三角形五心与向量

合集下载

完整版三角形的五心向量结论证明

完整版三角形的五心向量结论证明

三角形的五心向量结论证明1. O是RP2R的重心UJU uuir umr rOp OP, OP3 0(其中a,b,c 是PP2P3 三边)P2 PP3uu uur uur r证明:充分性:OR OF2 OP30 O是PP2F3的重心uuu uir uur r uur uur uur uuur uur若OR OP,OP3 0 ,则O R OP2 OR,以OR,OF2OP1P3 ' P2,设OP3与RP2交于点P3,则F3为RF2的中点,有即O,R, P,p四点共线,故PP2P3的中线,同理,uur uuuOP3 OP3 ,为邻边作平行四边形uurOP1uur uuur,OP2OP3,得PO, P2O亦为PP2P3的中线,所以,O为的重心。

2•在ABC中,给uurADuur uuuAB AC ,等于已知AD是ABC 中BC边的中线;————uur* △ ABC中AB AC 一定过BC的中点,通过△ABC的重心luuAPuuBP*PUG1 uuu(AB31 uuu-(BA31 uur -(PAuurAC),uurBC),P为VABC的重心uur uirPB PC)uuu uu uur uur uur urir uur uur uur uur uuu uuu uuu uurPG PA AG PB BG PC CG 3PG (AG BG CG) (PA PB PC)-G是厶ABC的重心uur uuu uuu r UU uur uuu r 亦uur uuu uuu uuu-GA GB GC = 0 AG BG CG : =0,即3PG PA PB PCG ABC的重心(P是平面上任意点).证明(反之亦然(证略))uurPBuirPC).uur 1 uur 由此可得PG (PA3S*若O是ABC的重心,则BOC S AOC S AOB1SS ABC3uuu umrAPgBC 0 2. uuu uuirBPgAC 0则0是厶ABC 的垂心证明:由 OA '\BC 3 = 003 +CA J ,得 -0?)3 = OB \COC -OA )2 ,所以.■ .' ■''"。

必修4-向量-三角形的五心

必修4-向量-三角形的五心
设D为AB的中点 .
PA BC ( PD DA) BC
P A
DA BC
B
D
C
2 2 1 5 1 ( AC AB ) ( AC AB ) ( AB AC ) 2 2 2
问题4 : 在ABC中,已知AB 3, AC 2, 点H , P分别是ABC的垂心和外心, 求 PH BC .
三角形“五心”向量形 式的充要条件 设O为ABC所在平面上一点,角 A、B、C所对边长 分别 为a、b、c,则:
2 2 2
( 1)O为ABC的外心 OA OB OC ;
(2)O为ABC的重心 OA OB OC 0
(3)O为ABC的垂心 OA OB OB OC OC OA;
问 题2 : 点P为ABC的 外 心 , | AB | 3, | AC | 2, 求 AP BC的 值.
P A
r 2 uuu r2 1 uuu 5 ( AC - AB ) B 2 2
D
C
问题3 : 在ABC 中, AB 3, AC 2, P是 BC中垂线上任一点, 则 PA BC ____ .
(4)O为ABC的内心 a OA b OB c OC 0
(5)O为ABC的A的旁心 a OA b OB c OC
问题1 : 在ABC中, AB 3, AC 2, P是BC中点, 则 AP BC ____ .
r 2 uuu r2 1 uuu 5 ( AC - AB ) 2 2
PH BC ( PA AH ) BC
PA BC AH BC PA BC PA ( AC AB)
A
AP AC AP AB

高考数学专题突破:三角形的五心与向量【精编版】

高考数学专题突破:三角形的五心与向量【精编版】

高考数学专题突破:三角形的五心与向量一、 外心1.定义:三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心).三角形的外心到三角形的三个顶点距离相等,都等于三角形的外接圆半径.AB CO2.性质:① 锐角三角形的外心在三角形内;直角三角形的外心在斜边中点;钝角三角形的外心在三角形外. ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。

③OA=OB=OC=R④∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA⑤S△ABC=abc/4R⑥||||||==(或222O O O ==)⑦C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S A OB A OC BOC =∠∠∠=∆∆∆::::故0OC C 2sin OB B 2sin OA A 2sin =++二、内心1.定义:三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心).三角形的内心到三边的距离相等,都等于三角形内切圆半径.IK H E F AB C M2.性质: 内切圆半径r 的计算:设三角形面积为S ,r=2S/(a+b+c)特别的,在直角三角形中,有 r =12(a +b -c ). ②∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2③S△ABC=[(a+b+c)r]/2 (r 是内切圆半径)④O 是内心ABC ∆的充要条件是0|CB ||CA ||BC ||BA |AC |AB |=-⋅=-⋅=-⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e (O )e e (O )e e (O 322131=+⋅=+⋅=+⋅ ⑤O 是ABC ∆内心的充要条件也可以是0OC c OB b OA a =++⑥若O 是ABC ∆的内心,则c b a S S S A OB A OC BOC ::::=∆∆∆ 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;⑦||||||0AB PC BC PA CA PB P ++=⇔ ABC ∆的内心; ⑧向量()(0)||||AC AB AB AC λλ+≠ 所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);三、垂心2.性质:①锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外② 垂心O 关于三边的对称点,均在△ABC 的外接圆上 ③△ABC 中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO ·OE=CO ·OF④ H 、A 、B 、C 四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

专题(3)三角形“五心”与向量相关知识

专题(3)三角形“五心”与向量相关知识

高2016届数学(理科)第二轮专题复习专题(3)三角形“五心”与向量相关知识一、三角形“五心”基本概念1、三角形的外心:三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心).三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径.锐角三角形的外心在三角形内;直角三角形的外心在斜边中点;钝角三角形的外心在三角形外.外心 内心2、三角形的内心:三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心).三角形的内心到三边的距离相等,都等于三角形内切圆半径.设三角形面积为S ,内切圆半径为r ,并记1()2p a b c =++,则S r p =.特别的,在直角三角形中,有 1()2r a b c =+-.重心 垂心 旁心3、三角形的重心:三角形的三条中线交于一点,这点称为三角形的重心.三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2.4、三角形的垂心:三角形的三条高交于一点,这点称为三角形的垂心.斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”.5、三角形的旁心:三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心).每个三角形都有三个旁切圆.二、从静止的角度看向量的五“心”1、已知点O 是三角形ABC 所在平面上一点,若0OA OB OC ++=,则O 是三角形ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心分析:若0OA OB OC ++=,则OA OB OC +=-,设以OA 、OB 为邻边的平行四边形为OAC B ',OC 与ABB交于点D ,则D 为AB 的中点,由OA OB OC '+=得,OC OC '=-,即C 、O 、D 、C '四点共线,故CD 为ABC ∆的中线,所以O 在边AB 的中线上,同理可证, O 在边AC 的中线上, O 在边BC 的中线上所以O 是三角形ABC 的重心.2、已知点O 是三角形所在平面上一点,若OA OB OB OC OC OA ⋅=⋅=⋅,则O 是三角形ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心分析:由OA OB OB OC ⋅=⋅得,()0OB OA OC ⋅-=,即0OB CA ⋅=,所以,OB CA ⊥同理可证:,OC AB OA BC ⊥⊥,所以O 是ABC ∆的垂心.3、已知点O 是三角形所在平面上一点,若0aOA bOB cOC ++=,则O 是三角形ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心分析::若0aOA bOB cOC ++=,又因为,,OB OA AB OC OA AC =+=+则()0a b c OA bAB cAC ++++=.所以||||bc AB AC AO a b c AB AC ⎛⎫=+ ⎪++⎝⎭,因为||AB AB 与||AC AC 分别表示AB 和AC 方向上的单位向量,设AP =||AB AB +||AC AC ,则AP 平分BAC ∠.又AO 、AP 共线,知AO 平分BAC ∠。

O向量表示三角形的五心

O向量表示三角形的五心

O向量表示三角形的五心Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】向量代表三角形的“心”向量是代数与几何的主要桥梁,这种联系不仅体现在平面直角坐标系中点的坐标与向量的坐标之间的对应关系,还体现在由向量表达式和向量的几何中意义与平面几何中三角形的“心”之间的密切联系。

一、重心例1 已知O 是△ABC 的重心,求证:0=++OC OB OA 。

解:如图,由已知,O 是△ABC 的重心。

连结AO 、BO 、CO ,使它们的延长线与BC 、CA 、AB 分别交于点D 、E 、F 。

)(3232CA DC DA OA +==,)(3232AB EA EB OB +==, )(3232BC FB FC OC +==, 所以BC BC AB CA FB EA DA OC OB OA 21(32)(32=+++++=++0)2121=++=+++++BC AB CA BC AB CA AB CA 。

例2 已知A 、B 、C 是不共线的三点,O 是△ABC 内一点,若0=++OC OB OA ,则O 是△ABC 的重心。

证:∵0=++OC OB OA ,∴)(OC OB OA +-=,即OC OB +是与OA 方向相反且长度相等的向量。

以OB 、OC 为相邻的两边作平行四边形BOCD ,则OC OB OD +=,∴OA OD -=。

在平行四边形BOCD 中,设BC 与OD 相交于E ,EC BE =,则ED OE =。

∴点O 是△ABC 的重心例3 在凸六边形A 1A 2A 3A 4A 5A 6中,各边A 1A 2、A 2A 3、A 3A 4、A 4A 5、A 5A 6、A 6A 1的中点依次为M 1、M 2、M 3、M 4、M 5、M 6。

求证:△M 1M 3M 5与△M 2M 4M 6的重心重合。

证:设△M 1M 3M 5的重心为G ,则对于平面内的任一点O ,有)(31531OM OM OM OG ++=。

三角形五心的向量表达式

三角形五心的向量表达式

三角形五星的向量表达式1若P是△ABC的重心PA+PB+PC=02若P是△ABC的垂心PA•PB=PB•PC=PA•PC(内积)3若P是△ABC的内心aPA+bPB+cPC=0(abc是三边)4若P是△ABC的外心|PA|²=|PB|²=|PC|²(AP就表示AP向量|AP|就是它的模)5AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞)则直线AP经过△ABC内心6AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞)经过垂心7AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+∞)经过重心8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点【以下是一些结论的有关证明】1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB)+cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c)OC+(aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。

必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},求P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP•BC=入{(AB•BC/|AB|^2*sin2B)+AC•BC/(|AC|^2*sin2C)}, AP•BC=入{|AB|•|BC|cos(180°-B)/(|AB|^2*sin2B)+|AC|•|BC| cosC/(|AC|^2*sin2C)},AP•BC=入{-|AB|•|BC|cos B/(|AB|^2*2sinB cos B)+|AC|•|BC| cosC/(|AC|^2*2sinC cosC)},AP•BC=入{-|BC|/(|AB|*2sinB)+|BC|/(|AC|*2sinC)},根据正弦定理得:|AB|/sinC=|AC|/sinB,所以|AB|*sinB=|AC|*sinC ∴-|BC|/(|AB|*2sinB)+|BC|/(|AC|*2sinC)=0,即AP•BC=0,P点轨迹过三角形的垂心3.OP=OA+λ(AB/(|AB|sinB)+AC/(|AC|sinC))OP-OA=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过三角形重心。

三角形五心的向量表达式

三角形五心的向量表达式

三角形五星的向量表达式1若P是△ABC的重心PA+PB+PC=02若P是△ABC的垂心PA•PB=PB•PC=PA•PC(内积)3若P是△ABC的内心aPA+bPB+cPC=0(abc是三边)4若P是△ABC的外心|PA|²=|PB|²=|PC|²(AP就表示AP向量|AP|就是它的模)5AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞)则直线AP经过△ABC内心6AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞)经过垂心7AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+∞)经过重心8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点【以下是一些结论的有关证明】1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB)+cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c)OC+(aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。

必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},求P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP•BC=入{(AB•BC/|AB|^2*sin2B)+AC•BC/(|AC|^2*sin2C)}, AP•BC=入{|AB|•|BC|cos(180°-B)/(|AB|^2*sin2B)+|AC|•|BC| cosC/(|AC|^2*sin2C)},AP•BC=入{-|AB|•|BC|cos B/(|AB|^2*2sinB cos B)+|AC|•|BC| cosC/(|AC|^2*2sinC cosC)},AP•BC=入{-|BC|/(|AB|*2sinB)+|BC|/(|AC|*2sinC)},根据正弦定理得:|AB|/sinC=|AC|/sinB,所以|AB|*sinB=|AC|*sinC ∴-|BC|/(|AB|*2sinB)+|BC|/(|AC|*2sinC)=0,即AP•BC=0,P点轨迹过三角形的垂心3.OP=OA+λ(AB/(|AB|sinB)+AC/(|AC|sinC))OP-OA=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过三角形重心。

(完整版)用向量表示三角形的五心

(完整版)用向量表示三角形的五心

用向量表示三角形的五心如图,ABC ∆中,E 是AC 上一点,F 是AB 上一点,且ln EC AE l m FB AF ==,(通分总可以把异分母分数化为同分母分数).连接BE 、CF 交于点D ,确定点D 的位置. 解:设.,b AC a AB == DF CD DE BD μλ==,由定比分点的向量表达式,得b a m l m a m l m b AB ml m AC AF AC AD b n l n a AC nl n AB AE AB AD μμμμμμμμμμμλλλλλλλλ++++=++++=+⋅+++=++=++++=+⋅+++=++=11))(1())(1(11)(1111))(1(11)(1111 ⎪⎪⎩⎪⎪⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=++++=+∴n m l m n l n l n m l m μλμλλμμλ解得11))(1())(1(11 代入得:b nm l n a n m l m AD +++++= 设O 是平面上任意一点,则有.,,OA OC b OA OB a OA OD AD -=-=-= 上式可化为:OC nm l n OB n m l m OA n m l l OD ++++++++= (*) 由(*)式出发,可得三角形五心的向量表达式.(1).若BE 、CF 是∆ABC 两边的中线,交点D 是三角形的重心.则1,1====FBAF l m EC AE l n )(31OC OB OA OD ++=(2)若BE 、CF 是∆ABC 两内角的平分线,交点D 是三角形的内心.则ab BC AC FB AF l m ac BC AB EC AE l n ======, 代入(*)式得:.OC cb ac OB c b a b OA c b a a OD ++++++++=(3)若BE 、CF 是∆ABC 两边上的高,交点D 是三角形的垂心. A B C D E F则Aa B bFBAF l m A a C c C a A c EC AE l n cos cos ,cos cos cos cos ===⋅⋅==同理. OC Cc B b A a C cOB C c B b A a B b OA C c B b A a A a OD cos cos cos cos cos cos cos cos cos cos cos cos ++++++++=∴ (4)若BE 、CF 的交点D 是∆ABC 的外心,即三边中垂线的交点,则有:DA=DB=DC. 根据正弦定理有:A C A A C C BDC A ADBC CBE C BE EBA A BE EC AE l n 2sin 2sin cos sin cos sin )(21sin sin )(21sin sin sin sin sin sin =⋅⋅=∠-⋅∠-⋅=∠⋅∠⋅==ππ 同理AB FB AF l m 2sin 2sin == OC CB AC OB C B A B OA C B A A OD 2sin 2sin 2sin 2sin 2sin 2sin 2sin 2sin 2sin 2sin 2sin 2sin ++++++++=∴(1) 重心O:0=++OC OB OA(2) 内心O:0=++OC c OB b OA a(3) 垂心O:0cos cos cos =++OC Cc OB B b OA A a (4) 外心O:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A(5) A 对的旁心O:0=++-OC c OB b OA a ; B 对的旁心O:0=+-OC c OB b OA aC 对的旁心O:0=-+OC c OB b OA a . E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(9) O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足
()[0,).||||
AB AC OP OA AB AC λλ=++⋅∈+∞ 则P 的轨迹一定通过△ABC 的内心。

O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足
()[0,).||c o s ||c o s
A B A C O P O A A B B A C C λλ=++⋅∈+∞ 则P 的轨迹一定通过△ABC 的垂心。

O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足
()[0,).||s i n ||s i n
A B A C O P O A A B B A C C λλ=++⋅∈+∞ 则P 的轨迹一定通过△ABC 的重
心。

三角形五心与向量
1.
(2003年高考天津)O 是平面上一 定点,A 、B 、C 是平面上不共线的三
个点,动点P 满足()[0,).||||
AB AC OP OA AB AC λλ=++⋅∈+∞ 则P 的轨迹 一定通过△ABC 的
( ) A .外心 B .内心 C .重心 D .垂心 解:±||a a 表示与a 共线的单位向量。

证明:||||1||||
a a a a == 。

,||||
AB AC AB AC 分别表示与AB 、AC 方向相同的单位向量。

2. (全国卷I 文第12题)
点O 是三角形ABC 所在平面内的一点,满足⋅=⋅=⋅,则点O 是ABC ∆的( )
(A )三个内角的角平分线的交点
(B )三条边的垂直平分线的交点 (C )三条中线的交点 (D )三条高的交点 解:由OC OB OB OA ⋅=⋅,得0)(=⋅-,0=⋅OB CA ,所以AC OB ⊥, 同理可得AB OC ⊥,BC OA ⊥,因此点O 是三条高的交点。

3.(湖南卷文第9题)
P 是△ABC 所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是△ABC 的( )
A .外心
B .内心
C .重心
D .垂心 解:由PC PB PB PA ⋅=⋅,得0)(=⋅-PB PC PA ,0=⋅PB CA ,所以AC PB ⊥, 同理可得AB PC ⊥,BC PA ⊥,因此点P 是三条高的交点,点P 是△ABC 的垂心。

4.若O 为△ABC 的重心,则0OA OB OC ++=。

相关文档
最新文档