油包水乳化体系的配方设计及生产工艺研究_待续_

油包水乳化体系的配方设计及生产工艺研究_待续_
油包水乳化体系的配方设计及生产工艺研究_待续_

油包水钻井液稳定性研究

油基钻井液稳定机理研究 油基钻井液在钻深井和超深井时的使用效果很不错,但目前对其中乳化剂作用机理、各种处理剂之间协同作用的研究还远远不够。本文通过宏观实验研究和处理剂微观结构表征来加深对油包水钻井液稳定性机理的认识,找出油基钻井液的稳定机理,并对新油包水钻井液处理剂做出相应的评价。 1.乳化剂对油基钻井液乳状液稳定性的作用机理及影响: 乳化剂作用机理:降低油水两相之间的界面张力;形成坚固的界面膜;增加外相(油相)粘度。 考虑到乳化剂以上的作用机理,在选则乳化剂应遵循以下几个原则:①HLB值为3-6;②非极性基团的截面直径必须大于极性基团的截面直径;③如果选择盐类或皂类,那么应选用高价金属盐;④与油的亲和力要强;⑤能较大幅度降低界面张力; ⑥抗温性能好,在高温下不降解,解吸不明显;⑦无毒或低毒。 1)HLB值影响 每种乳化剂都有特定的HLB值,单一乳化剂往往很难满足由多组分组成体系的乳化要求。通常将多种具有不同HLB值的乳化剂混合使用,构成混合乳化剂,既可以满足复杂体系的要求,又可以大大增进乳化效果。综合考虑破乳电压值、乳化率和分水率得出当乳化剂的HLB值为3-4、含量不小于3%时,油包水乳化体系稳定性较高。 2)界面张力影响 溶液中的表面活性剂由于两亲的性质可运移到油水界面上,在油水界面上定向吸附。表面活性剂的极性亲水基团在水相中与极性水分子间有较大的范德华力,亲水基团周围形成水溶剂化层;非极亲油基团在油相中与非极性油类有较大的范德华力,亲油基团周围形成油溶剂化层。乳化剂在油水界面上形成一个表面活性剂分子定向排列的吸附层:此吸附层的水相一侧存在一个水溶剂化层,油相一侧则有油溶剂化层;吸附层及两端的溶剂化层形成有一定强度的界面层。由定向吸附的表面活性剂分子紧密排列形成的界面吸附膜可减弱由于布朗运动引起的液珠之间的碰撞,在界面层防止液滴聚结合并、油水分层,大幅度降低油水的界面张力。 3)主乳加量影响 主乳化剂和被乳化油水两相的亲和力直接影响着乳状液的稳定性,主乳的加入不仅能稳定地乳化分散液滴,还会增加油相甚至整个钻井液体系的粘度,阻碍了液滴的聚并。但过量主乳会使得体系中复合乳化剂的HLB值过低,导致体系的稳定性有一定的下降。 4)辅乳加量影响 随着辅乳化剂量的增加,体系性能体现为以下特点:体系中塑性粘度PV值变化不大,高温高压滤失量有所降低,破乳电压值差别不大,最主要的是动塑比有一定幅度的提高。当辅乳化剂的加量为1.5%时,体系表现出较好的切力。 5)复合乳化剂影响

废乳化油的破乳方法

废乳化油的破乳方法,主要有酸化法和聚化法两种。 酸化法就是往废乳化液中加入酸(如盐酸或硫酸)。 所加入的酸可利用工业废酸。 由于在目前的乳化液配方中,多数选用阴离子型乳化剂(如石油磺酸钠、磺化蓖麻油),所以遇到酸就会破坏,乳化生成相应的有机酸,使油水分离,而酸中氢离子的引入,也有助于破乳的过程。 酸的用量是待处理乳化液重量的0.2%,浓度为37%; 如果采用废酸时,则酸的用量应适当加大。 聚化法就是在废乳化油中添加盐类电解质(如0.4%氯化钙)和凝聚剂(如0.2%明矾),以达到乳化液破乳的目的。酸化法的优点是油质较好,成本低廉,水质也好,水质中含油量一般在20mg/L以下,化学耗氧量(COD)值也比其它破乳方法低;其缺点是沉渣较多。聚化法的优点是投药量少,一般工厂均有条件使用,但油质较差。 针对难处理乳化油破乳过程中存在的问题,通过对现有油水分离技术的总结和各种破乳方案的比较,提出了微波破乳—离心分离的新工艺。该工艺处理沉降罐中间层难处理乳化油技术指标优越,可有效解决该部分液压支架乳化油的破乳问题。 通过对现有离心机特点的分析,提出了适用于油、水、渣分离的BKD-1000三相立式离心机的设计方案,该机具有分离区整体旋转的特点,流体获得了较高的离心加速度。 微波破乳器的试验室模拟试验表明,采用微波破乳—离心分离工艺处理模拟乳化油,可使模拟乳化油油水有效分离,油中含水率由50.0%降至5.51%, 油的回收率达到98.33%。BKD-1000三相立式离心机的工业试验表明, 处理油田干化池含油污水可使油中含水率降至3.56%,油的回收率达到85.26%,排渣浓度达到62.18%,达到了现场提出的工业试验要求。

乳化油

乳化油脂——面制品添加剂 一、类别:食品添加剂,品质改良制 二、状态:本品为淡黄色粘稠状液体,易溶于水,溶水后白色乳浊液,具有淡淡的甜味。 三、适用范围,面制品、蛋糕、速冻食品等。 四、使用限制:限于视频制造或加工面制品必须使用。 五、特性说明:乳化油脂在面制品行业具有以下功能 1、具有高度的乳化稳定性和冷水可溶性,分子中含有亲水基团和亲油基团。溶解性佳的乳化油脂,能全部溶于食品原料。具有分解性,耐盐性、耐酸性、耐热性、耐冻性、保存性等功能。是一种优良的乳化剂。 2、用于面制品中可提高面制品的含水量,能提高5%左右,使面长时间保湿,从而改善面团的韧性和弹性。 3、在方便面的加工中,还可以提高面条在蒸煮过程中的糊化度使面条口感更加柔软、透明、爽滑且带有弹性。 4、使用本产品使面团不发粘,有利于分块,并能有效的在面条表面形成脂化膜,从而减少面饼的油脂含量,可使方便面含油量在原有的基础上降低2—4%。 5、抗老化保鲜作用,谷物食品(如面包、蛋糕、馒头、水饺、汤圆等)放置几天后,组织又软变硬、质地松软、破碎、粗糙、弹性和风味损失,出现老化现象,老化主要由淀粉引起,实用乳化油脂可以很好的解决这一问题。 6、经济效益分析:以年产一万吨的方便面车间为例,若含油量为20%,一年消耗2000吨油脂,若含油量降低2%,可节油200吨,每吨0.5万元计算,仅此一项可节省资金100万元左右。 7、建议用量、以面粉计加入本产品3‰——20‰。8、包装:本品按25kg塑料桶规格包装。 在面点中的应用: 1、增加面食制品的光泽度,并且具有很强烈的增白作用. 2、延缓面制品的老化变硬,有一定的软化作用. 3、提升热传导值,使面食制品更容易煮熟. 4、在面条中添加部分食用乳化油脂,可使面皮不易粘连,更容易进行大批量生产. 5、添加到发酵面团中,无消泡作用等负面影响. 6、改善面食制品的口感和风味. 德州中和公司产乳化食用油是更新一代的食用油脂,是以食用植物油为主要原料, 配以酪朊 酸钠复合稳定剂、聚甘油酯高效复合乳化剂和其它辅料, 经混合、杀菌、均质等工艺, 加工 成的水包油型(O/W)液体制品。

油包水乳化剂一般的HLB

油包水乳化剂一般的HLB 在3~8的范围内,而目前国内以及国外市场上常见的又以5~6为主,在不同的涂抹感观要求下,HLB可有相应的调整。目前常见的油包水乳化剂大概可分为以下几类:脂肪酸的二价或三价碱土金属盐,聚氧乙烷和聚氧丙烷共聚体,失山梨醇脂肪酸酯,蔗糖脂肪酸酯,聚氧乙烯脂肪醇醚,聚氧乙烯聚脂肪醇醚,聚甘油脂肪酸酯等等。如硬脂酸镁,硬脂酸锌,硬脂酸铝,失水山梨醇棕榈酸酯,失水山梨醇硬脂酸酯,失水山梨醇油酸酯,失水山梨醇倍半油酸酯,失水山梨醇三油酸酯,聚氧乙烯硬脂醇醚,聚氧乙烯油醇醚,聚氧乙烯蜂蜡,聚氧乙烯蓖麻油,甲基葡萄糖倍半硬脂酸酯,异硬脂酸单甘油酯等等。还有部分的聚硅氧烷结构的硅油包水乳化剂,在市场上也有很广的应用。主要成分是以烷基聚二甲基硅氧烷的聚氧乙烷聚氧丙烷的共聚体,以及其在挥发性硅油或二甲基硅油的分散液为主。 油包水的乳化剂,主体除了从结构种类上分类,其分子量的大小也是非常关键的选择参数,一般来讲,分子量越大,乳化剂在界面层上形成的界面膜的强度和刚度也就越大,体系就跟容易稳定,但同时,也会在涂抹感上略有下降。而小分子量的油包水的乳化剂,在涂膜感上会略有提升,但整体的相对稳定性能则有下降。因此,通常选用不同分子量油包水的乳化剂进行复配,即会增加体系的稳定性,也会增加体系的涂摸感。但是,也并非是乳化剂的分子量越大,体系就越稳定,乳化剂的分子量越小,体系涂抹的肤感就轻盈。乳化剂分子的亲油亲水分界端的截面积非常关键。这将直接影响到界面层的致密性。如果乳化剂中有多个亲水和亲油的端面,很形象的就像“锚‘一样,将使得界面层的稳定性,致密性,以及强度都会有极大的提升。如三梨醇倍半硬脂酸酯,聚氧乙烯30聚羟基硬脂酸酯,二聚甘油三异硬脂酸制等等。除了乳化剂中多个亲油亲水平衡点可以增加体系的稳定性外,乳化体系HLB的选择也非常有助于体系的稳定和提升。目前,市场上主流的油包水主乳化剂的HLB选择范围控制在5~6之间,助乳化剂的范围可能更广些,如HLB在2~8的范围内选者。由于HLB值是随着温度的变化和体系中反活性基团的含量多少而发生变化的。通常升高温度,体系的HLB值会下降,降低温度,体系HLB值会上升。如经常经过由低温到常温的温度变化,油包水的体系发生油水分层进而完全转相的情形,就属于这样的范畴。那么在不影响体系乳化能力的情形下,适当的添加低HLB的油包水乳化剂,如HLB 在3~5之间的失水山梨醇脂肪酸酯,不仅可以降低配方的成本,增强涂抹的轻盈的感觉,而且将对体系耐寒也有一定的帮助。 在油包水乳化剂中,聚氧乙烯30聚羟基硬脂酸酯的乳化能力和抗极性油脂非常强,要远远的优异于其他类型的乳化剂。除了本身的较高的分子量,双“锚“式界面定型,其较长的聚氧乙烯链式非常关键的。由于乳化剂要在体系中稳定,必须具有强烈的双亲性,对于任

影响油包水乳化体系的稳定的因素

影响油包水乳化体系的稳定的因素较多,通常可以分为以下几点。 1、油包水乳化剂的选择, 2、乳化体系油脂的选择, 3、油包水含固体颗粒粉末的选择, 4、乳化体系黏度的控制, 5、油包水生产工艺的选择等主要方面 乳化剂的选择 油包水乳化剂一般的HLB 在3~8的范围内,而目前国内以及国外市场上常见的又以5~6为主,在不同的涂抹感观要求下,HLB可有相应的调整。根据其种类的不同,又可分为二价金属碱盐和脂肪酸盐,聚氧乙烷和聚氧丙烷共聚体,失山梨醇脂肪酸酯,蔗糖脂肪酸酯,聚氧乙烯脂肪醇醚,聚甘油脂肪酸酯等等。而硅油包水乳化剂常见则以烷基聚二甲基硅氧烷的聚氧乙烷聚氧丙烷的共聚体以及其分散体为主。 通常乳化剂分子聚集在油水相界面上,亲水基伸入水中,亲油基伸入油中,使水-油界面的界面张力下降而使乳化系统得以稳定。因而乳化剂对乳状体系的稳定性非常关键,我们可以通过考察乳化剂及乳化助剂在界面层的排布和相互作用,来分析乳化剂的选择对体系稳定性的影响。 界面层的致密性性由于乳化剂分子在液滴表面上可形成紧密的吸附层,并在界面层成定向楔的界面,故而乳化剂分子的结构以及空间排布对稳定性的影响比较关键。乳化剂分子的空间构型主要指分子中极性基团截面积的相对大小,若两种基团的截面积不同,在乳化剂分子象两头大小不一的楔子,在油水界面上形成紧密排列的吸附层。截面积小的一头总指向分散相,截面积大的一头总指向分散介质,形成定向楔的界面。因此选择油包水乳化剂时尽可能选择亲油端较大的乳化剂作为主乳化剂,这样乳化体系相对较难发生转相,但同时要考虑到空间位阻,可适当的选配不同分子量的油包水乳化剂作为复合乳化剂,来填充不同分子量乳化剂之间的空隙。 界面膜的强度乳化过程也可看作乳化剂在分散相液滴表面形成一保护膜的过程。界面膜的厚度尤其是其强度和韧性对乳状体系的稳定性起着举足轻重的作用。通常混合乳化剂形成的复合膜具有相当高的强度,因而界面膜不易破裂,其形成的乳化体系更趋于稳定。在选择乳化剂组成混合乳化剂时,要注意各组份的分子之间的相互作用力要强,且能在界面相中紧密排列。如果能选择分子结构相近且不同分子量的乳化对作为乳化剂,乳化效能和稳定性会有更大的提升。 助乳化剂的选择助乳化剂通常可作为乳化剂的增效剂。对于两亲的乳化剂,以溶解度较大的相为外形,因此,要增加乳化体系的稳定性,需要增强油包水乳化剂在油相的溶解度。通常在水相添加0.5~2%的无机盐,可以很好的降低乳化剂在水相的溶解度。其原因主要是无机盐在水合时,是通过离子键,其键能要远远大于油包水乳化剂亲水端水合时形成的氢键和共价键,因而在类似于“盐析“效应的影响下,乳化剂在油相得到了更大的溶解值。 另外,无机盐可以使乳化颗粒带电,形成扩散双电层。大部分稳定的乳状体系因电离或者吸附会产生电荷,这些属性和胶体有类似的性能。由于乳化剂常带有极性基团,故吸附与电离常同时发生。一般介电常数较高的物质常带正电,介电常数低的物质常带负电。故在O /W型乳状液中油滴常带负电荷;在W/O型乳状液中,水滴常带正电荷。由于液滴带电而形成双电层,它们之间的相互吸引和排斥,提高了分散体的稳定性,尤其对于黏度较低的油包水乳化体系更显得重要。 另外,作为常见的山梨醇脂肪酸酯,聚甘油脂肪酸酯以及聚氧乙烯脂肪酸酯等油包水乳化剂,可针对性地在水相添加山梨醇,甘油,聚乙二醇等对应的亲水性多元醇。由于相应的多元醇在一定的温度下在水相都有一定的溶积值,在水相添加适量的多元醇也可以增加对应的乳化剂在油相的溶解值,而通常在水相添加无机盐和多元醇,这样的方式往往是同时进行的。 固体粉末的稳定和助乳化作用许多小粒径固体粉末,请注意是小粒径,当它们处在内外两相界面上时,也能起到良好的乳化作用。细小改性的固体颗粒,由于本身与界面接触角的原因,会很好的吸附在分散相界面,并对内相有一定的包裹作用,故而是性能不错的助乳化剂,对提高体系的稳定性帮助很大。如常见的硬脂酸镁,锌,铝等二价或三价碱土金属盐,气相二氧化硅等。而一些常见的固体颗粒,需经过特定的表面处理及改性后,才具有助乳化作用。

乳化油破乳及除油

污水的物理处理 -隔油和破乳 一、一、含油废水的来源、油的状态及含油废水对环境的危害 二、隔油池 三、乳化油及破乳方法 一、含油废水的来源、油的状态及含油废水对环境的危害 1.来源 含油废水的来源非常广泛。除了石油开采及加工工业排出大量含油废水外,还有固体燃料热加工、纺织工业中的洗毛废水、轻工业中的制革废水、铁路及交通运输业、屠宰及食品加工以及机械工业中车削工艺中的乳化液等。其中石油工业及固体燃料热加工工业排出的含油废水为其主要来源。 石油工业含油废水主要来自石油开采、石油炼制及石油化工等过程。石油开采过程中的废水主要来自带水原油的分离水、钻井提钻时的设备冲洗水、井场及油罐区的地面降水等。 石油炼制、石油化工含油废水主要来自生产装置的油水分离过程以及油品、设备的洗涤、冲洗过程。 固体燃料热加工工业排出的焦化含油废水,主要来自焦炉气的冷凝水、洗煤气水和各种贮罐的排水等。 2.状态 含油废水中的油类污染物,其比重一般都小于1,但焦化厂或煤气发生站排出的重质焦油的比重可高达1.1。 油通常有三种状态: (1)呈悬浮状态的可浮油如把含油废水放在桶中静沉,有些油滴就会慢慢浮升到水面上,这些油滴的粒径较大,可以依靠油水比重差而从水中分离出来,对于石油炼厂废水而言,这种状态的油一般占废水中含油量的60%~80%左右。 (2)呈乳化状态的乳化油这些非常细小的油滴,即使静沉几小时,甚至更长时间,仍然悬浮在水中。这种状态的油滴不能用静沉法从废水中分离出来,这是由于乳化油油滴表面上有一层由乳化剂形成的稳定薄膜,阻碍油滴合并。如果能消除乳化剂的作用,乳化油即可转化为可浮油,这叫破乳。乳化油经过破乳之后,就能用沉淀法来分离。 (3)呈溶解状态的溶解油,油品在水中的溶解度非常低,通常只有几个毫克每升。 3.对环境的危害 油污染的危害主要表现在对生态系统、植物、土壤、水体的严重影响。 油田含油废水浸入土壤孔隙间形成油膜,产生堵塞作用,致使空气、水分及肥料均不能渗入土中,破坏土层结构,不利于农作物的生长,甚至使农作物枯死。为此,我国在1985年颁布的“B5084—1985”农田灌溉水质标准”规定,在一、二类灌区对水质的要求,石油类含量均不得大于10mg/L。含油废水(特别是可浮油)排入水体后将在水面上产生油膜,阻碍大气中的氧向水体转移,使水生生物处于严重缺氧状态而死亡。在滩涂还会影响养殖和利用。有资料表明,向水面排放一吨油品,即可形成5*106m2的油膜。 含油废水排人城市沟道,对沟道、附属设备及城市污水处理厂都会造成不良影响,采用生物处理法时,一般规定石油和焦油的含量不超过50mg/L。 二、隔油池 1.隔油池的型式与构造 常用的隔油池有平流式与斜流式两种型式。 (图2-19)为典型的平流式隔油池。从图中可以看出,它与平流式沉淀池在构造上基本相同。 废水从池子的一端流人池子,以较低的水平流速(2~5mm/s)流经池子,流动过程中,密度小于水的油粒上升到水面,密度大于水的颗粒杂质沉于池底,水从池子的另一端流出。在

油包水乳化剂一般的HLB

油包水乳化剂一般的 H L B 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

油包水乳化剂一般的HLB在3~8的范围内,而目前国内以及国外市场上常见的又以5~6为主,在不同的涂抹感观要求下,HLB可有相应的调整。目前常见的油包水乳化剂大概可分为以下几类:脂肪酸的二价或三价碱土金属盐,聚氧乙烷和聚氧丙烷共聚体,失山梨醇脂肪酸酯,蔗糖脂肪酸酯,聚氧乙烯脂肪醇醚,聚氧乙烯聚脂肪醇醚,聚甘油脂肪酸酯等等。如硬脂酸镁,硬脂酸锌,硬脂酸铝,失水山梨醇棕榈酸酯,失水山梨醇硬脂酸酯,失水山梨醇油酸酯,失水山梨醇倍半油酸酯,失水山梨醇三油酸酯,聚氧乙烯硬脂醇醚,聚氧乙烯油醇醚,聚氧乙烯蜂蜡,聚氧乙烯蓖麻油,甲基葡萄糖倍半硬脂酸酯,异硬脂酸单甘油酯等等。还有部分的聚硅氧烷结构的硅油包水乳化剂,在市场上也有很广的应用。主要成分是以烷基聚二甲基硅氧烷的聚氧乙烷聚氧丙烷的共聚体,以及其在挥发性硅油或二甲基硅油的分散液为主。? 油包水的乳化剂,主体除了从结构种类上分类,其分子量的大小也是非常关键的选择参数,一般来讲,分子量越大,乳化剂在界面层上形成的界面膜的强度和刚度也就越大,体系就跟容易稳定,但同时,也会在涂抹感上略有下降。而小分子量的油包水的乳化剂,在涂膜感上会略有提升,但整体的相对稳定性能则有下降。因此,通常选用不同分子量油包水的乳化剂进行复配,即会增加体系的稳定性,也会增加体系的涂摸感。但是,也并非是乳化剂的分子量越大,体系就越稳定,乳化剂的分子量越小,体系涂抹的肤感就轻盈。乳化剂分子的亲油亲水分界端的截面积非常关键。这将直接影响到界面层的致密性。如果乳化剂中有多个亲水和亲油的端面,很形象的就像“锚‘一样,将使得界面层的稳定性,致密性,以及强度都会有极大的提升。如三梨醇倍半硬脂酸酯,聚氧乙烯30聚羟基硬脂

高效切削液配方大全

高效切削液配方 切削液配制方法与成分比例 切削液配方经过总结得出4种常见的切削液配方:透明水溶性切削液、乳化切削油、防锈极压乳化液还有其他的一些切削油。每种切削液在制作配制工艺上又有不同的方法,具体参数和配制比例如下: 一、【高效切削液介绍:】 高效切削液即加美润滑油高效切削液,适合淬火后硬度较高的合金钢等材质的精磨工艺,尤其是高速磨削和精密磨削。 二、【高效切削液特性:】 清洗性能优良,避免砂轮粘堵,减少修整砂轮时间提高效率,延长砂轮使用寿命;润滑冷却性能优,磨削工件表面质量精度高,是当今最先进的磨削液。 三、【高效切削液优点:】 高效切削液具有极好的抗生物稳定性能,使其具有很长的使用寿命,最长使用寿命可超过二年;防锈性能极强,因此具有很强的稀释性,减少的切削液消耗。 1、透明水溶性切削液配方 1(%)透明水溶性切削液 乙二醇65.8; 四硼酸钠3.0; 偏硅酸钠1.0; 磷酸钠0.2; 水余量。 本液用于结构钢的车削、研磨和钻孔,使用时用水稀释3倍。…… 共三种配方。 2、乳化切削油配方 1(%)石油磺酸钠13; 聚氧乙烯烷基酚醚(OP-10) 6.5; 氯化石蜡10~30; 环烷酸铅5; 三乙醇胺油酸皂2.5; 高速机械油(5号)余量。 本油用于金属加工的挤压、车、钻等到工序,使用浓度为本乳化油的5%~30%.。配方2(%)妥尔油酸钠盐4.5~5.5; 石油酸钠盐4.5~5.5; C1-4合成脂肪酸2.5~4; 聚乙二醇1.5;

工业机械油余量。…… 共五种配方。 3、防锈极压乳化油配方 1(%)氯化石蜡10; 硫化油酸9; 石油磺酸钡20; 油酸2; 三乙醇胺5; 机械油(10号)余量。 本油主要用于重载切削加工,可代替植物油及硫化切削油。以20%的浓度使用。防锈性能良好。……共两种配方。 4、其他切削液配方 1(份)硫化切削油 硫化棉子油500;棉子油1350;硫磺70;机械油(10号)2200.。 配方2……共有四种配方。 配方组份: 石油磺酸钡10 石油磺酸钠4 Span-80 2 三乙醇胺6.5 NaOH0.5 油酸11.5 梓油10 乙醇2 20#机油51.5 水2.0 制备:将NaOH0.5溶解于水,其它组份溶解于20#机油,搅拌均匀,加入NaOH溶液再搅拌均匀即可; 用途:使用时候配成2%~3%的乳化液,主要用于金属切削加工,作为冷却润滑剂使用。 切削液配方2 配方组份:(质量分数%) 石油磺酸钠34.9% 三乙醇胺8.7% 油酸16.6% 10号机油34.9%

油包水体系总结

油包水体系的总结: 影响稳定性的一些因素: 1、乳化剂: 乳化剂对油包水体系的稳定性影响最大,乳化剂(这里所提的乳化剂都为油包水乳化剂)的选取与所用油脂有关,极性油脂多的话一般选用P135(就我目前来说),极性油脂较多的体系相对来说比较难做稳定,在油包水体系中,非极性油脂使用频率较高,易做稳定; 乳化剂的复配对体系影响也很大,降低水相的界面张力,更有利于形成细小的水滴,因此也更容易被包裹,形成的体系更稳定,故一般体系中会加入适量的高HLB乳化剂,如Tween 20、Amphisol K等等,此外脂肪酸的二价、三价的金属盐; 乳化剂的用量对体系也有一定影响(资料上看到的, ),用量过少不能形成致密的界面膜,用量太多,一方面,过量的乳化剂在界面层会异常活跃,通过对界面层的吸引和穿透,反而使的界面层的强度下降;另一方面,用量过多,会有空间位阻效应,同时油包水乳化剂形成油性胶束的能力较低,从而影响稳定性; 目前常用的乳化剂有这几类:常规乳化剂:如Span系列、TGI、PGPH等等,较特殊的一类乳化剂(结构较特殊):P135、Prisorine 3700、3793、GI-34等等,聚硅烷醚类:EM 90、DC5200、5225C、SF1328、BY 11-030、FZ 2233、BM-12等等; 在冷冻过程中,降温会严重影响乳化剂的HLB值,从而会导致体系恢复室温后,出现破乳现象。一般建议在体系中加入一些低HLB的乳化剂。 2、油脂: 高极性的油脂用量较多时,体系较难做稳定,需要使用特殊的一类乳化剂;此外油脂的相容性对体系的影响也很大,作为外相的油脂,若不能完全相容,则体系不易做稳定,如硅油、高极性油脂(防晒剂)与常规的油脂相容性较差,做配方是要非常注意。 3、粉对体系的影响: 合适的粉体(粉体的大小和表面是否处理)有利于体系稳定性的提高,适量的粉能够提高体系界面膜的强度,此外,体系中含粉能够增加油相的黏度,从而有利于提高稳定性。 4、生产工艺: 生产工艺对体系也会有一定的影响,表现在乳化过程中,一般在乳化过程都是将水相加入到油相体系中,在次过程中,水相加入体系中的速度不易过快,否则有可能会破乳,乳化完成后进行10分钟左右的均质,当体系降至室温后,再进行适当时间的均质,此时的均质有利于提高体系的稠度,从而有利于稳定性的提高。 5、其他: 如电解质(具体影响还没有研究)、水相的黏度、防腐剂、油水相的比例等等,实验证明,提高水相的黏度可以提高稳定性,如在水相加入适量的汉生胶、透明质酸以及丙烯酰胺类增稠剂(能维持体系的稠度不变,一般油包水体系放置时间长了会变稀); 不同防腐剂也有不同的影响,phenoxetol加入体系中会降低体系的稳定性;油水相的比例对稳定性也有很大影响,总之把体系做成乳霜状,能提高体系的稳定性。 更详细的研究结果见《油包水乳化体系的配方设计及生产工艺研究》 影响肤感的因素: 1、乳化剂:大多数油包水乳化剂都比较粘腻,因为这些乳化剂的分子量都特别大,结构较 特殊,因此在体系中,乳化剂用量越多,体系越粘腻;

破乳的方法

液体硫化染料系列说明书

液体硫化染料与粉状硫化染料相比,具有品质稳定、染色效果统一、使用方便、色泽鲜艳和牢度好等优点,特别适合在深色色谱中使用,用其替代士林、活性等工艺,具有工艺流程短,成本低(价格比还原染料低二三十倍),色谱全等特点,并对坯庛有一定遮盖作用,已日益为国内外染厂所接受,在美国等工业发达国家的染料市场几乎无粉状硫化染料的存在。 本品用于各类纤维素纤维及其混纺织物、纱线的染色。适用于浸染、轧染、卷染工艺。由于液体硫化染料制备染浴、轧浴可直接兑成染液,这样既减轻了工人的劳动强度,又避免环境污染。 一、染料及助剂品种 (一) 染料类 (B)配套助剂类:

二、应用方式:(1)染液的配备 染液|--软水升至所需温度(如用自来水可适量加点软水剂六偏磷酸钠) |--防氧剂J一79 X (用料见下表) |--渗透剂J—686 3—5g(根据织物毛效而定) |--液体硫化染料 Y(根据所需深度) (2)防氧剂J一79用量表:(本表仅为参考) 防氧剂用量与染料用量成反比,染浅色时,要适度多加,染深色时不加或少加。注意硫化蓝易氧化,防氧剂要适量加多,否则染色时会发生过早氧化,出现铜光浮色。 (一)轧蒸法 (1)工艺流程 浸轧染液(一般染料70℃、黑色90℃、蓝色、藏青50℃)→汽蒸(102—104℃)→水洗3-4格(溢流水,温度分别为40℃、50℃、50℃、60℃)→氧化1格(70℃)→水洗2格(温度为50℃) →皂洗1格(温度为95℃,如设备不是8格,则皂煮可以忽略) →水洗1格(冷水)→烘干 (2)轧蒸法补充追加率(轧槽中的补充液追加,最好要有喷淋管均匀加入,见下表)

乳化液破乳实验

乳化废水处理实验方案 一、乳化液破乳实验 (一)目的:通过实验确定混凝气浮破乳的最佳参数,例如:混凝剂的投加量、助凝剂的投加量、pH值等。 (二)实验过程: 此次试验的原水来自XXXXXXXXX的乳化液废液,其水质的主要指标:COD XXX 104 mg/L、SS: mg/L、pH值左右、BOD5 mg/L 。 1.混凝剂投加量的确定 此次实验采用的混凝剂是PAC,即聚合氯化铝。选用的浓度为100g/L。调整水样的PH 值为最佳值,向水中滴加PAC,在滴加的过程中需要缓慢的搅拌直至出现矾花为止。然后,静止10分钟,取上清液测量COD cr,计算COD cr的去除率,去除率越大,混凝的效果就越好。 实验步骤:选择八个100ml的烧杯,在烧杯中加入100ml的原水,调节其pH值在8左右,向其中滴加不同量的PAC,缓慢搅拌。静置10分钟,分离出下层清液。测量COD cr,计算COD cr的去除率,去除率越大就是混凝效果最好的,这样就可以确定最佳投药量,测量效果如图3 图1 PAC投加量与COD去除率的关系 由图1可知,在pH值一定的条件下,可以随着混凝剂加入量的逐渐增大,而当混凝剂加到一定量时,COD cr的去除率反而上升,上层的清液也逐渐变得混浊。这是由于加入的聚合氯化铝逐渐溶解分散到溶液中去。又有铝离子带有部分正电荷,而乳化液大多数都含有阴离子表面活性剂。这样,会通过压缩双电层,吸附点中和,吸附架桥,网捕作用达到凝聚,絮凝的效果。随着混凝剂量的逐渐增大,这四种混凝作用的效果也逐渐增强,直至达到最佳

效果,再过量地加入混凝剂,溶液中存在过量的铝离子,产生水解,将会形成胶体,再次达到胶体的稳定,使COD cr 值有些许升高的现象。所以,在混凝的过程中要严格控制混凝剂的投加量。 由此次试验可以确定:100ml 原水加6ml 的PAC (浓度为100g/L )混凝效果最佳。 2.pH 对混凝效果的影响 实验步骤:分别取9份100mL 的原水,分别调节pH 值为5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5,均加入6mlPAC(最佳投加量),搅拌,静置10分钟,分离出清液,测定其pH 值,并测量COD 。见图2: 图2 pH 值与COD 去除率的关系 由图2可知,在pH 在8.5左右的时候,投加6ml 的PAC 时,COD 的去除率最好,混凝效果达到最好。可见,pH 值对混凝效果的影响很大。所以在混凝过程中应控制pH 值8.5左右。 3.助凝剂投加量的确定 此次实验所采用的助凝剂是PAM ,即聚丙烯酰胺,选用的浓度为2g/L 。取6个250ml 的烧杯,加入100ml 的原水,再向其中加入6ml 的PAC ,搅拌。向其中分别加入0.5ml 、1ml 、1.5ml 、2ml 、2.5ml 、3.0ml 的PAM ,搅拌。静止10分钟。取上层清液,测量COD ,计算COD 的去除率。见图 3

防锈极压乳化油配方

防锈极压乳化油配方 配方1 用量(g) 石油磺酸钠10 氯化石蜡4 氯化硬脂酸3 石油磺酸铅6 油酸3 三乙醇胺3 . 5 轻质润滑油(40 ℃,30 - 50m㎡/ s ) 70 . 5 配方 2 用量(g ) 石油磺酸钡11 . 5 环烷酸锌11 . 5 油酸三乙醇胺 4 . 8 磺化油12 . 7 硫化油酸2 . 0 油酸6 . 0 轻质润滑油(40 ℃,10 - 15 ㎡/ s ) 51 .5 配方 3 用量(g ) 石油磺酸钠25 磺化油43 三乙醇胺2 苯并三氮哇0 . 1 轻质润滑油(40 ℃,10 -15m ㎡/ s ) 29 . 9 工艺、性能、用途 将配方各组分加入反应釜中,在搅拌下使物料混匀即成。本组产品为深棕色油状液体,配方1 用于挤压,如螺帽挤压(勒光),光洁程度达到植物油水平,若加入0 . 5 片的硼酸,可防腐败并有杀菌作用;配方 2 用于压延,如冷压延硅钢片和压延薄板的润滑、冷却和清洗,完全可以替代植物油;配方 3 用于拉拔,如裸钢线、电缆线犷拉拔,具有清洗、润滑和防锈等性能。 极压乳化油配方 配方1 用量(g ) 硫化棉籽油38 氯化石蜡11 磷酸三乙醋0 . 5 -1 . 0 20 号机械油50 配方 2 用量(g ) 石油磺酸钠10 氯化石蜡4 氯化硬脂酸3 石油磺酸铅6 油酸3 三乙醇胺3 . 5 20 # (或30 # )机械油70 . 5

工艺、性能、用途 先将机械油加入反应釜中,然后加入其它组分,加热升温,在搅拌下使物料混匀、冷却即成。本组产品为棕褐色油状液体,主要用于攻丝、挤压、拉削和车削等作业,使加工件的光洁度提高,可延长刀具寿命和提高切削速度。 乳化切削油(液)配方 配方 1 用量(g ) 石油磺酸钠10 - 12 硝酸钠0 . 5 变压器油0 . 5 氢氧化钠5 6 #汽油机油84 -82 配方 2 用量(g ) 石油磺酸钠10 磺化油10 三乙醇胺10 油酸2 . 4 氢氧化钾0 . 6 水3 5 #高速机油64 配方3 用量(g ) 聚乙二醇(分子量400 ) 10 三聚磷酸钾3 蓖麻酸二乙醇胺盐 4 亚硝酸钠5 三乙醇胺9 山梨醇15 苯甲酸2 . 4 硼酸3 . 6 水48 工艺、性能、用途 配方1 、 2 是除氢氧化钠、氢氧化钾外,将其它组分加入反应釜中,再加入已溶于水的氢氧化钠、氢氧化钾,加热升温,在搅拌下使物料混合均匀,冷却后即成;配方3 是先将苯甲酸和硼酸加入反应釜中,然后加水,待完全溶解后,加入其余组分,在搅拌下使物料混合均匀即成。本组产品具有良好的润滑性、安定性、抗磨性、抗泡沫性、抗氧化性、抗腐败性和防菌等性能,pH 在 6 -10 .5 ,用于金属零部件和精密加工件的切削,可提高金属表面光洁度和延长刀具寿命。.

水包油和油包水的区别Word版

水包油和油包水的区别 在乳化技术方面有很多知识需要学习,对于普通大众来说大家对于乳化技术的了解太少,水包油和油包水是针对乳化技术来说的,很多不明白的朋友可能一开始不知道是什么意思,帮助大家更好认识乳化术,下面的文章内容主要介绍的就是水包油和油包水的区别,希望文章内容能在一定程度上对大家有利! ★油包水和水包油就是不同乳化剂的区别 1、油包水------见过空气球吧?气球可以装空气,当然也可以装水了,我们就称它为气球包水吧;若将气球皮改成“油膜”做的,水装在其内,它就是油包水了。不过在微乳化技术中,包水的“油膜”是表面活性剂做的。 2、水包油-----用气球装油也可以吧,将气球皮改成“水膜”做的,油装在其内,我们就称它为水包油了。同样,在微乳化技术中,这“水膜”也是用表面活性剂做的。 3、

“油膜”和“水膜”在学者们笔下常称之为胶球、胶囊、胶束等,用胶束一词最多,也有更简单叫“壳”的。 4、在微乳化技术中,油包水又叫做反胶束,水包油则叫做正胶束。 5、油包水的“壳”外层亲油,故可与油相混,水包油的“壳”外层亲水,故可与水相混,这是它们间的区别。 6、以上所述仅在微乳化技术中所用,而乳化技术中的油多于水时,我认为叫做W/O型(或称之O分之W型)为好,水多于油时应叫做O/W型(或称之W分之O型)为好,这也是为了与微乳化技术不相冲突。 护肤品分油包水和水包油两种,补水时要选择水包油的 乳液好不好吸收?一杯水真的就能知道。简易测试法

水测试乳液类型。简单地说,可区分为水包油或是油包水两种剂型,水包油型较易被吸收且较清爽,油包水型则不好吸收。

★工具一杯水 操作:将乳液或是乳霜取绿豆般大小放入水中,通常水包油型会浮在水面上,而且稍微搅拌就会慢慢溶解变成乳白色。相反的,大部分油包水型的乳液或乳霜会沉于水面下,且不易溶于水中。

乳化柴油工艺配方大全

乳化柴油工艺配方大全 微乳化柴油 微乳化柴油,属于一种乳化油。微乳化柴油,是由柴油、油酸、水和乙醇胺配制成,其配料比按重量百分比计:柴油%、油酸3-15%、水5-30%、乙醇胺%。微乳化柴油与其它乳化油相比,具有透明,保存期长,生产工艺简单,成本低,可作为商品油大量推广应用等优点。 微乳化复合柴油添加剂 本发明涉及一种复合燃料所使用的添加剂,特别是制造微乳化复合柴油燃料。本发明的微乳化复合柴油添加剂组成为:按重量百分比,油酸60-80%、浓氨水15-20%、一乙醇胺1-5%、乙酸1-5%、烷基萘%、肼6-10%。本添加剂用于制造微乳化柴油复合燃料,配制时按重量百分比为,柴油∶水∶添加剂=58%∶30%∶12%。该燃料的物理指标和化学指标与柴油接近,具有成本低、外观透明、稳定性好、热值高、对发动机无副作用。同时,本发明的添加剂可起到改善柴油燃烧性能、节省能源、减少排气污染的效果。 含有柴油、醇和水的乳化液及其制备方法 本发明涉及一种液体燃料及其制备方法,特别是涉及一种含有柴油、醇和水的乳化液新型液体燃料及其制备方法。在非塑料容器中,以含有柴油、醇和水的乳化液的总重量百分比计,加入60%-90%的柴油和%-8%的高效复合乳化剂,然后将频率为18KHZ-26KHZ超声波探头放入液面之下,经超声波作用接近1分钟后,逐次加入2%-11%的醇和%-21%的水,再经超声波作用两到三分钟,在整个过程中,保证液体温度不超过80℃,即可形成稳定的含有柴油、醇和水的乳化液。该乳化液稳定性良好,保存一至三个月,作为燃油可以降低NOx、碳黑等的排放,其烟度下降值最大可达50%。 自控优化掺水率的乳化柴油在线合成器 本发明公开了一种自控优化掺水率的乳化柴油在线合成器。包括在蓄水箱出水口依次接有浮子室、由控制器控制的自动剂量阀和手控的电磁阀;油箱经柴油清滤器,装有流量传感器的油路与手控的电磁阀出口的水路连通后接输油泵,随车式油水乳化器安置在输油泵和喷油泵之间的油路中。本发明可以不需添加任何乳化剂,也不需附加其他动力驱动就能获得良好效果的乳化油,并能根据柴油机负荷对水在燃油中的比例进行自动优化,提高节油水平。安装于柴油机上,边乳化边使用,降低柴油机油耗、减少排气烟度,具有节能和环保效益。本发明结构简单,操作方便。 自动旋转壁孔剪切式柴油乳化器 本发明公开了一种自动旋转壁孔剪切式柴油乳化器。其进油口和出油口分别设置在同一根中心轴的两端中心孔,在轴的中间通过轴承配合安装了能自动产生高速旋转的乳化筒,乳化筒的下端盖底面上径向对称布置了两个喷口相反的喷嘴,乳化筒的外壁上均匀布置多个极微小的通孔。一定比例的油水,通过输油泵以一定压力进入乳化器

国企乳化油配方

配方用量(g) 石油磺酸钠 10 氯化石蜡 4 氯化硬脂酸 3 石油磺酸铅 6 油酸 3 三乙醇胺 3 . 5 轻质润滑油(40 ℃ , 30 - 50m㎡ / s ) 70 . 5 配方 2 用量( g ) 石油磺酸钡 11 . 5 环烷酸锌 11 . 5 油酸三乙醇胺 4 . 8 磺化油 12 . 7 硫化油酸 2 . 0 油酸 6 . 0 轻质润滑油(40 ℃ , 10 - 15 ㎡ / s ) 51 .5 配方 3 用量( g ) 石油磺酸钠 25 磺化油 43 三乙醇胺 2 苯并三氮哇 0 . 1 轻质润滑油(40 ℃ , 10 -15m ㎡ / s ) 29 . 9 工艺、性能、用途 将配方各组分加入反应釜中,在搅拌下使物料混匀即成。本组产品为深棕色油状液体,配方 1 用于挤压,如螺帽挤压(勒光),光洁程度达到植物油水平,若加入 0 . 5 片的硼酸,可防腐败并有杀菌作用;配方 2 用于压延,如冷压延硅钢片和压延薄板的润滑、冷却和清洗,完全可以替代植物油;配方 3 用于拉拔,如裸钢线、电缆线犷拉拔,具有清洗、润滑和防锈等性能。 极压乳化油配方 配方1 用量( g ) 硫化棉籽油 38 氯化石蜡 11 磷酸三乙醋 0 . 5 -1 . 0 20 号机械油 50 配方 2 用量( g ) 石油磺酸钠 10 氯化石蜡 4 氯化硬脂酸 3 石油磺酸铅 6 油酸 3 三乙醇胺 3 . 5 20 # (或 30 # )机械油 70 . 5

工艺、性能、用途 先将机械油加入反应釜中,然后加入其它组分,加热升温,在搅拌下使物料混匀、冷却即成。本组产品为棕褐色油状液体,主要用于攻丝、挤压、拉削和车削等作业,使加工件的光洁度提高,可延长刀具寿命和提高切削速度。 乳化切削油(液)配方 配方 1 用量( g ) 石油磺酸钠 10 - 12 硝酸钠 0 . 5 变压器油 0 . 5 氢氧化钠 5 6 #汽油机油 84 -82 配方 2 用量( g ) 石油磺酸钠 10 磺化油 10 三乙醇胺 10 油酸 2 . 4 氢氧化钾 0 . 6 水 3 5 #高速机油 64 配方 3 用量( g ) 聚乙二醇(分子量 400 ) 10 三聚磷酸钾 3 蓖麻酸二乙醇胺盐 4 亚硝酸钠 5 三乙醇胺 9 山梨醇 15 苯甲酸 2 . 4 硼酸 3 . 6 水 48 工艺、性能、用途 配方 1 、 2 是除氢氧化钠、氢氧化钾外,将其它组分加入反应釜中,再加入已溶于水的氢氧化钠、氢氧化钾,加热升温,在搅拌下使物料混合均匀,冷却后即成;配方 3 是先将苯甲酸和硼酸加入反应釜中,然后加水,待完全溶解后,加入其余组分,在搅拌下使物料混合均匀即成。本组产品具有良好的润滑性、安定性、抗磨性、抗泡沫性、抗氧化性、抗腐败性和防菌等性能, pH 在 6 -10 .5 ,用于金属零部件和精密加工件的切削,可提高金属表面光洁度和延长刀具寿命。

油包水乳化剂一般的HLB

油包水乳化剂一般的HLB?在3~8的范围内,而目前国内以及国外市场上常见的又以5~6为主,在不同的涂抹感观要求下,HLB可有相应的调整。目前常见的油包水乳化剂大概可分为以下几类:脂肪酸的二价或三价碱土金属盐,聚氧乙烷和聚氧丙烷共聚体,失山梨醇脂肪酸酯,蔗糖脂肪酸酯,聚氧乙烯脂肪醇醚,聚氧乙烯聚脂肪醇醚,聚甘油脂肪酸酯等等。如硬脂酸镁,硬脂酸锌,硬脂酸铝,失水山梨醇棕榈酸酯,失水山梨醇硬脂酸酯,失水山梨醇油酸酯,失水山梨醇倍半油酸酯,失水山梨醇三油酸酯,聚氧乙烯硬脂醇醚,聚氧乙烯油醇醚,聚氧乙烯蜂蜡,聚氧乙烯蓖麻油,甲基 在市 ???? 这 ‘一样,30 水主乳化剂的HLB选择范围控制在5~6之间,助乳化剂的范围可能更广些,如HLB在2~8的范围内选者。由于HLB值是随着温度的变化和体系中反活性基团的含量多少而发生变化的。通常升高温度,体系的HLB值会下降,降低温度,体系HLB值会上升。如经常经过由低温到常温的温度变化,油包水的体系发生油水分层进而完全转相的情形,就属于这样的范畴。那么在不影响体系乳化能力的情形下,适当的添加低HLB的油包水乳化剂,如HLB在3~5之间的失水山梨醇脂肪酸酯,不仅可以降低配方的成本,增强涂抹的轻盈的感觉,而且将对体系耐寒也有一定的帮助。 在油包水乳化剂中,聚氧乙烯30聚羟基硬脂酸酯的乳化能力和抗极性油脂非常强,要远远的优异

于其他类型的乳化剂。除了本身的较高的分子量,双“锚“式界面定型,其较长的聚氧乙烯链式非常关键的。由于乳化剂要在体系中稳定,必须具有强烈的双亲性,对于任何一相,过弱或过强度不利于体系的稳定。由于聚氧乙烯30聚羟基硬脂酸酯因为含有30个聚氧乙烯基团,同比于其他的油包水乳化剂,能够承受的极性油脂的能力和强度要高的多(见下文油脂的极性对配方体系的影响),但并非是无限制的增长。虽然烷基聚二甲基硅氧烷的聚氧乙烷丙烷的共聚体也有较高的聚氧乙烯基团,但是由于反向的亲油基团很弱,过而对极性油脂的承受能力也是有限的。正是这样的原因,在油脂极性和乳化剂乳化能力的平衡中(极性油脂很容易降低乳化体系的黏度),聚氧乙烯30聚羟 另外, 加 是通过离子键,其键能要远远大于油包水乳化剂亲水端水合时形成的氢键和共价键,因而在类似于“盐析“效应的影响下,乳化剂在油相得到了更大的溶解值。 另外,无机盐可以使乳化颗粒带电,形成扩散双电层。大部分稳定的乳状体系因电离或者吸附会产生电荷,这些属性和胶体有类似的性能。由于乳化剂常带有极性基团,故吸附与电离常同时发生。一般介电常数较高的物质常带正电,介电常数低的物质常带负电。故在O/W型乳状液中油滴常带负电荷;在W/O型乳状液中,水滴常带正电荷。由于液滴带电而形成双电层,它们之间的相互吸引和排斥,提高了分散体的稳定性,尤其对于黏度较低的油包水乳化体系更显得重要。 作为常见的山梨醇脂肪酸酯,聚甘油脂肪酸酯以及聚氧乙烯脂肪酸酯等油包水乳化剂,可针对

乳化油工艺规程

乳化油生产工艺规程 编制李玉争版本号QN—YP—2011—A 审核张勇批准魏华军

目录 第一部分工艺规程管理制度 第二部分乳化油生产工艺规程 1. 投料生产工艺规程 2. 搅拌生产工艺规程 3. 皂化生产工艺规程 4. 调试生产工艺规程 5. 分装生产工艺规程 第三部分乳化油生产劳动防护制度第四部分乳化油产品说明书

第一部分工艺规程管理制度 一、目的: 规范本公司工艺规程的编制和修订方法、工艺规程的内容与格式,保证工艺规程的贯彻执行。 二、范围: 适用于本公司各产品工艺规程的管理。 三、责任: 1.生产部负责组织制订工艺规程管理制度,各相关部门遵照执行。 2.各车间生产负责人负责审批产品工艺规程,并通过上级批准执行。 四、定义: 工艺规程是规定为生产一定数量产品所需原材料和包装材料的数量,以及工艺条件、操作要点、注意事项,包括生产过程质量控制的一个或一套文件;是对产品设计、配方、工艺、标准、质量监控以及生产和包装全面规定性描述;是生产管理和质量监控的基准性文件,是制定批记录、批生产作业计划的重要依据。 五、内容: 1.凡正式生产的产品都必须制订工艺规程,否则不能生产。 2.编制工艺规程必须以法定标准和新产品审核文件为依据,按照相 关要求组织编写,要科学地总结生产经验,采用先进技术,确保产品优质、指标先进、生产安全。 3.产品工艺规程由生产部负责人组织人员编写,由各车间生产负责 人审核,并经上级批准后执行。工艺规程应有编写人、生产部负责人、各车间生产负责人签字及批准执行日期。 4.产品在试产前,应根据科研设计资料(包括引进技术)及现在情 况编制试行工艺规程,待生产正常后一年内在总结实践的基础上编制正式工艺规程。 5.当遇到有工艺改革或变动时,工艺规程由生产部负责人组织修订, 其修订程序同制订程序。 6.编制、修订工艺规程的若干规定: 6.1.各种工艺技术参数和技术经济定额的计量单位均按国家规定采 用国际计量单位。

相关文档
最新文档