第五章《生活中的轴对称》测试题卷及答案

合集下载

(必考题)初中数学七年级数学下册第五单元《生活中的轴对称》检测题(包含答案解析)

(必考题)初中数学七年级数学下册第五单元《生活中的轴对称》检测题(包含答案解析)

一、选择题1.在下列四个图案的设计中,没有运用轴对称知识的是( )A .B .C .D . 2.下列图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个3.如图,在四边形ABCD 中,∠A=120°,∠C=80°.将△BMN 沿着MN 翻折,得到△FMN .若MF ∥AD ,FN ∥DC ,则∠F 的度数为( )A .70°B .80°C .90°D .100°4.如图,将长方形ABCD 沿线段EF 折叠到''EB C F 的位置,若'105EFC ∠=︒,'DFC ∠的度数为( )A .20︒B .30C .40︒D .50︒5.下面有4个汽车标致图案,其中不是轴对称图形为( )A .B .C .D .6.如图,在33⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中ABC ∆是一个格点三角形.则图中与ABC ∆成轴对称的格点三角形有( )A .2个B .4个C .6个D .8个7.如图,四边形 ABCD 中,AD //BC ,DC BC ⊥,将四边形沿对角线BD 折叠,点A 恰好落在DC 边上的点A'处,A'BC 20︒∠=,则A D 'B ∠的度数是 ( )A .15°B .25°C .30°D .40° 8.在汉字“生活中的日常用品”中,成轴对称的有( )A .3个B .4个C .5个D .6个 9.如图,已知ABC 为等腰三角形, , 90AB AC BAC =∠<︒,将ABC 沿AC 翻折至,ADCE 为BC 的中点,F 为AD 的中点,线段EF 交AC 于点G ,若()1FCD GEC S m m S =≠,则AG GC=( )A .mB .11m m +-C .1m +D .1m -10.如图,在△ABC 中,∠A =70°,∠B =90°,点A 关于BC 的对称点是A ',点B 关于AC 的对称点是B ',点C 关于AB 的对称点是C ',若△ABC 的面积是1,则△A 'B 'C '的面积是( )A .2B .3C .4D .5 11.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是( ) A . B .C .D .12.将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF 的度数为( ).A .40°B .45°C .56°D .37°二、填空题13.如图,将直线y x =-沿y 轴向下平移后的直线恰好经过点()1,2A -,且与y 轴交于点B ,在x 轴上存在一点P 使得PA PB +的值最小,则点P 的坐标为______________.14.将一张长为12.6m .宽为()6.3acm a >的长方形纸片按如图折叠出一个正方形,并将正方形剪下,这一过程称为第一次操作,将余下的长方形纸片再次折叠出一个正方形,并把正方形再剪下,则称为第二次操作,……,如此操作下去,若前四次剪下后的长方形纸片长与宽之比都小于2:1,当第五次操作后,剩下图形的长与宽之比为2:1,则a =________cm .15.有一条长方形纸带,按如图所示沿AB 折叠,若140︒∠=,则纸带重叠部分中____CAB ︒∠=16.如图,有一张长方形纸片ABCD,点E.F 分别在边AB 、CD 上,连接EF,将∠BEF 对折,点B 落在直线EF 上的点B /处,得折痕EM;将∠AEF 对折,点A 落在直线EF 上的点A’处,得折痕EN,则∠MEN 的度数为__________.17.如图,将一条两边沿互相平行的纸带折叠,若144∠=︒,则α∠=__________.18.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.19.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.20.如图,在△ABC 中,AB =10,AC =6,BC =8,将△ABC 折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则△BDE 的周长为_____.三、解答题21.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,7),(﹣1,5). (1)请在如图所示的网格平面内画出平面直角坐标系;(2)请画出△ABC 关于y 轴对称的△A 1B 1C 1;(3)直接写出点B 1的坐标.23.如图,以AB 为对称轴,画出下面图形的对称图形,观察这个图形和它的轴对称图形构成什么三角形,根据你所学习的轴对称图形的基本特征,结合你所画的图形写出两个正确结论.24.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为()4,5A -,()1,3C -.(1)请在如图所示的网格内作出x 轴、y 轴;(2)请作出ABC ∆关于y 轴对称的111A B C ∆(不写画法),并写出点1B 的坐标; (3)求出ABC ∆关于x 轴对称的222A B C ∆的面积.25.如图所示,(1)写出顶点C 的坐标.(2)作ABC 关于y 轴对称的111A B C △(3)计算ABC 的面积.26.如图,在平面直角坐标系中()3,2A -、()4,3B --、()1,1C --.(1)在图中作出ABC ∆关于y 轴对称的图形111A B C ∆;(2)写出1A 、1B 、1C 的坐标,分别是1A (____,_____)、1B (____,_____)、1C (____,_____);(3)ABC ∆的面积是______________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用轴对称图形的定义得出符合题意的答案.【详解】解:A、,是轴对称图形,故此选项错误;B、,是轴对称图形,故此选项错误;C、,不是轴对称图形,故此选项正确;D、,是轴对称图形,故此选项错误;故选:C.【点睛】本题考查了轴对称图形,正确把握轴对称图形的定义是解题的关键.2.B解析:B【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B解析:B【分析】首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°-60°-40°=80°,故选B.【点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.4.B解析:B【分析】由轴对称的性质可求出∠EFC的度数,可由式子∠EFC+∠EFC'-180°直接求出∠DFC'的度数.【详解】解:由翻折知∠EFC=∠EFC'=105°,∴∠EFC+∠EFC'=210°,∴∠DFC'=∠EFC+∠EFC'-180°=210°-180°=30°.故选:B.【点睛】本题考查了翻折变化(轴对称)的性质及角的计算,解题关键是熟练掌握并能够灵活运用轴对称变换的性质等.5.C解析:C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A. 属于轴对称图形,正确;B. 属于轴对称图形,正确;C. 不属于轴对称图形,错误;D. 属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.6.C解析:C【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【详解】符合题意的三角形如图所示:满足要求的图形有6个故选:C【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义.7.B解析:B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解.【详解】,解:∵∠A′BC=20°,DC BC∴∠BA′C=70°,∴∠DA′B=110°,∴∠DAB=110°,∵AD//BC,∴∠ABC=70°,∴∠ABA′=∠ABC-∠A′BC=70°-20°=50°,∵∠A′BD=∠ABD,∠ABA′=25°.∴∠A′BD=12故选:B.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.8.A解析:A【分析】根据轴对称的定义,找出成轴对称的字,即可解答.【详解】在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选A.【点睛】本题考查轴对称,解题关键是熟练掌握轴对称的定义.9.D解析:D【分析】连接AE ,由三角形的中线将三角形面积分成相等的两部分,用m 表示出△AEG 的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接AE ,设1CEG S =,则FCD Sm =, ∵F 为AD 的中点, 2ACD ACB SS m ∴==, 1AEG S m ∴=- ∴1AEG CEG S AG m CG S==-故选:D.【点睛】 本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.10.B解析:B【分析】BB′的延长线交A′C′于E ,如图,根据轴对称的性质得到DB′=DB ,BB′⊥AC ,BC=BC′,AB=A′B ,则可判断△ABC ≌△A′BC′,所以∠C=∠A′C′B ,AC=A′C′,则AC ∥A′C′,所以DE ⊥A′C′,且BD=BE ,即B′E=3BD ,然后利用三角形面积公式可得到S △A′B′C′=3S △ABC .【详解】BB ′的延长线交A ′C ′于E ,如图,∵点B关于AC的对称点是B',∴DB′=DB,BB′⊥AC,∵点C关于AB的对称点是C',∴BC=BC′,∵点A关于BC的对称点是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD=BE,∴B′E=3BD,∴S△A′B′C′=12A′C′×B′E=3×12×BD×AC=3S△ABC=3×1=3.故选:B.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.11.A解析:A【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.12.D解析:D【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等.【详解】解:由折叠可知∠DAF=∠D′AF ,∠B′AE=∠B′AD′,由题意可知:∠DAF+∠D′AF+∠BAE+∠B′AE -∠B′AD′=∠BAD ,∵∠B′A D′=16°∴可得:2×(∠B′FA +∠B′A D′)+2×(∠D′AE +∠B′A D′)-16°=90°则∠B′FA+∠D′AE +∠B′A D′=∠EAF=37°故选D.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.二、填空题13.【分析】先作点B 关于x 轴对称的点B 连接AB 交x 轴于P 则点P 即为所求根据待定系数法求得直线为y=-x-1进而得到点B 的坐标以及点B 的坐标再根据待定系数法求得直线AB 的解析式即可得到点P 的坐标【详解】作 解析:1,03⎛⎫ ⎪⎝⎭【分析】先作点B 关于x 轴对称的点B',连接AB',交x 轴于P ,则点P 即为所求,根据待定系数法求得直线为y=-x-1,进而得到点B 的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P 的坐标.【详解】作点B 关于x 轴对称的点B ',连接AB ',交x 轴于P ,则点P 即为所求,设直线y x =-沿y 轴向下平移后的直线解析式为y x a =-+把()1,2A -代入可得,1a =-,则平移后的直线为1y x =--,令0x =,则1y =-,即()01B -,所以()0,1B设直线AB 的解析式为y kx b =+,把()1,2A -,()0,1B 代入可得,3k =-,1b =所以31y x =-+令0y =,则13x =所以P 1,03⎛⎫ ⎪⎝⎭. 故答案为:1,03⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数图象上点的坐标特征,轴对称-最短路线问题,涉及到待定系数法求解析式,解题的关键是利用轴对称找出所求的点P 的位置.14.8【分析】根据题意求出第五次操作后剩余长方形的长和宽的表达式根据题意列出关于a 的方程即可求解【详解】∵第一次操作后长方形纸片的长为a(cm)宽为(126-a )cm ;第二次操作后长方形纸片的长为(12解析:8【分析】根据题意求出第五次操作后,剩余长方形的长和宽的表达式,根据题意,列出关于a 的方程,即可求解.【详解】∵第一次操作后长方形纸片的长为a( cm),宽为(12.6-a )cm ;第二次操作后长方形纸片的长为(12.6-a )cm ,宽为(2a-12.6)cm ;第三次操作后长方形纸片的长为(2a-12.6)cm ,宽为(25.2-3a )cm ;第四次操作后长方形纸片的长为(25.2-3a )cm ,宽为(5a-37.8)cm ;第五次操作后长方形纸片的长为(5a-37.8)cm ,宽为(63-8a )cm ; 又∵第五次操作后,剩下图形的长与宽之比为2:1,∴5a-37.8=2×(63-8a ),解得:a=7.8.故答案是:7.8【点睛】本题主要考查折叠的性质以及一元一次方程的应用,根据题意找出等量关系,列出方程,是解题的关键.15.70【分析】根据两直线平行同位角相等得到再由折叠的性质得到则问题得解【详解】由下图可知//又由折叠的性质得到且故答案为:70【点睛】本题考查平行线的性质折叠问题与角的计算需要计算能力和逻辑推理能力属 解析:70【分析】根据两直线平行同位角相等得到240∠=︒,再由折叠的性质得到34∠=∠,则问题得解.【详解】由下图可知BE //AF1240∴∠=∠=︒又由折叠的性质得到34∠=∠,且234180∠+∠+∠=︒180234702︒-∠∴∠=∠==︒ 故答案为:70.【点睛】本题考查平行线的性质、折叠问题与角的计算,需要计算能力和逻辑推理能力,属中档题. 16.90°【分析】根据折叠的性质可知∠MEB=∠MEB/∠NEA=∠NEA/即可求得∠MEN 的度数【详解】∵∠BEF 对折点B 落在直线EF 上的点B/;将∠AEF 对折点A 落在直线EF 上的点A/∴∠MEB=∠解析:90°【分析】根据折叠的性质,可知,∠MEB=∠MEB /,∠NEA=∠NEA /,即可求得∠MEN 的度数.【详解】∵∠BEF 对折,点B 落在直线EF 上的点B /;将∠AEF 对折,点A 落在直线EF 上的点A / ∴∠MEB=∠MEB /,∠NEA=∠NEA /,∴∠MEN=∠MEB /+∠NEA /=°°111809022AEB ∠=⨯=. 【点睛】本题主要考查折叠的性质,掌握角的和差倍分运算,是解题的关键. 17.【分析】如图根据平行线的性质可得∠1=∠2根据折叠的性质可得∠3=∠2+再利用平角等于180°得到关于的方程然后求解即可【详解】解:∵纸片两边平行∴∠1=∠2=44°由于折叠∴∠3=∠2+∴∠2+2解析:68︒【分析】如图,根据平行线的性质可得∠1=∠2,根据折叠的性质可得∠3=∠2+α∠,再利用平角等于180°得到关于α的方程,然后求解即可.【详解】解:∵纸片两边平行,∴∠1=∠2=44°,由于折叠,∴∠3=∠2+α∠,∴∠2+2α∠=180°,∴α∠=68°.故答案为:68°.【点睛】本题主要考查平行线的性质,折叠的性质,解此题的关键在于熟练掌握其知识点. 18.【分析】先根据折叠的性质求出∠B′EM根据邻补角求出∠AEA′再根据折叠的性质即可求出∠AEN【详解】解:根据折叠可知:EM平分∠BEB′∴∠B′EM=∠BEM=62°15′∴∠AEA′=180°-解析:2745'︒【分析】先根据折叠的性质求出∠B′EM,根据邻补角求出∠AEA′,再根据折叠的性质即可求出∠AEN.【详解】解:根据折叠可知:EM平分∠BEB′,∴∠B′EM=∠BEM=62°15′,∴∠AEA′=180°-2×62°15′=55°30′,EN平分∠AEA′,∴∠AEN=∠A′EN=12∠AEA′=12×55°30′=27°45′,故答案为:27°45′.【点睛】本题考查了折叠的性质,邻补角的定义,以及角的计算、度分秒的换算,解决本题的关键是掌握折叠的性质.19.5【分析】作DF⊥AB于F根据角平分线的性质得到DE=DF根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F∵BD平分∠ABCDE⊥BCDF⊥AB∴DE=DF∴×AB×DF+×BC×DE=解析:5【分析】作DF⊥AB于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F,∵ BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴12×AB×DF+12×BC×DE=ABCS,即12×AB×2+12×7×2=12,解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键;20.12【分析】根据题意利用翻折不变性可得AE=ACCD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题【详解】解:由翻折的性质可知:AE=ACCD=DE且AB=10AC=6BC=解析:12【分析】根据题意利用翻折不变性可得AE=AC,CD=DE进而利用DE+BD+BE=CD+BD+E=BC+BE即可解决问题.【详解】解:由翻折的性质可知:AE=AC,CD=DE,且AB=10,AC=6,BC=8,∴BE=AB-AE=10-6=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12.故答案为:12.【点睛】本题考查翻折变换,解题的关键是熟练掌握翻折变换的性质.三、解答题21.28°【分析】在△ABC中,利用三角形内角和定理可求出∠BAC的度数,结合角平分线的定义可得出∠BAD的度数,在△ABD中,利用三角形外角性质可求出∠PDE的度数,再在△PDE中利用三角形内角和定理可求出∠P 的度数.【详解】解:在ABC 中,80ACB ∠=︒,24B ∠=︒,18076BAC ACB B ∴∠=︒-∠-∠=︒. AD 平分BAC ∠, 1382BAD BAC ∴∠=∠=︒. PDE ∠是ABD △的外角,243862PDE B BAD ∴∠=∠+∠=︒+︒=︒,PE BC ⊥于E ,90PED ∴∠=︒,906228P ∴∠=︒-︒=︒.【点睛】本题考查了三角形内角和定理、角平分线的定义以及对顶角,利用三角形内角和定理及角平分线的定义,求出∠ADC 的度数是解题的关键.22.(1)见解析;(2)见解析;(3)(2,3)【分析】(1)根据A ,C 两点坐标确定平面直角坐标系即可.(2)分别作出A ,B ,C 的对应点A 1,B 1,C 1的位置即可.(3)根据B 1的位置写出坐标即可.【详解】(1)平面直角坐标系如图所示:(2)如图,△A 1B 1C 1即为所求.(3)根据作图得,B 1(2,3).【点睛】本题考查作图-轴对称变换,平面直角坐标系等知识,解题的关键是灵活运用所学知识解决问题.23.'ACC ∆是等腰三角形 结论:不唯一,【分析】根据轴对称性质和等腰三角形定义可得,画出来的图形构成等腰三角形.【详解】'ACC ∆是等腰三角形结论:不唯一,【点睛】考核知识点:画轴对称图形.理解轴对称图形的性质.24.(1)图如解析所示;(2)图如解析所示,()121B ,;(3)4.【分析】(1)把根据A 、C 的坐标找出坐标原点,画出x 轴、y 轴即可.(2)分别找出A 、B 、C 三点关于y 轴的对称点,顺次连接起来即可.(3) △A 2B 2C 2和△ABC 是关于x 轴对称的图形,所以△A 2B 2C 2的面积等于△ABC 的面积,求出△ABC 的面积即可.【详解】解:(1)如下图所示(2)如图所示,()121B ,(3)△A 2B 2C 2的面积等于△ABC 的面积11=22+22=422ABC CBD ADCABC S S S S ∆∆∆∆=+⨯⨯⨯⨯ △A 2B 2C 2的面积为4.【点睛】本题主要考查的是作图中的轴对称变换,关键是确定组成图形的关键点的对称点位置. 25.(1)(-2,-1);(2)作图见解析;(3)4.5.【分析】(1)利用第三象限点的坐标特征写出C 点坐标;(2)利用关于y 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可; (3)用一个矩形的面积分别减去三个三角形的面积可计算出△ABC 的面积.【详解】(1)C 点坐标为(-2,-1);(2)如图,△A 1B 1C 1为所作;(3)△ABC 的面积=5×3-12×5×2-12×2×1-12×3×3=4.5. 【点睛】 本题考查了作图-对称轴变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.26.(1)如图所示,见解析;(2)3,2;4,-3;1,-1;(3)132. 【分析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点111A B C 、、的位置,然后顺次连接即可;(2)由点关于y 轴对称点的特点填空即可;(3)根据△ABC 所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.【详解】(1)如图所示:(2)A 1(3,2),B 1(4,-3),C 1(1,-1),故答案为3,2;4,-3;1,-1;(3)S△ABC=5×3-12×5×1-12×2×3-12×2×3=132.故答案为:132.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.。

初中七年级数学下册《第五章生活中的轴对称》单元测试及答案

初中七年级数学下册《第五章生活中的轴对称》单元测试及答案

第五章生活中的轴对称一、选择题1.下列图形中对称轴最多的是()A. 等腰三角形B. 正方形C. 圆形D. 线段2. 在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A. B. C. D.3.如图,Δ ABC与ΔA’B’C’关于直线l对称,则∠B的度数为()A. 80°B. 100°C. 30°D. 50°4.如图,等腰三角形ABC的周长为21,底边BC的长为5,腰AB的垂直平分线交AB于点D,交AC于点E,连接BE,则三角形BEC的周长为()A. 11B. 12C. 13D. 145.如图,既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,∠AOB=30°,点P是∠AOB内的一个定点,OP=20cm,点C、D分别是OA、OB上的动点,连结CP、DP、CD,则△CPD周长的最小值为()A. 10cmB. 15cmC. 20cmD. 40cm7.如图,已知矩形ABCD,AB=3,AD=4,点P在AD边上移动,点Q在BC边上移动,且满足PB∥DQ,则AP+PQ+QB的最小值是()A. 6B. 7C. 8D. 98.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A. 含30°角的直角三角形B. 等腰直角三角形C. 等边三角形D. 顶角是30°的等腰三角形9.如图所示,△ABC中,AB+BC=10,A、C关于直线DE对称,则△BCD的周长是()A. 6B. 8C. 10D. 无法确定10.如图,已知OP平分∠AOB,∠AOB=60°,PC⊥OA于点C,PD⊥OB于点D,EP∥OA,交OB于点E,且EP=6.若点F是OP的中点,则CF的长是()A. 6B. 3C. 2D. 311.如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=30°.现将△ADE沿DE折叠,点A落在三角形所在平面内的点为A′,则∠BDA′的度数为()A. 100°B. 120°C. 130°D. 140°二、填空题12.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是________13.如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC .若AB=5cm ,AC=6cm ,BC=7cm ,则分别以点B、C为圆心,依次以________cm、________cm为半径画弧,使得两弧相交于点A′ ,再连结A′C、A′B ,即可得△A′BC .14.如图,在△ABC中,AB=6cm,AC=4cm,BC的垂直平分线分别角AB、BC于D、E,则△ACD 的周长为________cm.15.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为________16.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有________ 个.17.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值是________18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为________三、作图题19.仔细观察下列图案,并按规律在横线上画出合适的图案.四、解答题20.如图,由4个大小相等的正方形组成的L形图案,(1)请你改变1个正方形的位置,使它变成轴对称图形(2)请你再添加一个小正方形,使它变成轴对称图形21.小强和小勇想利用课本上学过的知识来进行台球比赛:小强把白球放在如图所示的位置,想通过击打白球撞击黑球,使黑球撞AC边后反弹进F洞;想想看,小强这样打,黑球能进F 洞吗?请用画图的方法验证你的判断,并说出理由.22.利用关于坐标轴对称的点的坐标的特点,在下面坐标系中作出△ABC关于y轴对称的图形△A′B′C′,并直接写出A′,B′,C′的坐标.23.下列为边长为1的小正方形组成的网格图.(1)请画出△ABC关于直线a对称的图形(不要求写作法); (2)求△ABC的面积(直接写出即可).参考答案一、选择题C D B C A C B B C D B二、填空题12.30°或120°13.5;6 14.10 15.16.4 17.18.4.8三、作图题19.解:如图所示:四、解答题20.(1)解:答案不惟一,(2)解:答案不惟一,21.【解答】不会进入F号洞,如图:22.解:如图所示,△A′B′C′即为所求,故A′(3,2),B′(4,﹣3),C′(1,﹣1)23.(1)解:如图:(2)解:S△ABC=矩形的面积﹣三个三角形的面积=3×4﹣3×1÷2﹣3×2÷2﹣4×1÷2=5.5.。

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是( )2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多..的是( )A.正方形 B.等边三角形C.等腰三角形 D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是( )A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是( )A.2 B.3 C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是( )7.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是( )A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共30分)11.如图所示的图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为 6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为________.13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________.16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图,这是一组按照某种规律摆放成的图案,则第2 021个图案________轴对称图形(填“是”或“不是”).18.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.19.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12 AC·BD.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为直线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD 左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.参考答案一、1.C 2.D 3.A 4.B 5.A6.A 7.C 8.B 9.C 10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A =15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P 即为所求.26.解:(1)CE =BD ,且CE ⊥BD .说明:由题可知AC =AB ,AE =AD .因为∠EAD =∠BAC =90°,所以∠EAD -∠CAD =∠BAC -∠CAD ,即∠EAC =∠DAB .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC=AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =180°-90°=90°.所以CE ⊥BD .(2)(1)的结论仍然成立.理由如下:画出的图形如图所示.由题可知AC =AB ,AE =AD .因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ACE =∠B .所以∠BCE =∠ACE +∠ACB =∠B +∠ACB =180°-90°=90°. 所以CE ⊥BD .。

(常考题)北师大版初中数学七年级数学下册第五单元《生活中的轴对称》测试(答案解析)

(常考题)北师大版初中数学七年级数学下册第五单元《生活中的轴对称》测试(答案解析)

一、选择题1.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm 2.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是 ( )A .21:10B .10:21C .10:51D .12:01 3.正方形是轴对称图形,它的对称轴有( )A .2条B .4条C .6条D .8条 4.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )A .B .C .D . 5.△ABC 和△A ´B ´C ´关于直线l 对称,若AA ´=8,则点A 到l 的距离是( ) A .2 B .3 C .4 D .56.下列图形中是轴对称图形的是( )A .B .C .D .7.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE ,则∠GFH 的度数是( )A.110°B.100°C.90°D.80°8.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.9.将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF的度数为().A.40°B.45°C.56°D.37°10.如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°11.下列图形中,不是轴对称图形的是()A.B.C.D.12.下列大学的校徽图案是轴对称图形的是()A .B .C .D .二、填空题13.如图,直线AB ∥CD ,直线EF 分别与直线AB 和直线CD 交于点E 和F ,点P 是射线EA 上的一个动点(P 不与E 重合)把△EPF 沿PF 折叠,顶点E 落在点Q 处,若∠PEF=60°,且∠CFQ:∠QFP=2:5,则∠PFE 的度数是_______.14.在ABC ∆中,将B ,C ∠按如图所示方式折叠,点B ,C 均落于边BC 上一点Q 处,线段MN ,EF 为折痕,若82A ∠=︒,则MQE ∠=______.15.如图,∠AOB = 30°,点P 是∠AOB 内任意一点,且OP = 7,点E 和点F 分别是射线OA 和射线OB 上的动点,则△PEF 周长的最小值是______.16.如图,点E ,F 分别在四边形ABCD 的边AD ,CD 上,将△DEF 沿直线EF 翻折,点D 恰好落在边BC 上,若∠1+∠2=∠B ,∠A =95°,则∠C =_____.17.如图,有一张长方形纸片ABCD,点E.F 分别在边AB 、CD 上,连接EF,将∠BEF 对折,点B 落在直线EF 上的点B /处,得折痕EM;将∠AEF 对折,点A 落在直线EF 上的点A’处,得折痕EN,则∠MEN 的度数为__________.18.如图,点P 是AOB 内任意一点,OP =10cm ,点P 与点1P 关于射线OA 对称,点P 与点2P 关于射线OB 对称,连接12PP 交OA 于点C ,交OB 于点D ,当△PCD 的周长是10cm 时,∠AOB 的度数是______度.19.如图,点 P 是∠AOB 内部一定点(1)若∠AOB =50°,作点 P 关于 OA 的对称点 P 1,作点 P 关于 OB 的对称点 P 2,连 OP 1、OP 2,则∠P 1OP 2=___.(2)若∠AOB =α,点 C 、D 分别在射线 OA 、OB 上移动,当△PCD 的周长最小时,则∠CPD =___(用 α 的代数式表示).20.如图,在锐角△ABC 中,AB =4,∠ABC =45°,∠ABC 的平分线交AC 于点D ,点P 、Q 分别是BD 、AB 上的动点,则AP+PQ 的最小值为______.三、解答题21.图1、图2、图3都是3×3的正方形网格,每个小正方形的顶点称为格点,A 、B 、C 均为格点.在给定的网格中,按下列要求画图:(1)在图1中,画一条不与AB 重合的线段MN ,使MN 与AB 关于某条直线对称,且M 、N 为格点;(2)在图2中,画一条不与AC 重合的线段PQ ,使PQ 与AC 关于某条直线对称,且P 、Q 为格点;(3)在图3中,画一个DEF ,使DEF 与ABC 关于某条直线对称,且D 、E 、F 为格点,符合条件的三角形共有______个.22.如图,在ABC 中,(1,1),(4,2),(3,4)A B C ---.(1)求ABC 的面积;(2)在图中画出ABC 关于x 轴对称的图形111A B C △;(3)在y 轴上找一点P ,使得PA PC +最小.23.在33⨯的正方形格点图中,有格点ABC 和DEF ,且ABC 和DEF 关于某直线成轴对称(对称轴不一定是正方形的边所在直线),请在下面给出的图中画出2个这样的DEF .24.乐乐觉得轴对称图形很有意思,如图是4个完全相同的小正方形组成的L 形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形.25.如图,ABC ∆三个顶点的坐标分别为A (-2,2),(4,3)B --,(1,1)C --. (1)画出ABC ∆关于y 轴对称的111A B C ∆;(2)在y 轴上画出点Q ,使QA QC +最小.并直接写出点Q 的坐标.26.在如图所示的平面直角坐标系中:(1)画出ABC ∆关于x 轴成轴对称图形的三角形DEF ∆;(2)分别写出(1)中的点D ,E ,F 的坐标;(3)求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB=10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB−AE=10−6=4,设CD=DE=x,在Rt△DEB中,∵222+=,DE EB DB∴()222+=-,48x x∴x=3,∴CD=3.故答案为:B.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.2.C解析:C【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C.【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.3.B解析:B【分析】正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.【详解】解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选B.【点睛】本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.4.A解析:A【详解】解:由平面图形的折叠及立体图形的表面展开图的特点再结合实际操作,A符合题故选:A5.C解析:C【分析】根据轴对称的性质求解即可.【详解】∵△ABC和△A´B´C´关于直线l对称,∴直线l垂直平分AA´,∵AA´=8,∴点A到l的距离=4,故选:C.【点睛】此题主要考查了轴对称的性质,熟练掌握其性质是解题的关键.6.C解析:C【解析】【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【详解】A、不是轴对称图形,故A错误;B、不是轴对称图形,故B错误;C、是轴对称图形,故C正确;D、不是轴对称图形,故D错误.故选:C.【点睛】本题考查了轴对称图形的判断问题,掌握轴对称图形的定义以及性质是解题的关键.7.C解析:C【分析】根据折叠求出∠CFG=∠EFG=12∠CFE,根据角平分线定义求出∠HFE=12∠BFE,即可求出∠GFH=∠GFE+∠HFE=12∠CFB.根据平角的定义即可得答案.【详解】∵将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,∴∠CFG=∠EFG=12∠CFE,∵FH平分∠BFE,∴∠HFE=12∠BFE,∴∠GFH=∠GFE+∠HFE=12(∠CFE+∠BFE)=12×180°=90°,故选:C.【点睛】本题考查折叠的性质及角平分线的定义,根据翻折的性质得到∠CFG=∠EFG是解题关键.8.D解析:D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.D解析:D【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等.【详解】解:由折叠可知∠DAF=∠D′AF,∠B′AE=∠B′AD′,由题意可知:∠DAF+∠D′AF+∠BAE+∠B′AE-∠B′AD′=∠BAD,∵∠B′A D′=16°∴可得:2×(∠B′FA +∠B′A D′)+2×(∠D′AE +∠B′A D′)-16°=90°则∠B′FA+∠D′AE +∠B′A D′=∠EAF=37°故选D.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.10.C解析:C【分析】根据轴对称的性质得到∠P1AD=∠PAD,∠PAC=∠P1AC,根据平角的定义得到∠DAC=150°,于是得到结论.【详解】如图,∵点P关于直线l的对称点记为P1,点P2与点P关于直线l′对称,∴∠P1AD=∠PAD,∠PAC=∠P1AC,∵∠BAC=30°,∴∠DAC=150°,∴∠DAP1+P2AC=150°,∠DAP1+∠P2AB=150°﹣30°=120°,∴∠P1AP2=180°﹣120°=60°,故选:C.【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.11.B解析:B【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.B解析:B【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题13.50°【分析】依据平行线的性质即可得到∠EFC的度数再求出∠CFQ即可求出∠PFE的度数【详解】∵AB∥CD∠PEF=60°∴∠PEF+∠EFC=180°∴∠EFC=180°﹣60°=120°∵将△解析:50°【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB ∥CD ,∠PEF =60°,∴∠PEF +∠EFC =180°,∴∠EFC =180°﹣60°=120°,∵将△EFP 沿PF 折叠,便顶点E 落在点Q 处,∴∠PFE =∠PFQ ,∵∠CFQ:∠QFP=2:5∴∠CFQ =212∠EFC =212×120°=20°, ∴∠PFE =12∠EFQ =12(∠EFC ﹣∠CFQ )=12(120°﹣20°)=50°. 故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.14.【分析】由折叠的性质得到∠MQN=∠B ∠EQF=∠C 由三角形内角和定理得到∠B+∠C=98°根据平角的定义即可得到答案【详解】解:由折叠的性质得到∠MQN=∠B ∠EQF=∠C ∵∠A+∠B+∠C=18解析:82︒【分析】由折叠的性质,得到∠MQN=∠B ,∠EQF=∠C ,由三角形内角和定理,得到∠B+∠C=98°,根据平角的定义,即可得到答案.【详解】解:由折叠的性质,得到∠MQN=∠B ,∠EQF=∠C ,∵∠A+∠B+∠C=180°,∴∠B+∠C=180°82-︒=98°,∴∠MQN+∠EQF=98°,∴1809882MQE ∠=︒-︒=︒;故答案为:82︒.【点睛】本题考查了折叠的性质,三角形内角和定理,以及平角的定义,解题的关键是熟练掌握折叠的性质进行解题.15.7【分析】设点P 关于OA 的对称点为C 关于OB 的对称点为D 当点EF 在CD 上时△PEF 的周长最小【详解】分别作点P 关于OAOB 的对称点CD 连接CD 分别交OAOB 于点EF 连接OPOCODPEPF ∵点P 关于解析:7【分析】设点P 关于OA 的对称点为C ,关于OB 的对称点为D ,当点E 、F 在CD 上时,△PEF 的周长最小.【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=7,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.【点睛】此题主要考查轴对称−−最短路线问题,熟知两点之间线段最短是解答此题的关键.16.85°【分析】根据折叠的性质得到∠ED′F=∠D求得∠B+∠D=180°根据四边形的内角和得到∠A+∠C=180°即可得到结论【详解】解:∵将△DEF沿直线EF 翻折点D恰好落在边BC上∴∠ED′F=解析:85°【分析】根据折叠的性质得到∠ED′F=∠D,求得∠B+∠D=180°,根据四边形的内角和得到∠A+∠C =180°,即可得到结论.【详解】解:∵将△DEF沿直线EF翻折,点D恰好落在边BC上,∴∠ED′F=∠D,∵∠1+∠2=∠B,∠1+∠2+∠ED′F=180°,∴∠B+∠D=180°,∴∠A+∠C=180°,∵∠A=95°,∴∠C=85°,故答案为:85°.【点睛】本题考查了多边形的内角与外角,四边形的内角和,折叠的性质,正确的识别图形是解题的关键.17.90°【分析】根据折叠的性质可知∠MEB=∠MEB/∠NEA=∠NEA/即可求得∠MEN 的度数【详解】∵∠BEF 对折点B 落在直线EF 上的点B/;将∠AEF 对折点A 落在直线EF 上的点A/∴∠MEB=∠解析:90°【分析】根据折叠的性质,可知,∠MEB=∠MEB /,∠NEA=∠NEA /,即可求得∠MEN 的度数.【详解】∵∠BEF 对折,点B 落在直线EF 上的点B /;将∠AEF 对折,点A 落在直线EF 上的点A / ∴∠MEB=∠MEB /,∠NEA=∠NEA /,∴∠MEN=∠MEB /+∠NEA /=°°111809022AEB ∠=⨯=. 【点睛】本题主要考查折叠的性质,掌握角的和差倍分运算,是解题的关键. 18.30°【分析】连接OP1OP2据轴对称的性质得出∠P1OA =∠AOP =∠P1OP ∠P2OB =∠POB =POP2PC =CP1OP =OP1=10cmDP2=PDOP =OP2=10cm 求出△P1OP2是等解析:30°【分析】连接OP 1,OP 2,据轴对称的性质得出∠P 1OA =∠AOP =12∠P 1OP ,∠P 2OB =∠POB =12∠POP 2,PC =CP 1,OP =OP 1=10cm ,DP 2=PD ,OP =OP 2=10cm ,求出△P 1OP 2是等边三角形,即可得出答案.【详解】解:如图:连接OP 1,OP 2,∵点P 关于射线OA 对称点为点P 1∴OA 为PP 1的垂直平分线∴∠P 1OA =∠AOP =12∠P 1OP , ∴PC =CP 1,OP =OP 1=10cm ,同理可得:∠P2OB=∠POB=12∠POP2,DP2=PD,OP=OP2=10cm,∴△PCD的周长是=CD+PC+PD=CD+CP1+DP2=P1 P2=10cm∴△P1OP2是等边三角形,∴∠P1OP2=60°,∴∠AOB=30°,故答案为30°【点睛】本题考查了线段垂直平分线性质、轴对称性质以及等边三角形的性质和判定,证明△P1OP2是等边三角形是解答本题的关键.19.100°180°-2α【分析】(1)根据对称性证明∠P1OP2=2∠AOB即可解决问题;(2)如图作点P关于OA的对称点P1作点P关于OB的对称点P2连P1P2交OA于C交OB于D连接PCPD此时△解析:100° 180°-2α【分析】(1)根据对称性证明∠P1OP2=2∠AOB,即可解决问题;(2)如图,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连P1P2交OA于C,交OB于D,连接PC,PD,此时△PCD的周长最小.利用(1)中结论,根据对称性以及三角形内角和定理即可解决问题;【详解】(1)如图,由对称性可知:∠AOP=∠AOP1,∠POB=∠BOP2,∴∠P1OP2=2∠AOB=100°,故答案为100°.(2)如图,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连P1P2交OA于C,交OB于D,连接PC,PD,此时△PCD的周长最小.根据对称性可知:∠OP1C=∠OPC,∠OP2D=∠OPD,∠P1OP2=2∠AOB=2α.∴∠CPD=∠OP1C+∠OP2D=180°-2α.故答案为180°-2α.【点睛】本题考查作图-最短问题、三角形的内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.2【解析】【分析】作AH⊥BC于H交BD于P′作P′Q′⊥AB于Q′此时AP′+P′Q′的值最小【详解】解:作AH⊥BC于H交BD于P′作P′Q′⊥AB于Q′此时AP′+P′Q′的值最小∵BD平分∠解析:22【解析】【分析】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】解:作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,∴P′Q′=P′H,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴2,故答案为:2.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.三、解答题21.(1)图见解析;(2)图见解析;(3)图见解析,4.【分析】(1)先画出一条3×3的正方形网格的对称轴,根据对称性即可在图1中,描出点A、B的对称点M、N,它们一定在格点上,再连接MN即可;(2)同(1)方法即可求解;(3)同(1)方法可解;【详解】解:(1)如图①, 3×3的正方形网格的对称轴l,描出点A、B关于直线l的对称点M、N,连接MN即为所求;(2)如图②,同理(1)可得, PQ即为所求;(3)如下图所示,同理(1)可得,ΔDEF即为所求,符合条件的三角形共有4个.【点睛】本题考查了作图−−轴对称变换,解决本题的关键是找到图形对称轴的位置.22.(1)S△ABC72=;(2)画图见解析;(3)见解析.【分析】(1)依据割补法进行计算,矩形的面积-3个直角三角形的面积即可得到△ABC的面积;(2)分别作出点A、B、C关于x轴的对称点,再首位顺次连接即得;(3)作点C关于y轴的对称点C',再连接AC',与y轴的交点即为所求.【详解】(1)ABC的面积为:1117 33232113= 2222⨯-⨯⨯-⨯⨯-⨯⨯(2)111A B C △的图形如图所示:(3)取点C 关于y 轴的对称点(3,4)C ',连接AC '交y 轴于点P ,即为所求.【点睛】本题考查了作图−轴对称变换、轴对称−最短路线问题,解决本题的关键是掌握轴对称的性质.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.23.见解析【分析】根据轴对称图形的定义进行画图即可.【详解】解:如图所示:【点睛】本题有一定的难度,要求找出所有能与三角形ABC 形成对称的轴对称图形,这里注意思维要严密.24.见解析【分析】根据轴对称图形的定义添加即可.【详解】解: 如图.【点睛】此题考查轴对称图形的定义,掌握轴对称图形的特点是解题的关键.25.(1)见解析;(2)见解析,Q (0,0).【分析】(1)利用关于y 轴对称的点的坐标特征得出A 、B 、C 的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)连接AC 1交y 轴于Q 点,利用两点之间线段最短可确定此时QA +QC 的值最小,然后根据坐标系可写出点Q 的坐标.【详解】解:(1)如图,△A 1B 1C 1为所求.(2)如图,Q (0,0).【点睛】本题考查了作图—轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题. 26.(1)见解析;(2)()2,4D -,()5,3E -,()1,0F ;(3)132 【分析】(1)根据轴对称的性质,找出△ABC 各顶点关于x 轴对称的对应点,然后顺次连接各顶点即可得DEF ∆;(2)根据所画图形可直接写出D ,E ,F 的坐标;(3)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图,DEF ∆为所求.(2)()2,4D -,()5,3E -,()1,0F . (3)11144413134222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯ 316262=--- 132= 【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.。

北师大版七年级下册数学-第五章-生活中的轴对称-单元测试卷(附参考答案)

北师大版七年级下册数学-第五章-生活中的轴对称-单元测试卷(附参考答案)

第五章生活中的轴对称单元测试卷(北师大版七年级数学下册)一.选择题1. 下列图形中对称轴只有两条的是()A.圆B.等边三角形C.矩形D.等腰梯形2. 如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°3.在下列说法中,正确的是()A.如果两个三角形全等,则它们必是关于直线成轴对称的图形;B.如果两个三角形关于某直线成轴对称,那么它们是全等三角形;C.等腰三角形是关于底边中线成轴对称的图形;D.一条线段是关于经过该线段中点的直线成轴对称的图形 .4. 小明从镜中看到电子钟示数是,则此时时间是()A.12:01B.10:51C.11:59D.10:215. 如图,AD是△ABC的角平分线,AE是△ABD的角平分线,若∠BAC=60°那么∠EAC=()A.40°B.30°C.15°D.45°6.如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为()A.12 B.24 C.36 D.不确定∠=︒,则7. 如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若1129∠的度数为()2A. 49°B. 50°C. 51°D. 52°8. 如图, △ABC中, ∠ACB=90°, ∠ABC=60°, AB的中垂线交BC的延长线于D,交AC于E, 已知DE=2.AC的长为()A.2B.3C. 4D.5二.填空题9. 如图,把一个边长为1的正方形经过三次对折后沿中位线(虚线)剪开,则下图展开得到的图形的面积为.10. 如图,在△ABC中,∠C=90度,AD平分∠BAC交BC于D,若BC=8,BD=5,则点D到AB的距离为.11.已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为.12. 如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,PD的长为________.13.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=•∠OCA,∠BOC=110°,求∠A的度数为________.14. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为 .15. 如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60º,若BE=6cm,DE=2cm,则BC=______________.16. 如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________。

北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

第五章生活中的轴对称达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.观察下列平面图形,其中轴对称图形共有()A.4个B.3个C.2个D.1个(第1题)(第2题)(第3题)2.如图所示的图形是轴对称图形,点A和点D,点B和点E是对应点.若∠A =50°,∠B=70°,则∠D+∠E的度数为()A.100°B.110°C.120°D.130°3.如图,在3×3的正方形网络中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形构成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种4.等腰三角形的一个内角为40°,它的顶角的度数是()A.70°B.100°C.40°或100°D.70°或100°5.将一张正方形纸片依次按图a,图b的方式对折,然后沿图c中的虚线裁剪,最后将图d的纸展开铺平,所看到的图案是()(第5题)(第7题)6.在△ABC中,∠C=90°,BC=16 cm,∠A的平分线AD交BC于D,且CD∶DB=3∶5,则点D到AB的距离等于()A.6 cm B.7 cm C.8 cm D.9 cm7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD的度数为()A.65°B.35°C.30°D.25°8.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰三角形ACD,作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()(第8题)A.15 B.17 C.18 D.20二、填空题(共5小题,每小题3分,计15分)9.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第9题)(第11题)(第12题)(第13题)10.已知等腰三角形的一个内角为70°,则这个等腰三角形底角的度数为________.11.如图,直线AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________.12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB、AC于点E、F,BE=OE,OF=5 cm,点O到BC的距离为4 cm,则△OFC的面积为________cm2.13.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,若∠1∶∠2∶∠3=13∶3∶2,则∠α的度数为________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)如图所示的五角星共有几条对称轴?请你在下图中分别画出来.(第14题)15.(5分)以图中的虚线为对称轴画出该图形的另一半.(第15题)16.(5分)如图,四边形ABCD与四边形EFGH关于直线MN对称.(1)线段AD的对应线段是________,CD=________,∠CBA=________,∠ADC=________.(2)连接AE,BF.AE与BF平行吗?为什么?(3)若AE与BF平行,则能说明轴对称图形中对应点的连线一定互相平行吗?(第16题)317.(5分)在植树节活动中,两个班的学生分别在M,N两处植树,现要在道路AB,AC交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请同学们用圆规、直尺在图中画出供应点P的位置,保留画图痕迹,不写作法.(第17题)18.(5分)如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.(第18题) 19.(5分)如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F. 试说明DE=DF .(第19题)20.(5分)把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.(第20题)(1)试说明MC的长度等于点M到AB的距离;(2)求∠AMB的度数.521.(6分)如图,已知CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O且AO平分∠BAC.试说明OB=OC.(第21题)22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB 交AD的延长线于点E.试说明CE=AB.(第22题)23.(7分)如图,在△ABC中,AB=AC,BD⊥AC于点D.试说明∠DBC=12∠BAC.(第23题)24.(8分)如图,在直角三角形ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP交于点H,试说明BQ⊥CP .(第24题)25.(8分)如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,与AC,AD,AB分别交于点E,M,F.若∠CAD=20°,求∠MCD的度数.7(第25题)26.(10分)综合与探究:如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D与点B,C不重合),连接AD,作∠ADE=40°,DE交线段AC于点E. (1)当∠BDA=115°时,∠EDC=________°,∠DEC=________°;在点D从点B向点C的运动过程中,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,何时DA与DE的长度相等?求出此时∠BDA的度数.(第26题)答案一、1.C 2.C 3.C 4.C 5.D 6.A7.C8.C二、9.210.55°或70°11.312.1013.100°三、14.解:如图所示的五角星共有5条对称轴.对称轴如图所示.(第14题)15.解:如图所示.(第15题)16.解:(1)线段EH;GH;∠GFE;∠EHG(2)AE∥BF.理由如下:因为每对对应点连接成的线段被对称轴重直平分,则EA⊥MN,BF⊥MN,所以AE∥BF.(3)AE∥BF不能说明对应点的连线一定互相平行,还有可能共线.17.解:如图所示,点P即为所求.(第17题)18.解:因为AB=AD,所以∠B=∠ADB,因为∠BAD=26°,所以∠B=12(180°-∠BAD)=12×(180°-26°)=12×154°=77°,所以∠ADB=77°,所以∠ADC=103°. 因为AD=CD,所以∠DAC=∠C,所以∠C=12(180°-∠ADC)=38.5°.919.解:连接AD,因为AB=AC,点D是BC边上的中点.所以AD平分∠BAC(三线合一),因为DE、DF分别垂直AB、AC于点E和F.所以DE=DF(角平分线上的点到角两边的距离相等).20.解:(1)过点M作MN⊥AB,易得∠CAD=∠DAB=30°,因为∠C=90°,MN⊥AB,所以MC=MN(角平分线上的点到角两边的距离相等),即MC的长度等于点M到AB的距离.(2)由题意知∠MAB=∠MBA=30°,所以∠AMB=180°-30°-30°=120°.21.解:因为AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,所以OE=OD,又因为在直角三角形OBE和直角三角形OCD中,∠BOE=∠COD,∠BEO =∠ODC=90°,所以△OBE≌△OCD,所以OB=OC.22.解:因为AB=AC,AD是BC边上的高,所以BD=CD.因为CE∥AB,所以∠BAE=∠E,∠B=∠ECD,所以△ABD≌△ECD,所以CE=AB.23.解:作∠BAC的平分线AE,与BC,BD分别交于点E,F,则∠CAE=1 2∠BAC.因为AB=AC,所以由等腰三角形的“三线合一”可知AE⊥BC,所以∠AEB=90°.因为BD⊥AC,所以∠ADB=90°.又因为∠BFE=∠AFD,所以∠DBC=∠CAE,故∠DBC=12∠BAC.24.解:因为△CAP和△CBQ都是等边三角形,所以∠ACP=∠CBQ=60°,因为∠ACB=90°,所以∠BCP=∠ACB-∠ACP=30°,在△BCH中,∠BHC=180°-∠BCH-∠CBH=180°-30°-60°=90°,所以BQ⊥CP.25.解:因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC.因为∠CAD=20°,所以∠ACD=70°.因为EF垂直平分AC,所以AM=CM,所以∠ACM=∠CAD=20°,所以∠MCD=∠ACD-∠ACM=70°-20°=50°.26.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为∠C=40°,所以∠DEC+∠EDC=140°.因为∠ADE=40°,所以∠ADB+∠EDC=140°,所以∠ADB=∠DEC.在△ABD和△DCE中,因为∠ADB=∠DEC,∠B=∠C,AB=DC=2,所以△ABD≌△DCE.(3)当△ABD≌△DCE时,DA=DE.因为∠ADE=40°,所以∠DAE=∠DEA=70°,所以∠DEC=110°.因为△ABD≌△DCE,所以∠BDA=∠DEC=110°.11。

(必考题)初中数学七年级数学下册第五单元《生活中的轴对称》检测卷(含答案解析)

(必考题)初中数学七年级数学下册第五单元《生活中的轴对称》检测卷(含答案解析)

一、选择题1.下列四个图案中,不是轴对称图形的是( ) A .B .C .D .2.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .3.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( ) A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤4.如图,直角梯形纸片对边//AB CD ,C ∠是直角,将纸片沿着EF 折叠,DF 的对应边D F '交AB 于点G ,FH 平分CFD '∠交AC 于点H .则结论:①2AGF GFE ∠=∠;②EGF GFE ∠=∠;③CHF GFE ∠=∠;④若70B EG ∠='︒,则55GFE ∠=︒.其中正确结论的个数为( )A .4个B .3个C .2个D .1个5.下列说法错误的是( ) A .所有的等边三角形都是全等三角形 B .全等三角形面积相等 C .三条边分别相等的两个三角形全等D .成轴对称的两个三角形全等6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是( )A .B .C .D .7.长方形按下图所示折叠,点D 折叠到点D′的位置,已知∠D′FC=60°,则∠EFD 等于( )A .30°B .45°C .50°D .60°8.下列图形是轴对称图形的是( )A .B .C .D .9.如图,已知ABC 为等腰三角形, , 90AB AC BAC =∠<︒,将ABC 沿AC 翻折至,ADC E 为BC 的中点,F 为AD 的中点,线段EF 交AC 于点G ,若()1FCD GECS m m S=≠,则AGGC=( )A .mB .11m m +- C .1m + D .1m -10.下列图形中是轴对称图形的个数为( )A .2个B .3个C .4个D .5个11.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB 的度数为( )A .60°B .45°C .22.5°D .30°12.如图,在△ABC 中,点D 、E 在BC 边上,点F 在AC 边上,将△ABD 沿着AD 翻折,使点B 和点E 重合,将△CEF 沿着EF 翻折,点C 恰与点A 重合.结论:①∠BAC=90°,②DE=EF ,③∠B=2∠C ,④AB=EC ,正确的有( )A .①②③④B .③④C .①②④D .①②③二、填空题13.如图所示,AOB ∠内一点P ,1P ,2P 分别是P 关于OA ,OB 的对称点,12PP 交OA于点M ,交OB 于点N ,若125cm PP =,则PMN 的周长是__________.14.如图,有一张长方形纸片ABCD,点E.F 分别在边AB 、CD 上,连接EF,将∠BEF 对折,点B 落在直线EF 上的点B /处,得折痕EM;将∠AEF 对折,点A 落在直线EF 上的点A’处,得折痕EN,则∠MEN 的度数为__________.15.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E+∠F=_____°.16.如图,三角形ABC的面积为1,将三角形ABC沿着过AB的中点D的直线折叠,使点A落在BC边上的1A处,折痕为DE,若此时点E是AC的中点,则图中阴影部分的面积为______________.17.如图,在△ABC中,AB=AC=6,AD是高,M,N分别是AD,AC上的动点,△ABC的面积是15,则MN+MC的最小值是_____.18.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P、Q 分别是BD、AB上的动点,则AP+PQ的最小值为______.19.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼 的度数是________.间无缝隙),AOB20.如图,在等边ABC中,D、E分别是AB、AC上的点,将ADE沿直线DE折叠后,点A 落在点A '处,ABC 的边长为4cm ,则图中阴影部分的周长为_____cm .三、解答题21.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.22.如图①,将笔记本活页一角折过去,使角的顶点A 落在A '处,BC 为折痕.(1)图①中,若130∠=︒,则A BD '∠=________;(2)如果又将活页的另一角斜折过去,使BD 边与BA '重合,折痕为BE ,如图②所示,130∠=︒,求2∠以及CBE ∠的度数;(3)如果在图②中改变1∠的大小则BA '的位置也随之改变那么问题(2)中CBE ∠的大小是否改变?如果不会改变请直接写出CBE ∠的度数;如果会改变,请说明理由. 23.如图1,在锐角△ABC 中,∠ABC=45°,高线AD 、BE 相交于点F . (1)判断BF 与AC 的数量关系并说明理由;(2)如图2,将△ACD 沿线段AD 对折,点C 落在BD 上的点M ,AM 与BE 相交于点N ,当DE ∥AM 时,判断NE 与AC 的数量关系并说明理由.24.如图,4×5的方格纸中,请你在除阴影之外的方格中任意选择一个涂黑,使得图中阴影部分构成的图形是轴对称图形.25.如图,ABC 和ADE 关于直线l 对称,已知15AB =,10DE =,70D =∠,求B 的度数及BC 、AD 的长度.26.如图,方格图中每个小正方形的边长为1,点,,A B C 都是格点.(1)画出ABC ∆关于直线MN 的对称图形'''A B C ∆; (2)直接写出线段'BB 的长度; (3)直接写出ABC ∆的面积。

北师大版七年级下册数学第五章 生活中的轴对称含答案(全国通用)

北师大版七年级下册数学第五章 生活中的轴对称含答案(全国通用)

北师大版七年级下册数学第五章生活中的轴对称含答案一、单选题(共15题,共计45分)1、如图是一个等边三角形木框,甲虫P在边框AC上爬行(A,C端点除外),设甲虫P到另外两边的距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是()A.d>hB.d<hC.d=hD.无法确定2、如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心,大于的长为半径面弧,两弧交于点,作射线交边于点,若,则的面积是()A. B. C. D.3、如图,在△ABC中,∠A=80°,边AB,AC的垂直平分线交于点O,则∠BCO 的度数为()A.10°B.20°C.30°D.40°4、如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BDC=()A.15°B.20°C.30°D.45°5、如图,P是∠AOB的平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C,D.下列结论不一定成立的是()A.∠AOP=∠BOPB.PC=PDC.∠OPC=∠OPDD.OP=PC+PD6、如图,等边三角形的边长为4,点是△ 的中心,.绕点旋转,分别交线段于D、E两点,连接,给出下列四个结论:① ;② ;③四边形的面积始终等于;④△ 周长的最小值为6,上述结论中正确的个数是( )A.1B.2C.3D.47、将两个等腰Rt△ADE、Rt△ABC如图放置在一起,其中∠DAE=∠ABC=90°.点E在AB上,AC与DE交于点H,连接BH、CE,且∠BCE=15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tan∠BCD=;④;正确的个数是()A.1B.2C.3D.48、等腰三角形腰长为13,底边长为10,则它底边上的高为()A.5B.7C.10D.129、如图,在中,是的角平分线,于点,,,,则长是()A.1B.C.D.210、如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有( )A.1个B.3个C.2个D.4个11、如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于M,以下结论:①△BCD是等腰三角形;②射线BD是△ACB的角平分线;③△BCD =AC+BC;④△ADM≌BCD.正确有()的周长C△BCDA.①②③B.①②C.①③D.③④12、如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF =3S△DEF.其中,将正确结论的序号全部选对的是()A.①②③B.①②④C.②③④D.①②③④13、如图,在ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为() cm.A.13B.15C.17D.1914、如图,已知AD平分∠BAC,∠C=90°,DE⊥AB,BC=8cm,BD=5cm,则DE的长为()A.3cmB.4cmC.5cmD.6cm15、如图,在等腰三角形中,,则等于()A. B. C. D.二、填空题(共10题,共计30分)16、有一等腰直角三角形纸片,以它的对称轴为折痕,将三角形对折,得到的三角形还是等腰直角三角形(如图).依照上述方法将原等腰直角三角形折叠四次,所得小等腰直角三角形的周长是原等腰直角三角形周长的________倍.17、如图,等腰△ABC中,AB=AC,BC=8.已知重心G到点A的距离为6,则G 到点B的距离是________.18、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于 D,交BC于点E,连接AE.若CE=4,则AE=________.19、如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到. 若B'恰好落在射线CD上,则BE的长为________20、如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB于E,下述结论:①BD平分∠ABC;②AD=BD=BC;③△BDC的周长等于AB+BC;④D 是AC中点.其中正确的命题序号是________.21、已知:如图,在△ABC中,AB=AC且tanA= ,P为BC上一点,且BP:PC=3:5,E、F分别为AB、AC上的点,且∠EPF=2∠B,若△EPF的面积为6,则EF=________.22、如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为________.23、如图,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章《生活中的轴对
称》测试题卷及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第五章 生活中的轴对称全章测试卷
一、选择题(每小题2分,共20分) 1、下列说法正确的是( ).
A .轴对称涉及两个图形,轴对称图形涉及一个图形
B .如果两条线段互相垂直平分,那么这两条线段互为对称轴
C .所有直角三角形都不是轴对称图形
D .有两个内角相等的三角形不是轴对称图形 2、点M (1,2)关于x 轴对称的点的坐标为( ).
A .(-1,-2)
B .(-1,2)
C .(1,-2)
D .(2,-1) 3、下列图形中对称轴最多的是( ) .
A .等腰三角形
B .正方形
C .圆
D .线段
4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm
5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ).
A .11cm
B .7.5cm
C .11cm 或7.5cm
D .以上都不对
6、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,
则△EBC 的周长为( )厘米.
A .16
B .18
C .26
D .28
7、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:
①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).
A .1个
B .2个
C .3个
D .4个
8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ).
E D
C
B
A
l O
D
C
B
A
A .75°或15°
B .75°
C .15°
D .75°和30° 9、把一个图形先沿着一条直线进行轴对称变换,再沿着与
这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这
种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ). A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行
10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的
坐标,能确定的是 ( ) .
A .横坐标
B .纵坐标
C .横坐标及纵坐标
D .横坐标或纵坐标 二、填空题(每小题2分,共20分)
11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.
14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .
16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .
17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .
A C
A '
B '
C '
图2
图1
A
P 1B
B
18、如图所示,两个三角形关于某条直线对称,则 = .
19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.
20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .
三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,
(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ;
(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.
22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.
A
M
N
A
D
E
F B C
D E
C
B A
O
23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.
24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D .
求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.
25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.
26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .
27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB
于点E ,交AC 于点F .求证:BE+CF=EF .
F C
B
A
E
D
C
B
A
D
C
B
A
A
B
D E
28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .
29、如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE=EF=FC 的道理.
30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且
AE=BE ,
求证:AH=2BD .
答案: 一、 选择题:
二、填空题:
11.MN ,AB 12.6 13.120 14.20 15.080,050或065,065
F
O
C
B
A
E
H
E D
C
B
A
16.15 17.6 18.0
30 19.上,5 20.3
三、解答题
略。

相关文档
最新文档