九年级上期末数学练习卷二(2012.12)
2012年九年级(上)数学期末考试试卷及答案

2012学年第一学期期末考试卷九 年 级 数 学温馨提示:1.本试卷分试题卷和答题卷两部分,考试时间120分钟,满分120分. 2.答题前,请在答题卷的密封区内填写学校、准考证号、班级和姓名等. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应.试 题 卷一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.若双曲线y =2x ,经过点A (m ,-1),则m 的值为…………………………………( ▲ )A .3B .2C .-2D .-32.二次函数y =-2(x +1)2-4,图象的顶点坐标…………………………………………( ▲ ) A .(1,4) B .(-1,-4) C .(1,-4) D .(-1,4) 3.如图O 是圆心,半径OC ⊥弦AB 于点D ,AB =8,CD =2, 则OD 等于………………………………………( ▲ )A .2B .3C .D .4.已知x : y =3 : 2,则x : (x +y )= …………………( ▲ )A .35 B .53 C .85D .83 5.在Rt △ABC 中,∠C =90°,AC =3,BC =4,那么cos B 的值是………………………( ▲ )A .54 B .53 C .43 D .346.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只. 则从中任意取 一只,是二等品的概率等于……………………………………………………………( ▲ )A .112B .16C .14D .7127.如图,直线AB 切⊙O 于点C ,∠OAC =∠OBC ,则下列结论错误的是………………………………………………( ▲ A .OC 是△ABO 中AB 边上的高B .OC 所在直线是△ABO 的一条对称轴C .OC 是△AOB 中∠AOB 的平分线D .AC >BC (第3题图) (第7题图)B8.如图,下列选项中不是正六棱柱三视图的是…………………………………………( ▲ )A .B .C .D .9.有一圆心角为120o 、半径长为6cm 的扇形,若将扇形外围的两条半径OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是 ………………………………………………………( ▲ ) A .32cmB .35cmC .62cmD .24cm10.如图,已知二次函数y =ax 2+bx +c (a ≠0)图象过点(-1,0), 顶点为(1,2),则结论:①abc >0;②x =1时,函数最大值是2; ③4a +2b +c >0;④2a +b =0;⑤2c <3b . 其中正确的结论有( ▲ )A .1个B .2个C .3个D .4个二、认真填一填(本题有6小题,每小题4分,共24分) 11.抛物线222013y x x =+-的对称轴是 ▲ . 12.已知正比例函数2y x =与反比例函数2y x=的图象相交于A ,B 两点,若A 点的坐标为(1,2),则B 点的坐标为 ▲ .13.比较三角函数值的大小:cos40° ▲ cos50°.14.在“正三角形、正方形、正五边形、正六边形、等腰梯形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率为 ▲ .15.如图△ABC 中边BC 所在直线与圆相切于C 点,边AC 交圆于另一点D ,若∠A =70︒,∠B =60︒,则劣弧 C D 的度数是 ▲ .(第15题图) (第16题图)16.如图,已知在直角梯形ABCD 中,AD ⊥DC ,AB ∥DC ,AB =2,DC =3,AD =7,动点P 在梯形边AB 、BC 上,当梯形某两个顶点和动点P 能构成直角三角形时,点P 到AD 之距记为d ,则d 为 ▲.ABDx (第10题图)D C三、解答题(本题有8题,共66分,各小题都要写出解答过程) 17.(本题6分)已知:△ABC 中,∠C =90°,a =3,∠A =30°,求∠B 、b 、c . 18.(本题6分)(1)请在坐标系中画出二次函数 y =-x 2+2x 的大致图象; (2)在同一个坐标系中画出y =-x 2+2x 的图象向上平移两个单位后的大致图象. 19.(本题6分)已知图中的曲线是函数5m y x-=(m 为常数) 图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数2y x =图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函 数的解析式.20.(本题8分)在ABCD 中,过A 作AE ⊥BC 于E ,连结DE ,F 为线段DE 上一点,且∠B =∠AFE . (1)求证:△ADF ∽△DEC . (2)若AB =5,AD =33,AE =3, ①求DE 的长; ②求AF 的长.21.(本题8分)已知矩形ABCD,以点A 为圆心、AD 为半径的圆交AC 、AB 于点M 、E,CE 的延长 线交⊙A 于点F,连结AF ,CM=2,AB=4. (1)求⊙A 的半径; (2)求CE 的长;CxbA 1ABC B 1(3)求△AFC 的面积。
九年级数学上册期末试题_含答案(2012.12)

(第7题图)B'A'ABC座位号2012---2013学年度第一学期期末监测试题 九年级数学一、选择题(每小题3分,共30分)1、下列方程中一定是关于x 的一元二次方程是( )A 、)1(2)1(32+=+x x B、02112=-+x xC、02=++c bx ax D、0)7(2=+-x x x 2、在下列图形中,既是中心对称图形又是轴对称图形的是( )3、下列事件中,是必然事件的是( )A 打开电视机,正在播放新闻B 父亲年龄比儿子年龄大C 通过长期学习,你会成为数学家D 下雨天,每个人都打伞4、袋子中有两个同样大小的4个小球,其中3个红球,1个白球,从袋中 任意地同时摸出两个小球,则这两个小球颜色相同的概率是( ) A 、21 B 、31 C 、32 D 、415、如图,∠A 是⊙O 的圆周角,∠A=40°,则∠OBC=( ) A 、30° B 、40° C 、 50° D 、 60°6、下列语句中,正确的有( )A 、在同圆或等圆中,相等的圆心角所对的弧相等。
B 、平分弦的直径垂直于弦。
C 、长度相等的两条弧相等。
D 、圆是轴对称图形,任何一条直径都是它的对称轴。
7、如图,将△ABC 绕点C 旋转60°得到△C B A '',已知AC=6,BC=4,则线段AB 扫过的图形的面积为( ) A 、32π B 、310π C 、6π D 、38π。
8、如图,AB 是⊙O 的直径,∠ABC=30°,则∠BAC 的度数是( ) A.90° B.60° C.45° D.30°9、直线AB CD BC 分别与⊙O 相切于E 、F 、G且A B ∥CD ,若OB=6cm,0C=8cm ,则BE+CG 的长等于( ) A 、13 B 、12 C 、11 D 、1010、已知:关于x 的一元二次方程041)(22=++-d x r R x 有两个相等的实数根,其中R 、r 分别是⊙O 1 、 ⊙O 2的半径,d 为两圆的圆心距,则⊙O 1 与⊙O 2的位置关系是( ) A 、外离 B 、外切 C 、相交 D 、内含。
2012年上学期期末九年级数学试题卷含答案

2012学年第一学期期末考试卷九年级数学亲爱的同学:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分; 2.答题前,请在答题卷的密封区内填写学校、学籍号、班级和姓名; 3.不能使用计算器;4.所有答案都必须做在答题卷规定的位置上,注意试题序号和答题序号相对应.试题卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1. 如图,△ABC 中,DE ∥BC ,则下列结论:①△ADE ∽△ABC ;②ECAE DB AD =;③AC ABAE AD =,正确的有 A .①② B .①③ C .②③ D .①②③2.已知反比例函数1m y x-=的图像分布在二、四象限,则实数m 的取值范围是 A .m <1 B .m >1 C . m <0 D . m >0 3.二次函数142--=x x y 图象的顶点的纵坐标是A. —5B. -4C. -3D.-1 4.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径, ∠BAD =80°, 且弦BD 垂直于AC ,则∠C 的度数是 A .40° B .45° C .50° D .55° 5.请比较sin 30°、cos 45°、tan 60°的大小关系A. sin 30°< cos 45°<tan 60°B. cos 45°< tan 60°<sin 30°C. tan 60°< sin 30°<cos 45°D. sin 30°< tan 60°<cos 45°6.在比例尺为10000:1的地图上,某建筑物在图上的面积为50 cm 2,则该建筑物实际占地面积为(第1题)(第4题)A .50 m 2B .5000 m 2C .50000 m 2D . 500000 m 27. 在△ABC 中,∠C =90°,若cosB =43,则tanB 的值为 A.53 B. 54C. 47D. 378.如图,在等边△ABC 中,AB 、AC 都是⊙O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =1,那么△ABC 的面积为A.33B.3C. 3D. 49.正比例函数y 1=kx 的图像和反比例函数y 2=2k x的图像交于A (-1,3)、B (1,-3)两点,若y 1 <y 2,则x 的取值范围是A. x <-1或x >1B. x <-1或0<x <1C. -1<x <0或x >1D. -1<x <0或 0<x <110.如图, 将二次函数2)47(22--=x y 的图象向上平移m 个单位后,与二次函数4)2(21-+=x y 的图象相交于点A ,过A 作x 轴的平行线分别交1y 、2y 于点B 、C ,当 AC =21BA 时,m 的值是 A. 2 B.1643C.415D. 4二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11.如果3=-+yx yx ,那么y x :等于 ▲ . 12. 已知二次函数322+-=x x y ,当0≤x ≤3时,y 的最大值是 ▲ ,y 的最小值是 ▲ .13.把一个半圆形纸片卷成圆锥的侧面,那么圆锥母线与高的夹角为 ▲ .(第8题)(第10题)14.在平面直角坐标系中,将抛物线62--=x x y 向左(或向右)平移m 个单位,使平移后的抛物线恰好经过原点,则m 的值为 ▲ . 15.如图,△ABC 的外接圆⊙O 的半径为2,AC =3,则sinB = ▲ . 16.如图,△ABC 、△D CE 、△GEF 都是正三角形,且B 、C 、E 、F 在同一直线上,A 、D 、G 也在同一直线上,设△ABC ,△DCE ,△GEF 的面积分别为123,,S S S.当9,421==S S 时,3S = ▲ ;若依次作正三角形,则第n 个正三角形的面积n s = ▲ .三. 全面答一答 (本题有7个小题, 共66分) 17.(本小题6分)计算:1245tan 30cos 1241--︒⋅︒-18.(本小题8分)如图,在44⨯的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. 求证:EDF BAC ∠=∠19.(本小题8分)小明要制作一个三角形的钢架模型,在这个三角形中,长度为x (单位:cm )的边与这条边上的高之和为20cm ,这个三角形的面积S (单位:cm 2)随x (单位:cm )的变化而变化.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,这个三角形面积S 最大?最大面积是多少?(第15题)(第16题)(第18题)20.(本小题10分)如图,矩形广场ABCD ,AB =4m ,BC =3m ,E 是AD 边上一点,AE =2m ,AC 、BE 交于F ,把广场分为四部分,这四部分分别由红、黄、蓝、白四种颜色的地砖铺成,四种颜色的地砖位置如图所示,则黄色部分面积是多少平方米?21.(本小题10分)由于现在中学生的视力问题日渐严重,某课桌生产单位根据保护视力“一寸,一拳,一尺”的要求,给初三学生制作了新课桌. 现测得某学生坐在椅子上时的部分数据,如图所示:高AB =1.2米,腿长BC =0.3米,课桌到脚的距离DC =0.2米. 假如人眼A 看俯角为53°,距离为1尺(约0.3米)的P 处看得最清楚.(1)课桌的高FD 为多少?(2)如果课桌到人的距离即E 到AB 的距离为一拳(约0.04米),则要使EP 等于GE 的四分之一,则FG 等于多少?(sin 53°= 0.8 ,cos 53°=0.6,tan 53°=1.3)22.(本小题12分) 如图,正方形ABCD 边长为2,AB ∥x 轴,顶点A 恰好落在双曲线xy 21=上,边CD 、BC 分别交该双曲线于E 、F 点,若线段AE 过原点. 求:(1)点E 的坐标; (2)△AEF 的面积.23.(本小题12分)如图,⊙Q 过坐标原点,分别与x 轴、y 轴交于点A 、B ,劣弧AO 的度数是90°.经过A 、B 两点的抛物线32++=bx x y 交x 轴于另一点C .(1)求A 、B 两点的坐标; (2)求抛物线的解析式;E A(第20题)(第22题)D CB(第21题)(3)若点M 是抛物线在y 轴右侧部分上的一个动点,作MN ⊥x 轴于点N .问是否存在点M ,使△CMN 与△OCB 相似?若存在,求出点M 的坐标;若不存在,说明理由.2012学年第一学期九年级期末考试数学 参考解答和评分标准一.选择题(每题3分,共30分)二.填空题(每题4分,共24分)11. 2; 12. 6, 2; 13. 30°; 14. 3或者2 ; 15. 43; 16.481,1)49(4-n ; 三.解答题(共66分)17.(本题6分)解:原式=211233241-⨯-⨯=21-(4+2分) 18.(本题8分)解:由图形可得AB =2,AC =52, BC =22, DE =2, DF =10, EF =2,----3分∴EFBCDF AC DE AB == ------------2分 ∴△ABC ∽△DEF ------------2分 ∴ EDF BAC ∠=∠------------1分(第23题)(第23题备用图)19.(本题8分)解:(1)2)20(x x S -=------------4分 (2)当x =10时,S 最大值是50------------4分20.(本题10分)解:过点F 做BC ,AD 的垂线段FM ,FN ----------1分AE ∥BC∴△AEF ∽△CBF ------------2分 AE =2,BC =3,AB =4∴FM =2.4,FN =1.6------------4分 ∴△AEF 的面积为1.6------------1分∴黄色面积为3×4÷2-1.6=4.4-----------2分21.(本题10分)解:(1) FD=AB -AP sin 53°=1.2-0.3×0.8=0.96------4分 (2)EP =AP cos 53°-0.04=0.3×0.6-0.04=0.14-----3分 GE =4EP =0.56FG =GE +0.04-BD =0.1------------3分22.(本题12分)解: (1)∵点A ,E 关于原点对称 ∴A ,E 的纵坐标相反------------2分∵正方形边长为2 ∴点A 的纵坐标为-1,点E 的纵坐标为1-------2分把y =1代入xy 21=,得到点E (21,1)-----2分(2)把y =-1代入xy 21=,得到点A (-21,-1)----2分 ∴F (23,31) C (23,1) D (-21,1) ------------2分 NMD CB(第21题)∴△AEF 的面积=34213222122232=÷⨯-÷⨯-÷⨯⎪⎭⎫⎝⎛+---------2分23.(本题12分)解:(1)连接AB , ∵抛物线与y 轴交于点(0,3) ∴点B (0,3)------------2分 ∵劣弧AO 的度数是90° ∴∠ABO=︒45 ∵ ∠AOB=︒90 ∴点A (3,0) ------------2分(2)把点A 的坐标代入抛物线得到b =-4 ------------2分 ∴抛物线342+-=x x y ------------1分 (3)把y =0代入抛物线解得点C (1,0)设点M 的坐标为(34,2+-a a a )则点N 的坐标为(a ,0)------------1分 当10<<a 时,∵△CMN 与△OCB∴313412=+--a a a 或者3 解得a =0(舍)或1(舍)或38(舍)------------1分 当31<<a 时,∵△CMN 与△OCB ∴31)34(12=+---a a a 或者3 解得a =0(舍)或1(舍)或38------------1分 当3>a 时,∵△CMN 与△OCB∴313412=+--a a a 或者3 解得a =1(舍)或6或310------------1分∴a =38或6或310------------1分 综上所述:M 1(38,95 )或M 2(6,15)或M 3(310,97).。
初三(上)期末考试数学试题(2)(含答案)

30 分钟。已知小船在静水中的速度是每小时
10 千米。求水流速度。
1 小时
3
2、 如图,某一水库大坝的横断面是梯形 ABCD,坝底宽CD= 3 米,斜坡 AD= 16 米,坝 高 8 米,斜坡 BC的坡度 i= 1: 3,求斜坡 AD的坡角∠A和坝底宽 AB(结果保留根 号)
DC
A
B
七、关于 x 的方程: x2+ (2m+3)x + m2 - 3m- 3=0 的两根互为倒数,求 m的值,并求方程的 根。 (8 分 )
B
求 tanD
D
A
C
3、如图,在四边形 ABCD中, BC⊥ CD,BD是对角线, AB=100, ∠A=45o, ∠ DBA=75o, ∠ CBD=30o,求 BC的长 .
A
D C
B
六、应用题(每小题 8 分,共 16 分)
1、 船顺流下行 36 千米到目的地所用的时间比它逆流回到出发地所用的时间要少
A、
mn
B、 an bm
p(an bm)
pmn
C、 p( an bm) D、 pmn
mn
an bm
二、填空题(每题 2 分,共 5 题 10 分) 1. 在半径为 R的圆中,弦长为 d,则 d 的取值范围是 2. 若矩形的长、宽是方程 x 2 - 7x+ 12=0 的两个根,则矩形的面积是
3.
分式
C、 2 x=1 是无理方程
D、二次三项式是一元二次方程
D、ax2+ bx+ c=0
3. 方程 x 2 +2= 1 的根是(
)
A、 1
B、- 1
C、 0
D、无实数根
4. 方程 x 2- 2x- m=0有实数根,则 m的取值范围是(
上册九年级数学期末考试卷二附答案

B ' A 'B C A (7题图)1、平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是 () (A ) (3,-2) (B )(2,-3) (C )(-2,-3) (D )(2,3)2、若式子 2x+1x-1在实数范围内有意义,则x 的取值范围是 ( )(A) x ≥--12 (B) x ≠1 (C) x >--12 且x ≠1 (D) x ≥--12 且x ≠13、右图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是 ( )(A )外离 (B )相交 (C )外切 (D )内切 4、下列一元二次方程中没有实数根是 ( ) (A )x 2+3x +4=0 (B )x 2-4x +4=0(C )x 2-2x -5=0 (D )x 2+2x -4=0 5、圆锥侧面展开图可能是下列图中的 ( )6、二次根式12、32+x 、23、b a 2、5.02、26中,最简二次根式的概率是(A ) 16 (B ) 23 (C ) 13 (D ) 12 ( ) 7、如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C '''的位置.若AC =15cm那么顶点A 从开始到结束所经过的路径长为( )(A )10πcm (B )cm (C )15πcm (D )20πcm 8、下列说法中正确的是 ( )(A )32+42 =32 +42 =3+4 (B) 方程2x 2=x 的根是x =12(C )相等的弦所对的弧相等 (D) 明天会下雨是随机事件二、认真填一填(本大题共5小题,每小题3分,共15分)9、请写出两个我们学过的、既是中心对称、又是轴对称的几何图形 . 10、直径12cm 的圆中,垂直平分半径的弦长为 cm11、本试卷中的选择题,每小题都有4个选项,其中只有一个是正确的,当你遇到不会做的题目时,如果你随便选一个答案,那么你答对的概率为12、政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意可列方程为 . 13、下面是按一定规律排列的2008年北京奥运会比赛项目中的五项比赛项目的图标,按此 规律画出的第2009个图标应该是 ,(填上符合题意的运动项目的名称)三、耐心求一求(本大题共5小题,每小题5分,共25分) 14、计算:327 ÷32+ ( 2 -1 )2 15、解方程:2x 2+x -6=016、“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川的灾后重建工作.(1) 若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果; (2) 求恰好选中医生甲和护士A 的概率.17、如图:在平面直角坐标系中,网格中每一个小 正方形的边长为1个单位长度;已知△ABC① 将△ABC 向x 轴正方向平移5个单位得△A 1B 1C 1② 再以O 为旋转中心,将△A 1B 1C 1旋转180° 得△A 2B 2C 2, 画出平移和旋转后的图形,并标明对应字母.上学期人教版九年级数学期末考试卷(二)(卷首提示语)亲爱的同学这份卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任目光的目光,(A ) (B ) (C ) (D )……田径 游泳举重射击足球第3题图…④③②18、如图,AB 是⊙O 的一条弦,OD AB ⊥,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.(1)若52AOD ∠=,求DEB ∠的度数; (2)若3OC =,5OA =,求AB 的长.四、用心想一想 (本大题共3小题,每小题6分,共18分)19、先化简,再求值:( 1x -y -1x +y )÷xy 2x 2-y2 ,其中 x = 2 +1,y = 2 -1,20、阅读下面材料:解答问题为解方程 (x 2-1)2-5 (x 2-1)+4=0,我们可以将(x 2-1)看作一个整体,然后 设 x 2-1=y ,那么原方程可化为 y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时, x 2-1=1,∴x 2=2,∴x =± 2 ;当y =4时,x 2-1=4,∴x 2=5,∴x =± 5 , 故原方程的解为 x 1= 2 ,x 2=- 2 ,x 3= 5 ,x 4=- 5 . 上述解题方法叫做换元法;请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0 21、(1)如图①,M 、N 分别是⊙O 的内接正△ABC 的边AB 、BC 上的点且BM =CN ,连接OM 、ON ,求∠MON 的度数。
2012年九年级数学上册期末测试卷

2012年九年级数学上册期末测试卷2012年九年级数学上册期末测试卷一.选择题(每题3分,共30分).1.已知直角三角形中30deg;角所对的直角边长是2cm,则斜边的长是( ).A.2 cmB.4 cmC.6 cmD.8 cm2.在RtABC中,ang;C=90deg;,AB=13,AC=12,BC=5,则下列各式中正确的是( ).A. B. C. D.3.在Rt△ABC中,ang;C=90deg;,若,则cosB的值为( ).A. B. C. D.14.在△ABC中,ang;C=90deg;,ang;B=2ang;A,则cosA 等于( ).A. B. C. D.5.在△ABC中,ang;C=90deg;,如果,那么sinB的值等于( ).A. B. C. D.6.下列关系式中,属于二次函数的是(x为自变量) ( )A B C D7.如图,Rt△ABC中,ang;ACB=90deg;,CDperp;AB,D为垂足,若AC=4,BC=3,则sinang;ACD的值为( ).8.如图,为测楼房BC的高,在距离房30米的A处测得楼顶的仰角为,则楼高BC的高为( ).A. 米B. 米C. 米D. 米9.二次函数的最小值为( )A 2B -2C 3D -310 、设抛物线y=x2+8x-k的顶点在x轴上,则k的值为( )A -16B 16C -8D 8二.填空题(每题3分,共21分).11.若 .12、如图,P是ang;AOx的边OA上的一点,且点P的坐标为(1, ),则ang;AOx=_______度.13.如图,飞机A在目标B的正上方1 000米处,飞行员测得地面目标C的俯角为30deg;,则地面目标B、C之间的距离是______________.14.如图,有一斜坡AB长40m,此斜坡的坡角为60deg;,则坡顶离地面的高度为 .(答案可以带根号)15.若二次函数y=ax2的图象经过点(-1,2),则二次函数y=ax2的解析式是___.16、已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y 轴交于点C(0,3),则二次函数的解析式是 .17、已知二次函数的图象如图所示,则a 0,b 0,c 0。
【人教版】九年级上期末数学试卷2含答案
【人教版】九年级上期末数学试卷2含答案一、选择题(本大题每小题3分,满分42分)1.2-的相反数是A·21B·21- C·2- D·22.在实数2、0、1-、2-中,最小的实数是().A.2B.0C.1-D.2-3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为A· 237×106 吨 B· 2·37×107 吨 C· 2·37×108吨 D· 0·237×109吨4·下列运算,正确的是A·523aaa=⋅ B·abba532=+ C·326aaa=÷ D·523aaa=+5·下列各图中,是中心对称图形的是6·方程042=-x的根是A·2,221-==xx B·4=x C·2=x D·2-=x7·不等式组⎩⎨⎧-><-12xx的解集是A·1->x B·2-<x C·2<x D·21<<-x 8.函数1-=xy中,自变量x的取值范围是A·1≥x B·1->x C·0>x D·1≠x9.下列各点中,在函数xy2=图象上的点是A.(2,4) B.(-1,2) C.(-2,-1) D.(21-,1-)10·一次函数2+=xy的图象不经过...A B C DA ·第一象限B · 第二象限C · 第三象限D · 第四象限 11· 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是A .1·65,1·70B .1·70,1·65C .1·70,1·70D .3,512.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0·002、s 乙2=0·03,则 ( )A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定13· 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A · 80°B · 90°C · 100°D · 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB 长为半径作⋂AC ,则图中阴影部分的面积为( )A ·2)4(cm π-B · 2)8(cm π- C· 2)42(cm -π D · 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15· 计算:=-283 ·16·在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同·若从中随机摸出一个球,它是黄球的概率是54,则n = ·A BCOE1D 图1A17·如图3,在等腰梯形ABCD中,AD∥BC,AE∥DC,AB=6cm,则AE= cm·18·如图4,∠ABC=90°,O为射线BC上一点,以点O为圆心,21BO长为半径作⊙O,当射线BA绕点B按顺时针方向旋转度时与⊙0相切·三、解答题(本大题满分56分)19.计算(满分8分,每小题4分)(1)231(3)4(2)2-⨯+-(2)化简:(a+1)(a-1)-a(a-1)·20.(满分8分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?21·(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:图4ABO C AB C图3ED共计145元共计280元yAO xBC(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度? (3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人? 22.(本题满分8分)如图5的方格纸中,ABC ∆ 的顶点坐标分别为()5,2-A 、()1,4-B 和()3,1-C (1)作出ABC ∆关于x 轴对称的111C B A ∆,并写出点A 、B 、C 的对称点1A 、1B 、1C 的坐标; (2)作出ABC ∆关于原点O 对称的222C B A ∆,并写出点A 、B 、C 的对称点2A 、2B 、2C 的坐标; (3)试判断:111C B A ∆与222C B A ∆是否关于y 轴对称 (只需写出判断结果)·23.(本大题满分11分)如图6,四边形ABCD 是正方形,G 是BC 上任意一点(点第21题答案图G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F · (1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF ·24.(13分)如图7,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上· (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围; ②线段PE 的长h 是否存在最大值?若存在,求出它的最大值及此时的x 值;若不存在,请说明理由?解:(1)∵60%106=,∴这次考察中一共调查了60名学生· (2)∵%25%20%20%10%251=----图7ACDE F图6G∴︒=⨯︒90%25360∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90° (3)12%2060=⨯,∴补全统计图如下图(4)∵450%251800=⨯∴可以估计该校学生喜欢篮球活动的约有450人九年级数学科期末检测模拟试题参考答案一、选择题(本大题每小题3分,满分42分)二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 ° 三、解答题(本大题满分56分)19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a =a -1B 2yCABC 1B 1A 1C 2A 2Ox= -7 20.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元·依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元·21、满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C (2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C (3)111C B A ∆与222C B A ∆关于y 轴对称22.(本题满分8分)解:(1)∵60%106=,∴这次考察中一共调查了60名学生·(2)∵%25%20%20%10%251=----∴︒=⨯︒90%25360∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3)12%2060=⨯,∴补全统计图如下图(4)∵450%251800=⨯∴可以估计该校学生喜欢篮球活动的约有450人23· (满分11分)(1) ΔAED ≌ΔDFC ·∵ 四边形ABCD 是正方形, ∴ AD=DC ,∠ADC=90º· 又∵ AE ⊥DG ,CF ∥AE , ∴ ∠AED=∠DFC=90º,…∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC ·∴ ΔAED ≌ΔDFC (AAS )·ADE F第21题答案图(2) ∵ΔAED≌ΔDFC,∴ AE=DF,ED=FC·…∵ DF=DE+EF,∴ AE=FC+EF·)24· (1) ∵点A(3,4)在直线y=x+m上,∴ 4=3+m·∴ m=1·设所求二次函数的关系式为y=a(x-1)2·∵点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2,∴ a=1·∴所求二次函数的关系式为y=(x-1)2·即y=x2-2x+1·(2) 设P、E两点的纵坐标分别为y P和y E·∴ PE=h=y P-y E=(x+1)-(x2-2x+1)=-x2+3x·…即h=-x2+3x (0<x<3)·(3)图7。
九年级上期末数学试卷二
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 2.5B. -3/4C. √9D. π2. 已知x^2 - 5x + 6 = 0,则x的值为()A. 2,3B. 1,6C. 2,-3D. 1,-63. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = √x4. 在直角坐标系中,点P(2, -3)关于x轴的对称点为()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)5. 下列各式中,正确的是()A. a^2 = |a|B. (a + b)^2 = a^2 + 2ab + b^2C. (a - b)^2 = a^2 - 2ab + b^2D. (a + b)(a - b) = a^2 - b^26. 已知函数y = -2x + 1,当x = 3时,y的值为()A. -5B. -7C. 5D. 77. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°8. 下列各式中,正确的是()A. a^3 ÷ a = a^2B. a^3 ÷ a^2 = aC. a^3 ÷ a^3 = 1D. a^3 ÷ a^2 = a^29. 已知一元二次方程ax^2 + bx + c = 0(a ≠ 0)的判别式为△ = b^2 - 4ac,则下列说法正确的是()A. 当△ > 0时,方程有两个不相等的实数根B. 当△ = 0时,方程有两个相等的实数根C. 当△ < 0时,方程无实数根D. 以上都是10. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 2二、填空题(每题3分,共30分)11. 计算:-5 + (-2) × 3 ÷ (-1) = _______12. 简化表达式:-3a^2 + 2a - 5a + 4 = _______13. 若a = -2,则a^2 - 2a + 1的值为 _______14. 已知函数y = 2x - 3,当x = 5时,y的值为 _______15. 在直角坐标系中,点A(4, -2),点B(-2, 4),则AB的长为 _______16. 若sin∠A = 1/2,则∠A的度数为 _______17. 已知x^2 - 6x + 9 = 0,则x的值为 _______18. 若函数y = kx + b(k ≠ 0)的图象经过点(1,2),则k + b的值为_______19. 已知函数y = 3/x,当x = -2时,y的值为 _______20. 在△ABC中,∠A = 30°,∠B = 75°,则∠C的度数为 _______三、解答题(每题10分,共40分)21. 已知函数y = 2x - 3,求当x = 4时,y的值。
数学九年级上册期末数学试卷(2)
数学九年级上册期末数学试卷(2)一、选择题1.要得到函数y=2(x-1)2+3的图像,可以将函数y=2x2的图像()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度2.一元二次方程x2=9的根是()A.3 B.±3 C.9 D.±93.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定4.如图,在△ABC中,点D、E分别在边BA、CA的延长线上,ABAD=2,那么下列条件中能判断DE∥BC的是()A.12AEEC=B.2ECAC=C.12DEBC=D.2ACAE=5.已知52xy=,则x yy-的值是()A.12B.2 C.32D.236.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数7.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A .40°B .50°C .60°D .80°8.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部9.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定10.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-=11.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>12.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 13.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 14.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC 的度数等于( )A .50°B .49°C .48°D .47°15.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( )A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根二、填空题16.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.17.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 18.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm . 19.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.20.抛物线2(-1)3y x =+的顶点坐标是______. 21.方程22x x =的根是________.22.从2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 23.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.24.如图,抛物线2143115y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.25.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .26.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.27.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…28.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.29.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
九年级上期末数学试卷2及答案解析
九年级(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.两地的实际距离是2000m,在地图上量得这两地的距离为2cm,这幅地图的比例尺是()A.1:1000000 B.1:100000 C.1:2000 D.1:10003.如图,将△AOB绕点O逆时针方向旋转45°后得到△A′OB′,若∠AOB=10°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°4.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下 B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=﹣15.将抛物线y=x2﹣2x+2先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,3)B.(﹣1,4)C.(3,4) D.(4,3)6.一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A.B.C.D.7.若一个正六边形的周长为24,则该正六边形的边心距为()A.2 B.4 C.3 D.128.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B的对应点D的坐标为()A.(3,3) B.(1,4) C.(3,1) D.(4,1)9.如图,△ABC内接于⊙O,AD是∠BAC的平分线,交BC于点M,交⊙O于点D.则图中相似三角形共有()A.2对 B.4对 C.6对 D.8对10.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为,CD=4,则弦AC的长为()A.2 B.3 C.4 D.211.如图,点A1、A2、B1、B2、C1、C2分别为△ABC的边BC、CA、AB的三等分点,若△ABC的周长为I,则六边形A1A2B1B2C1C2的周长为()A.2I B.I C.I D.I12.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3二、填空题:本大题共6小题,每小题3分,共18分.13.抛物线y=ax2+bx+3经过点(2,4),则代数式4a+2b的值为.14.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为.15.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=.16.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数比白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是,则从袋中摸出一个球是白球的概率是.17.如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC的边长为a,△DEF的边长为b.则△AEF的内切圆半径为.18.已知△ABC,△EFG均是边长为4的等边三角形,点D是边BC、EF的中点.(Ⅰ)如图①,这两个等边三角形的高为;(Ⅱ)如图②,直线AG,FC相交于点M,当△EFG绕点D旋转时,线段BM长的最小值是.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.(1)解方程(x﹣2)(x﹣3)=0;(2)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,求m的值取值范围.20.已知四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OC、OA、AC.(1)如图①,求∠OCA的度数;(2)如图②,连接OB、OB与AC相交于点E,若∠COB=90°,OC=2,求BC 的长和阴影部分的面积.21.已知,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P.(1)如图①,若∠COB=2∠PCB,求证:直线PC是⊙O的切线;(2)如图②,若点M是AB的中点,CM交AB于点N,MN•MC=36,求BM的值.22.如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的宽各为多少米,设与墙平行的一边长为x米.(1)填空:(用含x的代数式表示)另一边长为米;(2)列出方程,并求出问题的解.23.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)根据题意,填空:①顶点C的坐标为;②B点的坐标为;(2)求抛物线的解析式;(3)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当点C到水面的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?24.在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线时,求∠CC1A1的度数;(2)已知AB=6,BC=8,①如图2,连接AA1,CC1,若△CBC1的面积为16,求△ABA1的面积;②如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应是点P1,直接写出线段EP1长度的最大值.25.将直角边长为6的等腰直角△AOC放在平面直角坐标系中,点O为坐标原点,点C、A分别在x轴,y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)若点P(t,t)在抛物线上,则称点P为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x﹣上,求此时抛物线的解析式.2016-2017学年天津市和平区九年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大【考点】可能性的大小;随机事件.【分析】利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可.【解答】解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D选项正确;故选:D.2.两地的实际距离是2000m,在地图上量得这两地的距离为2cm,这幅地图的比例尺是()A.1:1000000 B.1:100000 C.1:2000 D.1:1000【考点】比例线段.【分析】先把2000m化为200000cm,然后根据比例尺的定义求解.【解答】解:2000m=200000cm,所以这幅地图的比例尺为2:200000=1:100000.故选B.3.如图,将△AOB绕点O逆时针方向旋转45°后得到△A′OB′,若∠AOB=10°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=10°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣10°=35°,故选C.4.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下 B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=﹣1【考点】二次函数的性质.【分析】先把二次函数化为顶点式的形式,再根据二次函数的性质进行解答.【解答】解:二次函数y=2(x+1)(x﹣3)可化为y=2(x﹣1)2﹣8的形式,A、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,故本选项错误;C、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x<1时,y随x的增大而减小,故本选项正确;D、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.故选C.5.将抛物线y=x2﹣2x+2先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,3)B.(﹣1,4)C.(3,4) D.(4,3)【考点】二次函数图象与几何变换.【分析】利用平移可求得平移后的抛物线的解析式,可求得其顶点坐标.【解答】解:∵y=x2﹣2x+2=(x﹣1)2+1,∴先向右平移3个单位长度,再向上平移2个单位长度后抛物线解析式为y=(x ﹣4)2+3,∴顶点坐标为(4,3),故选D.6.一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球所标数字之和为6的情况,然后利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球所标数字之和为6的有:(1,5),(3,3),(5,1),∴两次摸出的球所标数字之和为6的概率是:=.故选C.7.若一个正六边形的周长为24,则该正六边形的边心距为()A.2 B.4 C.3 D.12【考点】正多边形和圆.【分析】首先得出正六边形的边长,构建直角三角形,利用直角三角形的边角关系即可求出.【解答】解:连接OA,作OM⊥AB,得到∠AOM=30°,∵圆内接正六边形ABCDEF的周长为24,∴AB=4,则AM=2,因而OM=OA•cos30°=2.正六边形的边心距是2.故选A.8.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B的对应点D的坐标为()A.(3,3) B.(1,4) C.(3,1) D.(4,1)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质,结合两图形的位似比,进而得出D点坐标.【解答】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点D的横坐标和纵坐标都变为B点的一半,∴点D的坐标为:(4,1).故选:D.9.如图,△ABC内接于⊙O,AD是∠BAC的平分线,交BC于点M,交⊙O于点D.则图中相似三角形共有()A.2对 B.4对 C.6对 D.8对【考点】相似三角形的判定;圆周角定理.【分析】相似三角形的判定问题,只要两个对应角相等,两个三角形就是相似三角形.【解答】解:∵AD是∠BAC的平分线,∴∠BAD=∠CAD,BD=CD,∴∠BAD=∠CAD=∠DBC=∠DCB,又∵∠BDA=∠MDB,∠CDA=∠MDC∴△ABD∽△BDM;△ADC∽△CDM;∵∠CAD=∠CBD,∠AMC=∠BMD,∴△AMC∽△BMD,∵∠BAD=∠MCD,∠AMB=∠CMD,∴△ABM∽△CDM,∵∠ABC=∠ADC,∠BAD=∠DAC,∴△ABM∽△ADC,∵∠ACB=∠ADB,∠BAD=∠CAD,∴△ACM∽△ADB,∴共有六对相似三角形,故选:C.10.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为,CD=4,则弦AC的长为()A.2 B.3 C.4 D.2【考点】切线的性质;垂径定理.【分析】首先连接AO并延长,交CD于点E,连接OC,由直线AB与⊙O相切于点A,根据切线的性质,可得AE⊥AB,又由CD∥AB,可得AE⊥CD,然后由垂径定理与勾股定理,求得OE的长,继而求得AC的长.【解答】解:连接AO并延长,交CD于点E,连接OC,∵直线AB与⊙O相切于点A,∴EA⊥AB,∵CD∥AB,∠CEA=90°,∴AE⊥CD,∴CE=CD=×4=2,∵在Rt△OCE中,OE==,∴AE=OA+OE=4,∴在Rt△ACE中,AC==2.故选A.11.如图,点A1、A2、B1、B2、C1、C2分别为△ABC的边BC、CA、AB的三等分点,若△ABC的周长为I,则六边形A1A2B1B2C1C2的周长为()A.2I B.I C.I D.I【考点】相似三角形的判定与性质.【分析】根据题意可知△ABC∽△AC1B2,△ABC∽△C2BA1,△ABC∽△B1A2C,推出C1B2:BC=1:3,C2A1:AC=1:3,B1A2:AB=1:3,推出六边形的周长为△ABC的周长L的.【解答】解:∵点A1、A2,B1、B2,C1、C2分别是△ABC的边BC、CA、AB的三等分点,∴△ABC∽△AC1B2,△ABC∽△C2BA1,△ABC∽△B1A2C,∴C1B2:BC=1:3,C2A1:AC=1:3,B1A2:AB=1:3,∴六边形A1A2B1B2C1C2的周长=(AB+BC+CA),∵△ABC的周长为I,∴六边形A1A2B1B2C1C2的周长=I.故选:B.12.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.【解答】解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.13.抛物线y=ax2+bx+3经过点(2,4),则代数式4a+2b的值为1.【考点】二次函数图象上点的坐标特征.【分析】把点(2,4)代入函数解析式即可求出4a+2b的值.【解答】解:∵抛物线y=ax2+bx+3经过点(2,4),∴4a+2b+3=4,∴4a+2b=1,故答案为1.14.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为2.【考点】翻折变换(折叠问题).【分析】△ABC沿DE折叠,使点A落在点A′处,可得∠DEA=∠DEA′=90°,AE=A′E,所以,△ACB∽△AED,A′为CE的中点,所以,可运用相似三角形的性质求得.【解答】解:∵△ABC沿DE折叠,使点A落在点A′处,∴∠DEA=∠DEA′=90°,AE=A′E,∴△ACB∽△AED,又A′为CE的中点,∴=,即=,∴ED=2.故答案为:2.15.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=25°.【考点】切线的性质.【分析】连接OB,根据切线的性质定理以及四边形的内角和定理得到∠AOB=180°﹣∠P=130°,再根据等边对等角以及三角形的内角和定理求得∠BAC的度数.【解答】解:连接OB,∵PA、PB是⊙O的切线,A、B为切点,∴∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠P﹣∠PAO﹣∠PBO=130°,∵OA=OB,∴∠BAC=25°.16.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数比白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是,则从袋中摸出一个球是白球的概率是.【考点】概率公式.【分析】根据红、黄、白三种颜色球共有的个数乘以红球的概率可得红球的个数,再设白球有x个,得出黄球有(2x﹣5)个,根据题意列出方程,求出白球的个数,再除以总的球数即可.【解答】解:根据题意得:红球的个数为:100×=30,设白球有x个,则黄球有(2x﹣5)个,根据题意得x+2x﹣5=100﹣30,解得x=25.所以摸出一个球是白球的概率P==,故答案为:.17.如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC的边长为a,△DEF的边长为b.则△AEF的内切圆半径为.【考点】三角形的内切圆与内心;等边三角形的性质.【分析】欲求△AEF的内切圆半径,可以画出图形,然后利用题中已知条件,挖掘隐含条件求解.【解答】解:如图,由于△ABC,△DEF都为正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,∴∠1+∠2=∠2+∠3=120°,∠1=∠3;在△AEF和△CFD中,,∴△AEF≌△CFD(AAS);同理可证:△AEF≌△CFD≌△BDE;∴BE=AF,即AE+AF=AE+BE=a.设M是△AEF的内心,MH⊥AE于H,则AH=(AE+AF﹣EF)=(a﹣b);∵MA平分∠BAC,∴∠HAM=30°;∴HM=AH•tan30°=(a﹣b)•=(a﹣b).故答案为:(a﹣b).18.已知△ABC,△EFG均是边长为4的等边三角形,点D是边BC、EF的中点.(Ⅰ)如图①,这两个等边三角形的高为2;(Ⅱ)如图②,直线AG,FC相交于点M,当△EFG绕点D旋转时,线段BM长的最小值是2﹣2.【考点】旋转的性质;等边三角形的性质.【分析】(Ⅰ)如图①中,连接AD,在Rt△ABD中,利用勾股定理即可解决问题.(Ⅱ)如图①中,连接AE、EC、CG.首先证明∠AMF=90°,在如图②中,当点M运动到BM⊥AC时,BM最短,由此即可解决问题.【解答】解:(Ⅰ)如图①中,连接AD,∵△ABC是等边三角形,BD=CD,∴AD⊥BC,在Rt△ABD中,∵AB=4,BD=2,∴AD===2,故答案为2.(Ⅱ)如图①中,连接AE、EC、CG.∵DE=DF=DC,∴△EFC是直角三角形,∴∠ECF=90°,∵∠ADC=∠EDG=90°,∴∠ADE=∠GDC,在△ADE和△GDC中,,∴△ADE≌△GDC,∴AE=CG,∠DAE=∠DGC,∵DA=DG,∴∠DAG=∠DGA,∴∠GAE=∠AGC,∵AG=GA,∴△AGE≌△GAC,∴∠GAK=∠AGK,∴KA=KG,∵AC=EG,∴EK=KC,∴∠KEC=∠KCE,∵∠AKG=∠EKC,∴∠KAG=∠KCE,∴EC∥AG,∴∠AMF=∠ECF=90°,∴点M在以AC为直径的圆上运动,如图②中,当点M运动到BM⊥AC时,BM最短,∵OB=2,AO=OM=OC=2,∴BM的最小值为2﹣2.故答案为2﹣2.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.(1)解方程(x﹣2)(x﹣3)=0;(2)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,求m的值取值范围.【考点】根的判别式;解一元二次方程﹣因式分解法.【分析】(1)利用因式分解法解一元二次方程,即可得出x1=2,x2=3;(2)根据方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出结论.【解答】解:(1)∵(x﹣2)(x﹣3)=0∴x﹣2=0或x﹣3=0,解得:x1=2,x2=3.(2)∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m=4﹣4m>0,解得:m<1.∴m的值取值范围为m<1.20.已知四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OC、OA、AC.(1)如图①,求∠OCA的度数;(2)如图②,连接OB、OB与AC相交于点E,若∠COB=90°,OC=2,求BC 的长和阴影部分的面积.【考点】圆内接四边形的性质;扇形面积的计算.【分析】(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;(2)由∠COB为直角,然后利用S阴影=S扇形OBC﹣S△OEC求解.【解答】解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=2,∴OE=OC•tan∠OCE=2•tan30°=2×=2,∴S △OEC =OE•OC=×2×2=2,∴S 扇形OBC ==3π,∴S 阴影=S 扇形OBC ﹣S △OEC =3π﹣2.21.已知,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P .(1)如图①,若∠COB=2∠PCB ,求证:直线PC 是⊙O 的切线;(2)如图②,若点M 是AB 的中点,CM 交AB 于点N ,MN•MC=36,求BM 的值.【考点】切线的判定;圆周角定理.【分析】(1)利用半径OA=OC 可得∠COB=2∠A ,然后利用∠COB=2∠PCB 即可证得结论,再根据圆周角定理,易得∠PCB +∠OCB=90°,即OC ⊥CP ;故PC 是⊙O 的切线;(2)连接MA ,MB ,由圆周角定理可得∠ACM=∠BAM ,进而可得△AMC ∽△NMA ,故AM 2=MC•MN ;等量代换可得MN•MC=BM 2=AM 2,代入数据即可得到结论.【解答】(1)证明:∵OA=OC , ∴∠A=∠ACO . ∴∠COB=2∠ACO . 又∵∠COB=2∠PCB , ∴∠ACO=∠PCB . ∵AB 是⊙O 的直径, ∴∠ACO +∠OCB=90°.∴∠PCB+∠OCB=90°,即OC⊥CP.∵OC是⊙O的半径,∴PC是⊙O的切线.(2)解:连接MA、MB.(如图)∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM.∵∠AMC=∠AMN,∴△AMC∽△NMA.∴.∴AM2=MC•MN.∵MC•MN=36,∴AM=6,∴BM=AM=6.22.如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的宽各为多少米,设与墙平行的一边长为x米.(1)填空:(用含x的代数式表示)另一边长为米;(2)列出方程,并求出问题的解.【考点】一元二次方程的应用.【分析】首先设平行于墙的一边为x米,则另一边长为米,然后根据矩形的面积=长×宽,用未知数表示出鸡场的面积,根据面积为180m2,可得方程,解方程即可.【解答】解:(1)设与墙平行的一边长为x米,另一边长为米,故答案是:;(2)设平行于墙的一边为x米,则另一边长为米,根据题意得:x•=180,整理得出:x2﹣40x+360=0,解得:x1=20+2,x2=20﹣2,由于墙长25米,而20+2>25,∴x1=20+2,不合题意舍去,∵0<20﹣2<25,∴x2=20﹣2,符合题意,此时=10+,答:此时鸡场靠墙的一边长(20﹣2)米,宽是(10+)米.23.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)根据题意,填空:①顶点C的坐标为(0,11);②B点的坐标为(8,8);(2)求抛物线的解析式;(3)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当点C到水面的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?【考点】二次函数的应用.【分析】(1)求出OC、OD、BD的长即可解决问题.(2)根据抛物线特点设出二次函数解析式,把B坐标代入即可求解;(3)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至多为6,把6代入所给二次函数关系式,求得t的值,相减即可得到禁止船只通行的时间.【解答】解:(1)由题意OC=11,OD=8,BD=AE=8,∴C(0,11),B(8,8),故答案为(0,11)和(8,8).(2)∵点C到ED的距离是11米,∴OC=11,设抛物线的解析式为y=ax2+11,由题意得B(8,8),∴64a+11=8,解得a=﹣,∴y=﹣x2+11;(3)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至多为11﹣5=6(米),∴6=﹣(t﹣19)2+8,∴(t﹣19)2=256,∴t﹣19=±16,解得t1=35,t2=3,∴35﹣3=32(小时).答:需32小时禁止船只通行.24.在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线时,求∠CC1A1的度数;(2)已知AB=6,BC=8,①如图2,连接AA1,CC1,若△CBC1的面积为16,求△ABA1的面积;②如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应是点P1,直接写出线段EP1长度的最大值.【考点】三角形综合题.【分析】(1)由旋转的性质可得:∠A1C1B=∠ACB=30°,BC=BC1,又由等腰三角形的性质,即可求得∠CC1A1的度数;(2)①由△ABC≌△A1BC1,易证得△ABA1∽△CBC1,然后利用相似三角形的面积比等于相似比的平方,即可求得△ABA1的面积;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB 的延长线上时,EP1最大,即可求得线段EP1长度的最大值.【解答】解:(1)依题意得:△A1C1B≌△ACB,∴BC1=BC,∠A1C1B=∠C=30°,∴∠BC1C=∠C=30°,∴∠CC1A1=60°;(2)如图2所示:由(1)知:△A1C1B≌△ACB,∴A1B=AB,BC1=BC,∠A1BC1=∠ABC,∴∠1=∠2,==,∴△A1BA∽△C1BC,∴=()2,∵△CBC1的面积为16,∴△ABA1的面积=9(3)线段EP1长度的最大值为11,理由如下:如图3所示:当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=8+3=11.即线段EP1长度的最大值为11.25.将直角边长为6的等腰直角△AOC放在平面直角坐标系中,点O为坐标原点,点C、A分别在x轴,y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)若点P(t,t)在抛物线上,则称点P为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x﹣上,求此时抛物线的解析式.【考点】二次函数综合题.【分析】(1)已知抛物线与x轴的两个交点坐标,所以设抛物线方程为两点式:y=a(x+3)(x﹣6),然后把点A的坐标代入该函数解析式即可求得系数a的值;=,进而求出△APE的面积S,即(2)利用相似三角形的性质得出S△PCE可得出点P坐标;(3)利用抛物线上不动点的定义以及不动点的个数得出方程h﹣k=①,再用平移后的抛物线的顶点在直线y=2x﹣上,得出方程k=2k﹣②,联立解方程组即可.【解答】解:(1)∵B(﹣3,0),C(6,0),设抛物线为y=a(x+3)(x﹣6),过A(0,6)∴6=a(0+3)(0﹣6),解得a=﹣,∴y=﹣(x+3)(x﹣6),即y=﹣x2+x+6;(2)设P (m ,0), 如图,∵PE ∥AB , ∴△PCE ∽△BCA ,∴,,∴S △PCE =,∴S=S △APC ﹣S △PCE =﹣m 2+m +6,=﹣(m ﹣)2+,∴当m=时,S 有最大值为;∴P (,0);(3)设平移后的抛物线的顶点为G (h ,k ),∴抛物线解析式为y=﹣(x ﹣h )2+k ,由抛物线的不动点的定义,得,t=﹣(t ﹣h )2+k , 即:t 2+(3﹣2h )t +h 2﹣3k=0, ∵平移后,抛物线只有一个不动点, ∴此方程有两个相等的实数根, ∴△=(3﹣2h )2﹣4(h 2﹣3k )=0,∴h ﹣k=①,∵顶点在直线y=2x﹣上,∴k=2k﹣②,∴联立①②得,h=1,k=,∴抛物线的解析式为y=﹣(x﹣1)2+=﹣x2+x﹣,2017年3月6日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012/20013学年九年级数学第一学期期末练习卷二下列各题所用的四个选项中,有且只有一个是正确的. 一、选择题(每小题2分,共24分)1.式子x -2 在实数范围内有意义,x 的取值范围是A .x >-2B .x ≥-2C .x >2D .x ≥2 2. 二次函数y =3(x +4)2-5图象的顶点坐标是A .(4,-5)B .(4, 5)C .(-4,-5)D .(-4,5)3. 若︱m -1︱+n +2 =0,则m +n 的值为A .3B .-3C .1D .-14.下列四个命题中,正确的是A .半圆是弧B .弦是直径C .圆心角相等,它们所对的弦也相等D .圆心角相等,它们所对的弧也相等 5.已知样本x 1,x 2,x 3,…,x n 的方差是1,那么样本x 1+2,x 2+2,x 3+2,…,x n +2的方差是 A .1 B .2 C .3 D .4 6.一元二次方程x 2+3x -4=0的根的情况是A .有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根7.已知平面内两圆的半径分别为4和6,圆心距是2,则这两个圆的位置关系是A . 内切B .相交C .外切D .外离 8.如图,⊙O 是△ABC 的外接圆,AB 为直径,AC =BC , 则∠A 等于 A . 30° B . 40° C . 45° D . 60°9.如图,在△ABC 中,∠C =90°,AB =4,∠ABC =60°,将△ABC 绕点B 顺时针旋转60°,顶点C 运动的路线长是 A .3π B .23π C .π D .43π10.有下列3个函数,甲:y =x 2+1,乙:y =-x 2+1,丙:y =x 2+2x -1,将函数图象经过适当平移..后,则下列叙述中正确的是A . 甲图象可以与乙图象重合B .乙图象可以与丙图象重合C .甲图象可以与丙图象重合D .甲、乙图象都不能与丙图象重合(第8题)(第9题)11.判断一元二次方程ax 2+bx +c =0的一个解的范围是 A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25<x <3.2612. 如图,∠ABC =60○,半径为2的⊙O 切BC 于点B ,若将⊙O 沿着 BC 向右滚动,则当⊙O 滚动到与BA 也相切时,圆心O 移动的水平距离为 A .4 B .2 3 C .2 D . 3 二、填空题(每小题2分,共10分)13. 已知二次函数2ax y =的图象经过点(-1,3),则该函数的关系式为 . 14. 如图,在⊙O 中,已知∠ACB =∠BDC =60°,AC =3,则△ABC 的周长是 . 15.若圆锥的底面半径为4,母线长为5,则这个圆锥的侧面积是________(结果保留π). 16. 图中△ABC 的外接圆的圆心坐标是 .17. 如图,一车轱辘⊙O 抵住高为10cm 的台阶AB ,此时发现轮胎与地面的接触点C 与台阶下端B 的距离恰好为30 cm (∠ABC =90°),则车轱辘的半径是 cm .三、解答题(每小题5分,共15分) 18. 计算: 54 ×12-12.19. 解方程:(x -1)2 =x -1.A(第14题)(第17题)(第16题)(第12题)20. 如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE //BD ,交AB 的延长线于点E .求证:AC =EC .四、(每小题6分,共18分)21.如图,已知△ABC 内接于⊙O ,OM ⊥AC 于M ,ON ⊥BC 于N ,若MN =6 cm ,求AB 的长.22.已知二次函数 y =x 2-(a +2)x -9图象的顶点在y 轴上. (1)求a 的值;(2)求该函数图象与x 轴的交点坐标.23.把一根长100cm 的铁丝剪成两段,并以每段铁丝的长度为周长分别做成两个正方形,若这两个正方形的面积和...为S (单位:cm 2),则S 的最小值是多少?B E(第21题)五、(每小题8分,共24分)24.如图,在梯形纸片ABCD 中,AD //BC ,AD >CD ,将纸片沿过点D 的直线对折,使点C 落在AD 上的点C ′ 处,折痕DE 交BC 于点E ,连接C′E . 求证:四边形CDC′E 是菱形.25. 如图,已知△ABC 内接于⊙O ,点D 在OC 的延长线上,∠B =∠CAD =30°.(1)AD 是⊙O 的切线吗?为什么? (2)若OD ⊥AB ,BC =5,求⊙O 的半径.(第24题)A DEB CC ′(第25题)26.如图1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM 、FN 的长度,猜想BM 、FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.(第26题)图3图1A (B ( E )D ( F )图2六、(本题9分)27.某环保器材公司销售一种市场需求较大的新型环保产品,已知每件产品的进价为40元,销售过程中测出年销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,已知每年销售该种产品的总开支z(万元)(不含进价)与年销售量y(万件)存在函数关系:z=10y+42.5.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品年利润W(万元)关于销售单价x(元)的函数关系式;(年利润=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年利润最大?最大值是多少?(元)(第27题)数学试题参考答案及评分说明一、选择题(每小题2分,共24分)二、填空题(每小题2分,共10分)13.23x y = 14.9 15.20π 16.(0,4) 17.50 三、解答题(每小题5分,共15分) 18. 解:原式=27 -2 3=3 3 -2 3 ……4分 = 3 .……5分19. 解:(x -1)2-(x -1)=0. ……1分(x -1)(x -1-1)=0. ……3分 ∴x 1=1, x 2=2.……5分 (其他解法参照给分)20. 证明:∵四边形ABCD 是矩形,∴AE //DC ,AC =BD .……1分∵CE //BD ,∴四边形BECD 是平行四边形.……2分 ∴EC =BD .……3分∵AC =BD ,∴AC =EC .……5分 四、(每小题6分,共18分)21. 解:∵OM ⊥AC ,ON ⊥BC ,∴点M 、N 分别是AC 、BC 的中点. ……2分∴MN //AB ,且MN =12AB . ……4分∴AB =2 MN =2×6=12(cm ). ……5分 答:AB 的长为12 cm . ……6分22. 解:(1)根据题意,a +22=0.解得a =-2.……2分(2)当a =-2时,y =x 2-9.……3分令y =0,则x 2-9=0.解得x 1=3, x 2=-3. ……4分 ∴所求的交点坐标为(3,0),(-3,0).……6分23.解:设围成的一个正方形边长是x cm ,那么另一个正方形的边长是100-4x 4cm . ……1分根据题意,得S =x 2+(100-4x 4)2=2x 2-50 x +625. ……3分当x =--502×2=12.5时,……4分S 最小值=4×2×625-5024×2=312.5. ……5分答:S 的最小值是312.5 cm 2. ……6分 五、(每小题8分,共24分)24.证明:∵AD //BC ,∴∠C′DE =∠CED .……1分根据题意,∠C′DE =∠CDE .……2分 ∴∠CED =∠CDE . ∴CE =CD .……4分 又∵C′D =CD ,∴C′D =CE .……5分 ∴四边形CDC′E 是平行四边形.……6分 ∵CE =CD ,∴□CDC′E 是菱形.……8分 25. (1)解:AD 是⊙O 的切线. ……1分理由如下:连接OA . ……2分 ∵∠B =30°,∴∠O =60°.……3分 ∵OA =OC ,∴∠OAC =60°. ……4分∵∠CAD =30°,∴∠OAD =90°,∴AD 是⊙O 的切线. ……5分 (2)解:∵∠OAC =∠O =60°,∴∠OCA =60°. ∴△AOC 是等边三角形. ……6分∵OD ⊥AB ,∴OD 垂直平分AB . ∴AC =BC =5. ……7分 ∴OA =5.即⊙O 的半径为5. ……8分 26.解:(1)BM =FN .……1分证得△BOM ≌△FON .……3分 ∴BM =FN .……4分 (2)BM =FN .……5分 证得△BOM ≌△FON .……7分 ∴BM =FN .……8分 六、(本题9分)27.解:(1)根据题意,设y kx b =+,图象过点(70,5),(90,3),570390.k b k b =+⎧⎨=+⎩,∴………1分解得11012.k b ⎧=-⎪⎨⎪=⎩,………3分11210y x =-+∴.……4分 (2)根据题意,得(40)(40)(1042.5)w y x z y x y =--=--+……6分1112(40)101242.51010x x x ⎛⎫⎛⎫=-+--⨯-+- ⎪ ⎪⎝⎭⎝⎭20.117642.5x x =-+-21(85)8010x =--+.……7分 当x =85元时,年利润的最大值为80万元. ……9分。