LED变压器绕制工艺之驱动变压器

合集下载

LED小贴士之驱动电源变压器检测的几种常用方法

LED小贴士之驱动电源变压器检测的几种常用方法

LED 小贴士之驱动电源变压器检测的几种常用方法1、通过观察LED 驱动电源变压器的外型来检查其是否有明显异常现象。

如线圈引线是否断裂、脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。

2、绝缘性测试。

用万用表R×10k挡分别测量铁心与初级、初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值。

万用表指针均应指在无穷大位置不动,否则,说明变压器绝缘性能不良。

3、线圈通断的检测。

将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。

4、判别初、次级线圈。

电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V 字样,次级绕组则标出额定电压值,如15V、24V、35V 等,再根据这些标记进行识别。

5、空载电流的检测直接测量法。

将次级所有绕组全部开路,把万用表置于交流电流挡500mA,串入初级绕组。

当初级绕组的插头插入220V 交流市电时,万用表所指示的便是空载电流值。

此值不应大于变压器满载电流的10%-20%。

一般常见电子设备电源变压器的正常空载电流应在100mA 左右。

如果超出太多,则说明变压器短路。

间接测量法。

在变压器的初级绕组中串联一个10/5W 的电阻,次级仍全部空载。

把万用表拨至交流电压挡。

加电后,用两表笔测出电阻R 两端的电压降U,然后用欧姆定律算出空载电流I 空,即I 空=U/R.F。

6、温升检测。

一般小功率电源变压器允许温升为400C~500C,如果所用绝缘材料质量较好,允许温升还可提高。

检测LED驱动电源中变压器常用的八种方法

检测LED驱动电源中变压器常用的八种方法

检测LED驱动电源中变压器常用的八种方法关于LED驱动电源变压器的检测方法有很多,现针对变压器,简单列举八个检测方法:1、通过观察变压器的外貌来检查其是否有明显异常现象。

如线圈引线是否断裂、脱焊、绝缘材料是否有烧焦痕迹、铁心紧固螺杆是否有松动、硅钢片有无锈蚀、绕组线圈是否有外露等。

2、绝缘性测试。

用万用表R乘以10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。

否则,说明变压器绝缘性能不良。

3、线圈通断的检测。

将万用表置于R乘以1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。

4、判别初、次级线圈。

电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。

再根据这些标记进行识别。

5、空载电流的检测。

a、直接测量法。

将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。

当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。

此值不应大于变压器满载电流的10%~20%.一般常见电子设备电源变压器的正常空载电流应在100mA左右。

如果超出太多,则说明变压器有短路性故障。

b、间接测量法。

在变压器的初级绕组中串联一个10?/5W的电阻,次级仍全部空载。

把万用表拨至交流电压挡。

加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R.F?空载电压的检测。

将电。

图文并茂解析变压器各种绕线工艺!(包含各种拓扑)

图文并茂解析变压器各种绕线工艺!(包含各种拓扑)

图⽂并茂解析变压器各种绕线⼯艺!(包含各种拓扑)⼀、传统变压器篇单路输出 Flyback 及常见的变压器绕组结构红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位夹在初级、次级中间缺点:1, 临近效应很强,绕组交流损耗⼤2, 初、次级间的漏感较⼤,吸收回路损耗较⼤,效率较低优点:1,⼯艺结构⼗分简单,易于制造2,初级外层接电位静⽌的V+端,易于实现⽆Y改进的 Flyback 变压器绕组结构(简易型)红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位于线包最⾥层,初级在中间、次级在最外边缺点:临近效应很强,绕组交流损耗⼤优点:1,⼯艺结构⼗分简单,易于制造2,初级外层接电位静⽌的V+端,易于实现⽆Y3,初次级间漏感较⼩,吸收回路损耗较⼩,效率较⾼改进的 Flyback 变压器绕组结构(三明治型)红⾊:初级绕组红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组特点:辅助绕组位于线包最⾥层,然后分别是初级的⼀半,次级全部,初级的另⼀半;缺点:1, 次级临近效应很强,绕组交流损耗⼤2,初级的⼀半绕组没有任何的静电位层供屏蔽⽤,⽆法实现⽆Y优点:1, ⼯艺结构复杂,不利于制造;2, 初次级间漏感较⼩,吸收回路损耗较⼩,效率较⾼3, 初级临近效应较⼩,绕组交流损耗⼩Flyback 多路输出L3 与L4 之间的漏感,引起交叉调整。

实⽤的多路输出型⾼压输出绕组叠在低压绕组之上,双线并绕降低交叉调整功率传输变压器(含正激、推挽、半桥、全桥)合理的绕组结构, 层厚⼩于2Δ红⾊:初级绕组紫⾊:辅助绕组黄⾊:次级绕组实际变压器的模型虚线内为理想变压器脉冲变压器信号传输失真由于原边及幅边漏感,电阻分量的存在,脉冲在经过变压器后,产⽣延迟、斜率变缓、振铃、顶降脉冲电流的分解脉冲电流的分解脉冲电流由基波电流及各⾼次谐波电流组成占空⽐越⼩,基波分量越⼩,⾼次谐波分量越⼤,因此线径的选择(穿透深度*2)不能只考虑基波电流的频率输出功率与频率的关系(EE25 单端变换器为例)理论上,对于指定的磁芯,在相同的磁密下,输出功率与频率呈正⽐,但实际上并⾮如此,原因有:1,频率升⾼,穿透深度下降,需要⽤较⼩的线径,窗⼝利⽤率下降,且绕组层厚与穿透深度的⽐值增⼤,交流电阻⼤增,有效输出功率下降;2,频率增加,绝缘材料的耐压下降,为保证同样的绝缘强度,需要加⼤绝缘层厚度,进⼀步降低窗⼝利⽤率;3,频率到达某⼀程度后,磁芯损耗⼤增,需要适当降底磁通密度(具体请参考磁损表)LLC 变压器LLC 电路结构LLC 集成磁件漏感由原边与副边之间的档墙宽度、磁芯的磁导率、以及中柱长度与窗⼝⾼度的⽐值决定红⾊:初级绕组黄⾊:次级绕组⼩漏感的 LLC 集成磁件个别应⽤中,需要⽤到较⼩的漏感,挡墙的宽度较⼩,安全间距可利⽤下⾯的结构来满⾜。

驱动变压器设计实验报告

驱动变压器设计实验报告
市场对驱动变压器的需求
• 驱动电机、变频器等设备的需求 • 节能、环保、高性能驱动变压器的需求 • 定制化、个性化驱动变压器的需求
实验报告的目的和价值
• 提高学生对变压器设计的理解和实践能力 • 为将来从事变压器设计、制造、维护等工作打下基础 • 为驱动变压器产业的发展提供人才支持
02
变压器基本原理与分类
• 用于驱动电机、变频器等设备 • 提高设备的运行效率 • 降低设备运行成本
变压器设计水平的提高,有助于推动相关产业的发展
• 变压器制造产业的发展 • 电力系统的节能和环保 • 工业自动化技术的进步
实验背景与市场需求
变压器设计技术的发展
• 从传统的电磁变压器到现代的电子变压器 • 从低频变压器到高频变压器 • 从线性变压器到非线性变压器
实验数据的分析与讨论
实验数据的分析
• 分析实验数据,判断变压器的性能是否符合设计要求 • 分析实验数据,找出影响变压器性能的关键因素 • 分析实验数据,为优化变压器设计提供依据
实验数据的讨论
• 与同学、老师等进行实验结果的讨论和交流 • 分析实验结果,提出改进意见和优化方案 • 为将来从事变压器设计、制造、维护等工作提供经验借鉴
实验结果与改进意见
实验结果
• 输出电压、电流、功率等参数是否符合设计要求 • 输出波形是否稳定,有无异常现象 • 变压器运行是否可靠,有无故障发生
改进意见
• 针对实验结果,提出变压器的优化设计方案 • 改进变压器的结构,提高性能 • 优化变压器的材料选择,降低成本
06
实验总结与展望
实验总结与收获
04
驱动变压器设计方法与步骤
驱动变压器的设计原则
驱动变压器的设计原则

检测LED驱动电源中变压器常用的八种方法

检测LED驱动电源中变压器常用的八种方法

检测LED驱动电源中变压器常用的八种方法关于LED驱动电源变压器的检测方法有很多,现针对变压器,简单列举八个检测方法: 1、通过观察变压器的外貌来检查其是否有明显异常现象。

如线圈引线是否断裂、脱焊、绝缘材料是否有烧焦痕迹、铁心紧固螺杆是否有松动、硅钢片有无锈蚀、绕组线圈是否有外露等。

 2、绝缘性测试。

用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。

否则,说明变压器绝缘性能不良。

 3、线圈通断的检测。

将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。

 4、判别初、次级线圈。

电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。

再根据这些标记进行识别。

 5、空载电流的检测。

 a、直接测量法。

将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。

当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。

此值不应大于变压器满载电流的10%~20%.一般常见电子设备电源变压器的正常空载电流应在100mA左右。

如果超出太多,则说明变压器有短路性故障。

 b、间接测量法。

在变压器的初级绕组中串联一个10?/5W的电阻,次级仍全部空载。

把万用表拨至交流电压挡。

加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R.F,空载电压的。

介绍一种高频变压器的绕线方法,完全可以避免线圈不对称引起场管单边发热

介绍一种高频变压器的绕线方法,完全可以避免线圈不对称引起场管单边发热

回复15帖
16帖 xujay 营长
597
试试这种方式,引出注意等长
期待中
2010-06-05 22:19
回复16帖
17帖 zw1258 连长
294
2010-06-05 22:29
次级先绕后绕初级铜皮,铜皮两块并绕但方向相反,收尾后相连做中心抽头,不知是不是这样
回复17帖
18帖 bmwx1997 团长 1024
2010-06-05 18:56
回复7帖
8帖 学龄儿 童 连长
310
我就站着听课,
2010-06-05 19:04
回复8帖
13帖 芊芊 的回忆 连长
349
2010-06-05 21:27
关注一下,,,,,, 回复13帖 9帖 baijiahei 班长 78 PQ磁芯,出线是并绕?一组首尾接起来?但不是每个人都可以搞到铜带哦!
回复19帖
20帖 香烟兄 弟A 连长
219
我也上点 2010-06-06 08:59
回复20帖
21帖 huanghualj 连长
243
不错,还是专业的。
回复21帖 /topic/574834
2010-06-06 09:18 13/15
2010-7-21
介绍一种高频变压器的绕线方法,完…
9/15
2010-7-21
介绍一种高频变压器的绕线方法,完…
/topic/574834
10/的绕线方法,完…
回复29帖 11帖 雄哥 团长 1309
谢谢分享
回复11帖
12帖 学做 鱼机 营长
523
进来学习。
回复12帖
14帖 vkbvfhp 营长
2010-7-21 首页 产品库

变压器绕制工艺之驱动变压器

很多工程师都认为常用的变压器绕法就那么两种,普通的叠层绕法与三明治绕法,没有什么可讨论的。

其实不然,从这两种变压器基本绕法衍生出来许多的绕法,对电路的影响各不一样。

这一帖里面我们专门来讨论驱动变压器的绕法,争取尽量的深入点,还请网友们多给点意见。

一般的书上对驱动变压器都是很少介绍,算法与绕制工艺都是简单一笔带过。

但是驱动变压器的设计是电源中非常重要的一环,如果设计不好甚至会决定整个项目的成败。

驱动变压器的计算可以按照正激的方式,这里我们不作讨论,重点来说说绕制技术。

驱动变压器主要作用是隔离驱动,将波形传递给需要浮地驱动的几路MOSFET,如果绕制工艺设计不好,会导致波形严重失真,造成很大的干扰,影响效率与EMC。

下面我以单端双管正激的驱动变压器为例,来试着分析各种绕法的优缺点。

下面来看第一种绕法
这个是普通的次级夹初级绕法,大家看看有哪些优缺点?
从图中可以看到,普通的夹层绕法就是两次夹一原
优点:变压器的绕制工艺简单,绕组的用铜量少,成本低廉,可用于中小功率场合
缺点:当用于传输的波形频率较高时,特别是大功率电源的驱动时,容易产生失真,上升沿与下降沿时间变长,且有明显的振荡。

有网友提出了双线并绕,其实双线并绕也有几种绕法,先看第一种:次级包初级
绕法二:初级包次级
绕法三:三明治绕法的初级包次级。

led驱动电源变压器设计方案

led驱动电源变压器设计方案LED驱动电源变压器设计方案为了满足LED照明的驱动需求,我们设计了一种高效、稳定的LED驱动电源变压器。

1. 设计目标:a) 输出电压:根据LED工作电压要求,设计输出电压为12V。

b) 输出电流:根据LED电路的电流需求,设计输出电流为1A。

c) 效率:设计高效率的变压器,以减少能量的浪费,并降低发热。

d) 稳定性:设计稳定可靠的变压器,以确保输出电压的稳定性和一致性。

2. 变压器设计:a) 核心选择:选用高磁导率、低磁损的铁氧体材料作为变压器的核心,以提高变压器的效率和功率密度。

b) 匝数计算:根据设计目标的输出电压和电流,通过变压器的变比关系计算初级匝数和次级匝数,以实现12V输出和1A输出电流。

c) 线径选择:根据设计的电流值,选择合适的次级线径,以确保输出电流的稳定性和安全性。

d) 匝间绝缘:在变压器卷绕过程中,采用合适的绝缘材料和工艺,确保匝间的良好绝缘,以提高变压器的安全性和可靠性。

3. 电路设计:a) 输入滤波:为了减小输入端的电流波动和电磁干扰,使用合适的滤波电容作为输入端的滤波元件。

b) 输出电流限制:为了限制输出电流的过大和过小,使用恰当的电流限制电路,以确保输出电流的稳定性和安全性。

c) 稳压控制:为了保持输出电压的稳定性,使用合适的稳压控制电路,以对输出电压进行调节和稳定。

d) 保护功能:为了保护变压器和LED电路,设计了过流保护、短路保护和过压保护等功能,以确保电路的安全运行。

4. 效果验证:a) 测试输出电压和电流的稳定性和精度。

b) 测试变压器的功率密度和效率。

c) 测试保护功能的可靠性和恢复性。

通过以上设计方案,我们可以得到一种高效、稳定的LED驱动电源变压器,以满足LED照明的驱动需求。

led电源驱动器变压器电流测量方法

LED电源驱动器变压器电流测量方法一、引言在L ED灯具的设计和制造中,电流测量是一个重要的环节。

而在电源装置中,变压器是确保恒定电流输出的关键组件之一。

本文将介绍一种用于L ED电源驱动器中变压器电流测量的方法。

二、背景L E D灯具通常需要一个可靠的电源驱动器以提供所需的电流和电压。

而电源驱动器中的变压器是一种常用的电能转换器,通过改变输入电压的大小来实现对输出电压和电流的调整。

然而,为了保证L ED灯具工作的稳定性和耐用性,我们需要能够准确测量变压器输出的电流。

因此,本文提出了一种可行的方法来进行这一测量。

三、测量方法1.选取合适的传感器为了测量变压器的输出电流,我们需要选取一个合适的电流传感器。

常用的传感器类型包括电阻式、霍尔效应式和互感式传感器。

根据实际需求,选择适合的传感器。

2.安装传感器将选取的传感器正确安装在变压器的输出回路上。

确保传感器与电路的连接牢固可靠,并且位置正确。

3.测量电流信号通过连接传感器和测量仪表,即可获取变压器输出电流的实时信号。

可以通过示波器、电流表等设备来进行测量。

4.数据处理和分析通过采集到的电流信号,可以利用计算机进行数据处理和分析。

例如,可以使用Ma tl ab等软件进行波形分析、频谱分析等。

四、优点与应用1.优点-采用该测量方法可以实时、准确地获取变压器的输出电流。

-选取合适的传感器能够满足不同电路的测量需求。

-数据处理和分析的过程可以提供更多的信息用于电路设计和优化。

2.应用-该方法适用于L ED电源驱动器等需要测量变压器电流的场景。

-可以应用于LE D路灯、室内照明灯具等L ED灯具的生产和维护过程中。

五、总结本文介绍了一种用于L ED电源驱动器中变压器电流测量的方法。

通过选取合适的传感器并正确安装,再通过测量仪表进行实时测量,并进行数据处理和分析,可以准确获取变压器的输出电流。

该方法具有广泛的应用前景,可以为LE D灯具的设计和制造提供可靠的技术支持。

LED驱动变压器设计计算公式

LF-GOE100YA0920A电源设计计算书电源的主要特性及功能描述;输入电压范围AC90V~AC305V,额定输入电压范围AC100V~AC277V.输入电源工作频率47Hz~63Hz,额定输入频率50Hz~60Hz.输出功率 112W,额定输出DC90V~DC120V @ 0.92A开路输出电压:小于135V,短路输入功率:小于15W.效率:90V ac input 大于87%,220V ac input 大于89%,277V ac input 大于90%.输出纹波:在输入电压范围内,纹波电压小于1.2V,其它功能附详细的规格书.电源的相关参数设计计算如下:1.对于电源工作保险丝的选定Po(max)= 126V *0.92A*1.05=121.716W(输出电压电流按照规格书的额定输出的上限计算).Pin(max)= Po(max)/Eff =121.716W / 0.80=152.145W(按照电源起动到PFC电压还没升起来的这段时间的效率并适当取低一点点进行计算,否则,频繁的开关机有可能会冲坏保险丝).Iin rms(max)= Pin(max)/ Vin(min)= 152.145W/75V=2.029A (最小输入电压根据电源的最低起动电压计算,这款电源设定最低起机电压为75V,允许电源在最低起机电压下带额定负载起机)考虑到电路中PFC校正值并不是完整的1,需要除以0.99的功率因素,以及查相关的保险丝的图表所得,在最高工作环境温度65度时,需扣除0.8的过热等因素引起的加速熔断的折扣率,再除以安规要求的0.75的折扣率,即保险丝因选择:2.029A /0.99/0.8/0.75=3.416A.由于PFC+PWM两极架构的电源开机讯间的输入浪涌电流非常大,加热敏电阻后也能达到近80A,由此保险丝需选择大于3.416A的高分断能力的慢断型。

再考虑到这款LED电源是使用在室外的路灯上,需要承受较多且较大的雷击,按照规格要求是线对线打4KV,需选择耐4KV以上雷击的保险丝。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

很多工程师都认为常用的变压器绕法就那么两种,普通的叠层绕法与三明治绕法,没有什么可讨论的。

其实不然,从这两种变压器基本绕法衍生出来许多的绕法,对电路的影响各不一样。

这一帖里面我们专门来讨论驱动变压器的绕法,争取尽量的深入点,还请网友们多给点意见。

一般的书上对驱动变压器都是很少介绍,算法与绕制工艺都是简单一笔带过。

但是驱动变压器的设计是电源中非常重要的一环,如果设计不好甚至会决定整个项目的成败。

驱动变压器的计算可以按照正激的方式,这里我们不作讨论,重点来说说绕制技术。

驱动变压器主要作用是隔离驱动,将波形传递给需要浮地驱动的几路MOSFET,如果绕制工艺设计不好,会导致波形严重失真,造成很大的干扰,影响效率与EMC。

下面我以单端双管正激的驱动变压器为例,来试着分析各种绕法的优缺点。

下面来看第一种绕法
这个是普通的次级夹初级绕法,大家看看有哪些优缺点?
从图中可以看到,普通的夹层绕法就是两次夹一原
优点:变压器的绕制工艺简单,绕组的用铜量少,成本低廉,可用于中小功率场合
缺点:当用于传输的波形频率较高时,特别是大功率电源的驱动时,容易产生失真,上升沿与下降沿时间变长,且有明显的振荡。

有网友提出了双线并绕,其实双线并绕也有几种绕法,先看第一种:次级包初级
绕法二:初级包次级
绕法三:三明治绕法的初级包次级。

相关文档
最新文档