当极限误差范围Δ缩小一半,抽样单位数必须为原来的4倍。
若Δ扩大一倍,则抽样单位数为原来的1/4。
9.如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是1000,极限抽样误差是40.82,抽样平均误差是20.41。
10.在同样的精度要求下,不重复抽样比重复抽样需要的样本容量少,整群抽样比个体抽样需要的样本容量多。
二、判断题1.抽样误差是抽样调查中无法避免的误差。
(√)2.抽样误差的产生是由于破坏了随机原则所造成的。
(×)3.重复抽样条件下的抽样平均误差总是大于不重复抽样条件下的抽样平均误差。
(√)4.在其他条件不变的情况下,抽样平均误差要减少为原来的1/3,则样本容量必须增大到9倍。
(√)5.抽样调查所遵循的基本原则是可靠性原则。
(×)6.样本指标是一个客观存在的常数。
(×)7.全面调查只有登记性误差而没有代表性误差,抽样调查只有代表性误差而没有登记性误差。
(×)8.抽样平均误差就是抽样平均数的标准差。
(×)三、单项选择题1.用简单随机抽样(重复)方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需扩大为原来的(C)A.2倍B.3倍C.4倍D.5倍2.事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织方式叫做(D)A.分层抽样B.简单随机抽样C.整群抽样D.等距抽样3.计算抽样平均误差时,若有多个样本标准差的资料,应选哪个来计算(B)A.最小一个B.最大一个C.中间一个D.平均值4.抽样误差是指(D)A.计算过程中产生的误差B.调查中产生的登记性误差C.调查中产生的系统性误差D.随机性的代表性误差5.抽样成数是一个(A)A.结构相对数B.比例相对数C.比较相对数D.强度相对数6.成数和成数方差的关系是(C)A.成数越接近于0,成数方差越大B.成数越接近于1,成数方差越大C.成数越接近于0.5,成数方差越大D.成数越接近于0.25,成数方差越大7.整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)A.全面调查B.非全面调查C.一次性调查D.经常性调查8.对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95.45%,则优等生比重的极限抽样误差为(40%)A. 4%B. 4.13%C. 9.18%D. 8.26%9.根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)A.甲产品大B.乙产品大C.相等D.无法判断10.抽样调查结果表明,甲企业职工平均工资方差为25,乙企业为100,又知乙企业工人数比甲企业工人数多3倍,则随机抽样误差(B)A.甲企业较大B.乙企业较大C.不能作出结论D.相同四、多项选择题抽样调查中的抽样误差是(ABCDE)A.是不可避免要产生的B.是可以通过改进调查方法来避免的C.是可以计算出来的D.只能在调查结果之后才能计算E.其大小是可以控制的2.重复抽样的特点是(AC)A.各次抽选相互影响B.各次抽选互不影响C.每次抽选时,总体单位数始终不变D每次抽选时,总体单位数逐渐减少E.各单位被抽中的机会在各次抽选中相等3.抽样调查所需的样本容量取决于(ABE)A.总体中各单位标志间的变异程度B.允许误差C.样本个数D.置信度E.抽样方法4.分层抽样误差的大小取决于(BCD)A.各组样本容量占总体比重的分配状况B.各组间的标志变异程度C.样本容量的大小D.各组内标志值的变异程度E.总体标志值的变异程度5.在抽样调查中(ACD)A.全及指标是唯一确定的B.样本指标是唯一确定的C.全及总体是唯一确定的D.样本指标是随机变量E.全及指标是随机变量五、名词解释1.抽样推断2.抽样误差3.重复抽样与不重复抽样4.区间估计六、计算题1.某公司有职工3000人,现从中随机抽取60人调查其工资收入情况,得到有关资料如下:(1)试以0.95的置信度估计该公司工人的月平均工资所在范围。
推断统计习题及参考答案

抽样与抽样估计习题5.1单选题1.不重复随机抽样的误差比重复随机抽样的误差( )①大②小③相等④有时大,有时小2.在其他条件不变的情况下,抽样平均误差的大小与总体标准差的大小( )①成正比②无关③成反比④以上都不对3.在其他条件不变的情况下,抽样平均误差的大小与样本容量方根的大小( )①无关②成正比③成反比④以上都不对4.对重复随机抽样,若其他条件不变,样本容量增加3倍,则样本的平均抽样误差( )①减少30% ②增加50% ③减少50% ④增加50%5.抽样成数P值愈接近1,则抽样成数平均误差值( )①愈大②愈小③愈接近于0.5 ④愈接近于16. 抽样结果的估计值与总体指标之间误差允许的限度称为:( )①极限误差②抽样误差③抽样平均误差④代表性误差7. 在确定样本容量时,若总体成数方差未知,则P可取( )①0.2 ②0.3 ③0.4 ④0.58. 用重复随机抽样的平均抽样误差公式计算不重复随机抽样的平均抽样误差,将会( )①高估了误差②低估了误差③既没高估也没低估④以上都不对9. 随着样本容量的增加,抽样指标与其估计的总体指标之差的绝对值小于任意小的正数的可能性趋于100%,称为估计的( )①无偏性②一致性③有效性④充分性10. 在95.45%的概率保证程度下,当抽样极限误差为0.06时,则抽样平均误差等于( )①0.02 ②0.03 ③0.12 ④0.185.2对批量为10000单位的产品随机抽取100单位为一样本,以推断其产品质量。
⑴在计算抽样平均误差时,需要使用有限总体修正系数吗?为什么?⑵如果总体标准差σ=8,试分别使用与不使用有限总体修正系数计算抽样平均误差。
5.3 对一批4000件的产品按不重复随机抽样方式进行抽样检查,抽取了该批产品的1/20作为样本,检验结果有8件废品。
试问这批产品的废品率在1.3%~6.7%的可能性有多大?5.4某市场调查公司在一次调查中,询问250人关于获得某知名企业产品的主要途径,其中有140人认为他们是通过电视广告了解的。
第7章 《抽样推断》练习题

《第7章抽样推断》练习题一、单项选择题1、对某市居民生活状况作了一次抽样调查, 据样本资料计算, 平均每居民实际月生活费用76元, 抽样平均误差3元, 调查队推断市居民实际月生活费用在70—82之间, 这一推断的可靠程度为:A、68.27%B、95%C、95.45%D、99.73%2、在一定的抽样平均误差条件下,A、扩大极限误差范围,可以提高推断的可靠程度B、扩大极限误差范围,会降低推断的可靠程度C、缩小极限误差范围,可以提高推断的可靠程度D、缩小极限误差范围,不改变推断的可靠程度3、按设计标准,某自动食品包装机所包装食品的平均每袋重量应为500克。
若要检验该机实际运行状况是否符合设计标准,应该采用A、左侧检验B、右侧检验C、双侧检验D、左侧检验或右侧检验4、一所较大规模的大学教务部决定调整课程时间安排,以便提供足够的时间使大家可以为上课做好准备。
到目前为止,教务部认为课间安排20分钟的时间足够了。
表述零假设H0和备择假设H1A、H0:µ=20 H1:µ≠20B、H0:µ≥20 H1:µ<20C、H0:µ≤20 H1:µ>205、当我们根据样本资料对零假设作出接受或拒绝的决定时,可能出现的情况有:①当零假设为真时接受它;②当零假设为假时接受它;③当零假设为真时拒绝它;④当零假设为假时拒绝它.A、①B、②C、①②③D、①②③④6、根据某城市抽样调查225户,计算出户均储蓄额30000元,抽样平均误差800元,试问概率为90%,户均储蓄余额极限误差是多少?A、53.3B、1.65C、720D、13207、在其他条件不变的情况下,要使抽样误差减少1/3,则样本量必须增加多少倍?A、1/3B、1.25C、3D、9二、多项选择题1、推断统计学研究的主要问题是A、如何科学地确定总体B、如何科学地从总体中抽取样本C、怎样控制样本对总体地代表性误差D、怎样控制总体对样本地代表性误差E、由所抽取地样本去推断总体特征2、在抽样推断中,样本单位数的多少取决于A、总体标准差的大小B、允许误差的大小C、抽样估计的把握程度D、总体参数的大小E、抽样方法和组织形式3、抽样推断的概率度、可靠性和精确度的关系为()A、概率度增大,估计的可靠性也增大B、概率度增大,估计的精确度下降C、概率度减小,估计的精确度下降D、概率度减小,估计的可靠性增大E、估计的可靠性增大,估计的精确度也增大3、影响抽样平均误差大小的因素有A、样本各单位标志值的差异程度B、总体各单位标志值的差异程度C、样本单位数D总体单位数E、抽样方法4、在其他条件不变时,抽样估计的置信度(1-α)越大,则:A、允许误差范围越大B、允许误差范围越小C、抽样估计的精确度越高D、抽样估计的精确度越低E、抽样估计的可靠性越高5、在假设检验中,当我们作出拒绝原假设而接受备择假设的结论时,表示A、有充足的理由否定原假设B、原假设必定是错误的C、犯错误的概率不大于αD、犯错误的概率不大于βE、在原假设为真的假设下发生了小概率事件三、判断改错题1、在抽样推断中,作为推断的总体和作为观察对象的样本都是确定的、唯一的。
统计学第五章抽样习题

11.用抽样指标估计总体指标应满足的要求是( )
A、一致性 B、准确性 C、客观性
D、无偏性 E、有效性
12.在其他条件不变的情况下,下列关于抽样平均误差、总体变 异程度及样本容量之间关系的陈述,正确的有( )
A、总体变异程度一定时,样本容量越大,抽样平均误差越大
B、总体变异程度一定时,样本容量越大,抽样平均误差越小
B、抽样单位数占总体单位数的比重很大时
C、抽样单位数目很少时
D、抽样单位数目很多时
2020/3/17
7
10、在其他条件不变的情况下,抽样单位数目和抽样误差的关系 是( ) A、抽样单位数目越大,抽样误差越大 B、抽样单位数目越大,抽样误差越小 C、抽样单位数目的变化与抽样误差的数值无关 D、抽样误差变化程度是抽样单位数变动程度的1/2
19、随着样本单位数的无限增大,样本指标和未知的总体
指标之差的绝对值小于任意小的正整数的可能性趋于
必然性,称为抽样估计的( )
A、无偏性
B、一致性
C、有效性
D、 充足性
20、能够事先加以计算和控制的误差是( )
A、抽样误差
B、登记误差
C、标准差
D、标准差系数
2020/3/17
13
21、在一定抽样平均误差的条件下,要提高推断的可靠
;
;
;
。
10.对于简单随机重复抽样,若其他条件不变,则当误差范围
缩小一半,抽样单位数必须
倍,若误差范围扩大一
倍,则抽样单位数为原来的
。
11.点估计是直接用
估计不考虑
及
估计总体指标的推断方法。点 。
2020/3/17
29
14. 抽样法的基本特点是( )
第六章抽样推断

第六章抽样推断一、单项选择题1. 抽样调查必须遵循的基本原则是()A. 灵活性原则B. 准确性原则C. 随机原则D. 可靠性原则2. 抽样误差是()A. 代表性误差B. 登记性误差c. 系统性误差 D. 随机误差3. 抽样平均误差和极限误差的关系是()A. 抽样平均误差小于极限误差B.抽样平均误差大于极限误差C. 抽样平均误差等于极限误差D. 抽样平均误差可能大于、等于或小于极限误差4. 在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A. 扩大为原来的4倍B. 每个大为原来的2倍C. 缩小为原来的1/4倍D. 缩小为原来的1/2倍5. 一般来说, 在抽样组织形式中,抽样误差较大的是()A. 简单抽样B. 分层抽样C. 整群抽样D. 等距抽样6. 根据抽样的资料, 一年级优秀生比重为10%, 二年级为20%,在人数相等时,优秀生比重的抽样误差()A. 一年级较大B. 二年级较大C.相同 D. 无法判断7. 根据重复抽样的资料, 甲单位工人工资方差为25,乙单位为100,乙单位人数比甲单位多3倍, 则抽样误差()A. 甲单位较大B. 无法判断C.乙单位较大 D. 相同8.一个全及总体()A. 只能抽取一个样本B. 可以抽取多个样本C. 只能计算一个指标 D.只能抽取一个单位9. 最符合随机原则地抽样组织形式是()A. 整群抽样B. 类型抽样C. 阶段抽样D. 简单随机抽样10.差错比率指标是用于()A. 点估计法B. 区间估计法C. 直接换算法 D.系数修正法二、多项选择题1.抽样估计的抽样平均误差()A. 是不可以避免的B.是可以改进调查方法消除的C. 是可以事先计算的D.只有调查结束之后才能计算E. 其大小是可以控制的2.影响样本客量的因素有()A. 推断的可靠程度 B.抽样方式C. 抽样方法D. 允许误差的大小E. 总体各单位标志变异程度3.抽样估计的特点是()A. A.运用归纳推理B. 运用演绎推理C. 运用数学分析法D. 运用概率分析法,E. 抽样误差和抽样估计的可靠程度有关4. 提高推断的可靠程度, 可以采取的办法是()A.扩大估计值的误差范围 B.缩小估计值的误差范围C. 增大概率度D. 降低概率度E. 增加样本容量5. 影响整群抽样的抽样误差的因素有()A. 总方差B. 组内方差C. 组间方差D. 总体群数E. 样本群数6. 抽样估计的优良标准是()A.无偏性B. 随机性C.一致性D. 有效性E.代表性7. 影响抽样平均误差的因素有()A. 总体标志变异程度 B.样本容量C. 抽样方法D. 抽样组织形式E. 样本指标值的大小8. 抽样调查遵循随机原则的原因是()A. 样本客量有限B. 保证总体中每个单位有同等机会被抽中C. 能确定抽样方法D. 能确定推断的可靠程度E. 能计算抽样误差9. 和重复抽样相比,不重复抽样的特点是()A. 总体单位数在抽选过程中逐渐减少B. 总体中每个单位都有被重复抽中的可能C.总体中每个单位没有被重复抽中的可能D. 样本可能数目要多些E. 样本可能数目要少些10.总体标准差未知时, 常用的替代办法有()A. 用过去调查的同类问题的经验数据B. 用样本的标准C.凭调查者经验确定D. 用总体方差E. 先组织试验性抽样,用试验样本的标准差11. 抽样调查的主要目的是()A. 对调查单位作深入研究B. 用样本指标推断总体的指标C. 计算和控制误差D. 广泛运用数学方法E.对总体进行科学的估计和判断12. 区间估计的基本要素是()A. 概率度B. 点估计C.误差范围 D.抽样数目E. 总体单位数三、填空题1.调查是用________推断________的一种调查方法。
抽样推断练习题答案

抽样推断练习题答案抽样推断是统计学中的一个重要概念,它涉及到从总体中抽取一部分样本,然后根据这些样本来推断总体的特征。
以下是一些抽样推断练习题的答案:1. 题目一:某公司有1000名员工,为了了解员工的平均工资水平,公司随机抽取了100名员工的工资进行调查。
调查结果显示这100名员工的平均工资为5000元。
如果总体平均工资的方差为1000元^2,那么95%置信水平下,总体平均工资的置信区间是多少?答案:根据抽样分布的中心极限定理,样本均值的分布近似正态分布。
首先计算样本均值的标准误差(SE):\[ SE =\sqrt{\frac{\sigma^2}{n}} = \sqrt{\frac{1000}{100}} = 10 \]。
然后使用95%置信水平下的z值,该值为1.96。
置信区间为:\[ CI = \bar{x} \pm z \times SE = 5000 \pm 1.96 \times 10 = (4969.4, 5030.6) \]。
2. 题目二:一个研究者想要估计一个城市中所有家庭的平均年收入。
他随机抽取了50个家庭,并计算出他们的平均年收入为50000元,标准差为10000元。
如果研究者想要以90%的置信水平估计总体平均年收入,置信区间应该是多少?答案:同样使用样本均值的分布近似正态分布。
计算标准误差:\[ SE = \frac{s}{\sqrt{n}} = \frac{10000}{\sqrt{50}} =1414.21 \]。
90%置信水平下的z值为1.645。
置信区间为:\[ CI = 50000 \pm 1.645 \times 1414.21 = (47142.79, 52857.21) \]。
3. 题目三:一个班级有200名学生,随机抽取了25名学生进行数学测试,平均分为80分,标准差为10分。
如果以99%的置信水平估计班级所有学生的数学平均分,置信区间是多少?答案:计算标准误差:\[ SE = \frac{s}{\sqrt{n}} =\frac{10}{\sqrt{25}} = 2 \]。
抽样推断习题

抽样推断习题1.某快餐店想要估计顾客午餐的平均花费金额,在为期3周的时间里选了49名顾客组成了简单随机样本,计算(1)假定总体标准差为15元,求样本均值的标准误差(2)在95%的置信水平下,求估计误差。
(3)如果样本均值为120元,求总体均值的95%的置信区间。
2.利用下面的信息,构建总体均值的置信区间(1)总体服从正态分布,且已知总体标准差为500,样本均值为8900,样本容量为15,置信水平为95%(2)总体不服从正态分布,且已知总体标准差为500,样本容量为35,样本均值为8900,置信水平为95%(3)总体不服从正态分布,总体标准差未知,样本容量为35,样本均值为8900,样本标准差为500,置信水平为90%(4)总体不服从正态分布,总体标准差未知,样本容量为35,样本均值为8900,样本标准差为500,置信水平为99%3.某居民小区共有500户居民,小区管理者准备采用一项新的供水设施,想要了解居民是否赞成,采用重复抽样方法随机抽取了50户,32户赞成,18户反对(1)求总体赞成新措施的户数比例的置信区间,置信水平为95% (2)如果小区管理者预计赞成的比例为80%,要求估计误差为10%,应抽取多少户进行检查。
4.从两个总体中各抽取一个独立随机样本,样本容量分别为250,来自总体1的样本比例为p1=40%,来自总体2的样本比例为P2=30%(1)构造π1-π2的90%的置信区间(2)构造π1-π2的95%的置信区间5.某超市想要估计每个顾客平均每次购物花费的金额,根据过去的经验,标准差大约为120,现要求以95%的置信水平估计每个顾客平均购物金额的置信区间,并要估计误差不超过20元,应抽取多少顾客作为样本。
6.一项包括了200个家庭的调查显示,每个家庭每天看电视的平均时间为7.25小时,标准差为2.5小时,10年前每个家庭看电视的平均时间为6.70小时。
去显著性水平为0.01,这个调查能否证明“如今每个家庭每天收看电视的平均时间增加了”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽样误差的计算
例一:现要对会计专业同学的月生活费进行调查,该专业共有100名同学,用随机抽样法抽取样本30人,经整理计算出这30人的月平均生活费为500元,平均生活费的标准差为100元。
计算抽样调查中重复和不重复抽样的误差的平均误差。
(这是已知总体平均数和总体标准差求抽样误差的平均误差)
解:(1)当为重复抽样时,其抽样平均误差为
)(10100100
22元===n x σμ
(2)当为不重复抽样时,其抽样平均误差为
)(37.8)10030
1(100100
)1(22元=-=-=N n
n x σμ
例二:现要对某高校10000名学生对食堂的满意度进行抽样调查,随机抽取这所高校的500名同学,结果有100名同学对学校的食堂基本满意。
计算重复和不重复抽样条件下的抽样平均误差。
(这是成数求抽样平均误差的问题)
解:先计算满意度(成数)及总体标准差
P=N 1/N=100/500=20%=0.4
4.016.0)2.01(2.0)1(==-⨯=-=p p p σ
(1) 当为重复抽样时
0178.050016
.0)
1(2==-==n p p n p p σμ
(2) 当为不重复抽样时
0174.0)10000500
1(50016
.0)1()
1()1(2=-=--=-=N n
n p p N n
n p p σμ
简单随机抽样条件下总体参数的区间估计
例一:某电子元器件工厂经对所生产的产品进行重复抽样检验,进而推断此批电子元件的平均寿命,现从10000件产品中随机抽取105件进行检验,结果如下
解:。