收集的驱动变压器资料
MOSFET驱动变压器设计详解

MOSFET驱动变压器设计详解今天在研究全桥电路,资料和书上谈到的,大多数基于理想的驱动器(立即充电完成)。
这里一篇幅把MOS管驱动的来龙去脉搞搞清楚。
预计要分几个篇幅:1.MOS管驱动基础和时间功耗计算2.MOS管驱动直连驱动电路分析和应用3.MOS管驱动变压器隔离电路分析和应用4.MOS管网上搜集到的电路学习和分析今天主要分析MOS管驱动变压器隔离电路分析和应用和MOS管驱动基础和时间功耗计算。
参考材料:《Design And Application Guide For High Speed MOSFET Gate Drive Circuits》是一份很好的材料《MOSFET 驱动器与MOSFET 的匹配设计》也可以借鉴。
首先谈一下变压器隔离的MOS管驱动器:如果驱动高压MOS管,我们需要采用变压器驱动的方式和集成的高边开关。
这两个解决方案都有自己的优点和缺点,适合不同的应用。
集成高边驱动器方案很方便,优点是电路板面积较小,缺点是有很大的导通和关断延迟。
变压器耦合解决方案的优点是延迟非常低,可以在很高的压差下工作。
常它需要更多,缺点是需要很多的元件并且对变压器的运行有比较深入的认识。
变压器常见问题和与MOS管驱动相关的问题:变压器有两个绕组,初级绕组和次级绕组实现了隔离,初级和次级的匝数比变化实现了电压缩放,对于我们的设计一般不太需要调整电压,隔离却是我们最注重的。
理想情况下,变压器是不储存能量的(反激“变压器”其实是耦合电感)。
不过实际上变压器还是储存了少量能量在线圈和磁芯的气隙形成的磁场区域,这种能量表现为漏感和磁化电感。
对于功率变压器来说,减少漏感可以减少能量损耗,以提高效率。
MOS管驱动器变压器的平均功率很小,但是在开通和关闭的时候传递了很高的电流,为了减少延迟保持漏感较低仍然是必须的。
法拉第定律规定,变压器绕组的平均功率必须为零。
即使是很小的直流分量可能会剩磁,最终导致磁芯饱和。
这条规则对于单端信号控制的变压器耦合电路的设计有着重大影响。
变压器培训资料

变压器培训资料变压器是一种常见的电气设备,广泛应用于电力系统中,是实现电能输送和电压变换的关键组件之一。
由于其重要性,变压器的培训资料也备受关注。
本文将从变压器的基本原理、结构和工作方式等方面进行介绍,希望能对读者有所帮助。
一、变压器的基本原理变压器的基本原理是基于电磁感应定律,即当一个导体在磁场中移动或发生变化时,将会在导体上产生感应电动势。
利用这一原理,变压器可以通过电磁感应将输入端的电能转换为输出端的电能,实现电压的升降。
二、变压器的结构变压器主要由两个主要部分组成:铁芯和线圈。
铁芯一般采用硅钢片制成,能够有效地集中和导磁。
线圈分为输入线圈(也称为初级线圈)和输出线圈(也称为次级线圈),它们分别通过与铁芯紧密连接,形成一个闭合的磁路。
三、变压器的工作方式变压器的工作方式可以分为两种:工频变压器和高频变压器。
1. 工频变压器:工频变压器是指在工频下(通常为50Hz或60Hz)工作的变压器。
它通常采用铁芯,通过变压器的磁耦合作用,实现电能的传输和变换。
工频变压器广泛应用于电力系统中,用于电压升降和输电。
2. 高频变压器:高频变压器是指在高频(通常为几千Hz至几百kHz)条件下工作的变压器。
它通常采用气芯或磁性粉末芯,通过磁场的非饱和状态实现电能的变换。
高频变压器主要应用于电子设备中,如电视机、电脑等。
四、变压器的应用领域变压器在电力系统中具有重要的应用价值,主要体现在以下几个方面:1. 输电:变压器能够将发电厂产生的高电压电能通过变压器升高后进行远距离输送,然后再通过变压器降压供给用户,通过变压器的电能输送,将电力从发电厂传送到用户。
2. 电压变换:变压器能够将输入端的电压升高或降低到需要的电压水平,满足不同设备和系统的电压需求。
3. 隔离:变压器能够将输入端与输出端隔离,有效地防止电气设备之间的相互影响,提高电气系统的安全性和稳定性。
4. 良好的调压性能:变压器能够平稳地进行电压调整,保证供电质量,提高系统的稳定性。
半桥电源驱动变压器设计

• 提高开关频率,减小变压器体积
• 提高变压器的工作效率,降低能耗
集成化技术
• 将变压器与其他电路集成在一起,提高系统性能
• 降低系统成本,提高可靠性
智能控制技术
• 采用数字控制技术,提高变压器的自适应性和可靠
性
• 实现变压器的远程监控和故障诊断
半桥电源驱动变压器的产业发展与市场前景
产业发展趋势
S M A RT C R E AT E
半桥电源驱动变压器设计全面解析
CREATE TOGETHER
01
半桥电源驱动变压器的基本原理与应用场景
半桥电源驱动变压器的结构及工作原理
半桥电源驱动变压器的结构
半桥电源驱动变压器的工作原理
• 由两个线圈、铁芯和输出端组成
• 当电源电压施加到线圈上时,产生磁场
• 材料性能:影响变压器的性能和质量
• 工艺参数:影响变压器的性能和稳定性
• 制造环境:影响变压器的可靠性和寿命
变压器的质量检测与评估方法
变压器的质量检测方法
变压器的质量评估方法
• 电气性能测试:测量输出电压、电流、功率等
• 性能指标评估:评估变压器的转换效率、输出稳定性等
• 磁性能测试:测量磁导率、磁饱和度、磁损耗等
• 具有磁导率和磁阻,能够产生磁场
• 具有磁饱和和磁滞现象,影响性能
• 具有磁损耗,包括磁滞损耗和涡流损耗
磁性材料的分类
• 铁磁材料:如铁、硅钢片等,具有较高的磁导率和磁饱和度
• 非铁磁材料:如钴磁体、钕磁体等,具有较高的磁能积和矫顽力
• 软磁材料:如纳米晶软磁材料等,具有低磁损耗和高磁导率
磁性材料在半桥电源驱动变压器中的应用
• 高性能、高效率、环保型变压器成为主流
驱动变压器原理

驱动变压器原理
变压器驱动是指将电源的电压转换为所需的输入电压,以驱动变压器工作。
变压器是一种基本的电器设备,用于改变交流电的电压。
其原理是利用电磁感应现象,通过线圈之间的电磁耦合将电能从一个线圈传输到另一个线圈。
在变压器驱动中,通常需要将输入电压从电源降低或升高到所需的电压。
为了实现这一功能,变压器通常由两个线圈组成,一个称为“主线圈”,另一个称为“副线圈”。
主线圈与电源相连,副线圈与负载相连。
当主线圈中通有交流电时,会在主线圈中产生一个交变磁场。
这个交变磁场会通过铁芯传输到副线圈中。
由于电磁感应的作用,副线圈中会产生感应电势。
然后,根据迈克斯韦方程组的规律,感应电势与主线圈的匝数、副线圈的匝数以及主线圈中的电流之间存在关系。
根据感应电势与匝数之间的关系,可以通过改变主线圈和副线圈的匝数比例来改变输出电压的大小。
例如,如果副线圈的匝数比主线圈的匝数少,输出电压就会降低。
相反,如果副线圈的匝数比主线圈的匝数多,输出电压就会增加。
为了实现变压器驱动,通常需要设计合适的电路来提供输入电压。
这包括交流电源和适当的控制电路。
控制电路可以根据需要调整输入电压的大小和频率,以满足负载的需求。
总的来说,变压器驱动是一种利用电磁感应原理来改变输入电
压的方法。
通过合理设计电路和线圈的匝数比例,可以实现所需的输出电压,以满足不同负载的要求。
开关电源驱动变压器工作原理

开关电源驱动变压器的工作原理是通过高频开关管的开关控制,将输入电压转换为高频交流电,再通过变压器变换为所需的输出电压。
具体来说,开关电源的工作流程是:电源→输入滤波器→全桥整流→直流滤波→开关管(振荡逆变)→开关变压器→输出整流与滤波。
其中,交流电源输入经整流滤波成直流,通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;开关变压器次级感应出高频电压,经整流滤波供给负载;输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
在这个过程中,开关电源变压器起到能量传递和转换作用。
在反激式电路中,当开关管导通时,变压器把电能转换成磁场能储存起来;当开关管截止时则释放出来。
在正激式电路中,当开关管导通时,输入电压直接向负载供给并把能量储存在储能电感中;当开关管截止时,再由储能电感进行续流向负载传递。
此外,变压器的结构一般由铁芯和线圈组成。
铁芯是由硅钢片叠压而成,可以有效地减小铁芯的磁滞损耗和涡流损耗。
线圈是由绕在铁芯上的导线组成,通过变换线圈的匝数比,可以实现输入电压和输出电压的变换。
变压器的输出电压是由输入电压和变压器的匝数比来决定的,匝数比越大,输出电压越低。
驱动变压器设计详解

• 自动测试系统:采用先进的自动测试系统,提高测试效率和准确性 • 人工测试方法:对于一些无法使用自动测试系统的项目,采用人工测试方法 • 故障诊断技术:利用先进的故障诊断技术,对变压器的故障进行分析和处理
驱05动变压器的应用领域与
实例
驱动变压器在电力系统的应用
应用领域:
• 输电线路:驱动变压器用于输电线路的升压和降压,保证电能的传输效率 • 发电厂:驱动变压器用于发电机的励磁和调速,保证发电机的稳定运行 • 变电站:驱动变压器用于变电站的电压转换和隔离,保证电网的安全稳定运行
CREATE TOGETHER
SMART CREATE
驱动变压器设计详解
驱01动变压器的基本原理与
分类
驱动变压器的定义与功能
定义:驱动变压器是一种将交流电压转换为特定电 压等级的变压器,主要用于驱动电气设备和机械设
备。
• 转换电压:将输入的交流电压转换为 所需的输出电压 • 隔离电压:提供电气隔离,保护设备 和人身安全 • 传递能量:将电能从原动机传递到负 载
磁性材料种类:
• 硅钢片:广泛应用于驱动变压器,具有良好的磁性能和价格优势 • 软磁合金:具有较高的磁导率和较低的磁滞损耗,但价格较高 • 微晶磁芯:具有优异的磁性能,适用于高性能驱动变压器
驱动变压器的绝缘材料选择
绝缘材料选择要点:
• 选择耐高压材料:耐高压材料可以保证变压器在高压环境下的安全运行 • 选择耐高温材料:耐高温材料可以保证变压器在高温环境下的性能稳定 • 考虑环保因素:在选择绝缘材料时,应考虑环保因素,减少对环境的影响
特点:
• 结构简单:驱动变压器通常为单相或三相结构,易于设计和制造 • 输出电压稳定:驱动变压器能够提供稳定的输出电压,保证设备的正常运行 • 良好的电气隔离:驱动变压器具有电气隔离功能,有效防止故障传播
驱动变压器动力星drt系列igbt 驱动变压器bingzi

1:1:1
310
11 DRT802/211B
2:1:1
310
12 DRT802/311B
3:1:1
310
13 DRT803/101A
1:1
1000
14 DRT803/201A
2:1
1000
15 DRT803/301A
3:1
1000
16
DRT803/111B
1:1:1
1000
17 DRT803/211B 2:1:1 1000
2:1
150
0.7mH
7µH
14pF
3.1
42 DRT808/301A
3:1
150
0.7mH
9µH
8pF
3.1
43
DRT808/111B
1:1:1
150
0.7mH
5µH
14pF
2.5
44
DRT808/211B
2:1:1
150
0.7mH
7µH
10pF
2.5
45
DRT808/311B
3:1:1
150
0.7mH
u
1:1 2:1 3:1 1:1:1 2:1:1 3:1:1
Vp
fp
∫udt
V1
tn
V2 RL
(kV) (kHz) (µVs) (V) (µs) (V) (Ω)
使用频率 范围
15 19 13
20 14 9
3.1
1
≥280 30
9
9 100 100Hz~50kHz
15 19 13
20 14 9
30 10 9
23×23×22 23×23×22 23×23×22 23×23×22 23×23×22 23×23×22 27.6×25.1×20 27.6×25.1×20 27.6×25.1×20 27.6×25.1×20 27.6×25.1×20 27.6×25.1×20
变压器知识培训资料全

预防性试验
按照规程要求对变压器进行预防 性试验,如绝缘电阻测量、直流 电阻测量、变比测量等,以发现 潜在故障,确保变压器安全可靠
运行。
油品维护
定期检查变压器油品质量,及时 更换劣化油品,保持油品清洁干 燥,防止油品老化影响变压器绝
缘性能。
变压器的故障诊断与排除
常见故障类型
变压器常见故障包括绕组故障、铁芯故障、油质劣化等。这些故障可能导致变压器温升异 常、噪音增大、油品变黑等现象。
电压等级
根据电网的电压等级选择相应的变压器,确保变压器的额 定电压与电网电压相匹配。
效率和损耗
选择高效率、低损耗的变压器,以降低运行成本和节约能 源。
变压器的设计方法
磁芯选择
线圈设计
根据变压器的工作频率、磁通密度和温升 要求,选择合适的磁芯材料和形状。
绝缘设计
确定原边和副边线圈的匝数、线径和绕制 方式,以满足变压器的电压比、电流和阻 抗要求。
并列运行方式
两台或多台变压器并列运行,以提高供电可靠性和容量的方式。并列运 行要求变压器的额定电压、额定频率和阻抗等参数相同,以确保负荷均 匀分配。
变压器的日常维护
定期检查
定期对变压器进行外观检查、油 位检查、油温检查等,确保变压 器处于正常工作状态。同时,检 查变压器周围环境,确保通风良
好,无杂物堆积。
变压器的温升与效率评估
温升测试:在额定负载下,测量变压器 的温升,可以判断变压器的散热性能是
否良好,以及是否存在过热现象。
效率评估:通过比较变压器的输入功率 与输出功率,可以计算出变压器的效率 。高效率的变压器能够降低能源损耗,
提高能源利用效率。
以上是关于变压器性能测试与评估的一 些主要内容。通过这些测试与评估,可 以全面了解变压器的性能状况,确保变 压器在正常运行时具有良好的电气性能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)、驱动变压器的原边感量应该取大些,但是不能过大,过大会的导致Q值过高,从而在动态的时候会有问题。
当电感量加大的时候,驱动波形中开起和关断的时候,震荡慢慢减小,最后消失
(2)、可能,高磁导率的磁芯绕制的变压器,可以获得更高的原边电感,减小激磁电流,因此可以减小所需的驱动电流。
用高磁导率的磁芯,匝比不变,电感一定,圈数可以少一点,寄生参数影响小,波形失真小
(3)、电感量越大阻抗越大,则耦合次级的波形越正常:
(4)、问:电感量越高越好吗??
答:也不是肯定有个极限
一般来说前面有个隔直电容,那么就形成一个串联谐振电路,对于这个谐振电路1)如果L取得太大,就会造成谐振周期很大,可能起机稳定之前震荡中直流偏置复位不及时磁芯饱和,所以一般应该保持在10mH以下
2)另外与开关频率有关,一定要保证LC的谐振频率离驱动频率越远越好,否则在会造成电感上的电压=Q*Vdriver,驱动电压可能会飙升到几十伏去,而电感量越大其谐振频率越小越不容易进入开关频率周围,另外L越大Q越大其选频性能越好越不容易受到影响。
所以一般来说对于一个驱动电路基本上参数都是确定的,没有什么好改变的,隔直电容100nF左右,电感量1-10mH左右,磁芯大小只跟开关频率有关,频率大些就能选小点的磁芯
(5)、那么这里面有几个参数:Tr 上升时间,时间越短,也就是我们平常说的越陡,怎么才能做到这点,方波是由正弦波叠加二成,越到脉冲的边沿频率越高,而我们的变压器的分布电容和漏感组成低通滤波器,如国变压器绕制工艺不好,分布参数大,那么更多高频成分被滤除掉,那么就出现“丢波”那么上升沿就是斜线二不是直线了!
(6)、那么怎么改变分布参数呢?首先我们知道绕组越接近磁心表面漏感越小,绕组匝数越少,越容易作到这点;另外磁心的电感系数越高、磁导率越高,导磁能力越好,漏感越小。
那么达到要求的电感量或者是初级阻抗的匝数越少。
所以我们大多驱动变压器、网络变压器都用高导材料来做。
另外在一个变压器中分布电容和漏感是两个矛盾的参数,但是通过绕制方法可以折中处理。
(7)、
这是一个驱动变压器的微等效电路图
从中可以看出,负载等效转换后是和励磁电感并联的,那么在并联电路里,我们希望是能量都加在负载上,那么最好是励磁电感无穷大最好!但是实际不可能无穷大。
尤其像驱动变压器这种本身功率并不是很大的情况,尤其要求励磁电感要大些,不然励磁电感小、励磁电流大了,那么驱动变压器的效率就小了。
由图这个并串联电路可以看出,电动势是一定的,但是电动势和串联内阻、变压器等效电阻、与负载和励磁电感组成的并联电路,最终作成一个串联电路。
如果励磁电感小了,为了满足驱动变压器的功率,那么总回路中的总电流就会增大,那么加在串联电阻上的压降就会变大,那么加在变压器初级的电压就会减小,实际效果反应到变压器的次级就出现了顶降这个参数!励磁电感越大,顶降越小!
(8)、当电压源发出一个矩形脉冲,在次级感应的脉冲电压开始并不突然上升,脉冲结束时也不突然下降,而要经过一定的时间过程,即有一个“脉冲上升时间 tr ”“脉冲下降时间 tf ”(图2),另外,脉冲顶部也不是水平的,而是随时间下降,即有一个顶部跌落(称“顶降”用 D 表示) 。
此外,上升时还有一个“上冲波形” ,希望脉冲前沿特性“顶降”及“脉冲下降时间” , “反冲”等尽可能小。
顶降 D 可用下式表示:
1
2r D L τ=(式中r —内阻;L1—电感;τ—脉冲宽度) 可见,增大电感 L1,可使顶降 D 减小。
脉冲上升时间主要与漏感和分布电容有关,减小上升时间,一般讲应使分布电容 Cs 尽量小,电感 L1 尽量大。
下降时间则主要受主电感所支配。
总之,为了得到良好的波形传输特性,要求变压器漏感和分布电容尽可能小,主电感必须大。
因此在选择磁环时,通常要求磁导率较高的材料,因为磁导率高则电感高,可以减少绕制匝数,从而减少漏感和分布电容,降低激励电流波形的畸变,减少高次谐波含量。
但是磁导率高了也会带来铁氧体材料本身的问题,如居里温度低、温升过快、材料稳定性差,安全系数低。
在我们自己的电路中,对于过冲的产生和消除,目前仍然不是很清楚,有可能是变压器漏感和某个电容发生谐振所致。
详见电路原理图。
(9)、在变压器的设计制造中,无论如何要避免绕组存在半匝的情况。
因为半匝绕组是不耦合的线匝,因此其漏电感值很高。
绕组的电容量应保持在“微微法拉”的范围之内(希望其值小于100PF )。
(10)、初级线圈匝数的计算 *****B Ae B Ae B Ae f U N N N t D T D ∆∆∆===∆。