高考数学第二轮复习模拟试卷
高考数学(理科)二轮复习模拟试卷及答案

(1)当 a= 1, b=- 1 时,求使 f(x)≥ 2 2的 x 的取值范围; (2)若 f (x)≥ 312恒成立,求 a- b 的取值范围.
答案及解析
1. 解析: 选 B.由题意得 A
=
y
log
1 22
≤
y≤
log
24
= { y|- 1≤ y≤ 2} = [- 1, 2],又
B= { x|
x≤2} = [0,4] ,
所以 cos α=
2 22 +(
= 2 = 6, 2) 2 6 3
所以 cos 2α= 2cos2 α-1
2
= 2×
6 3
-
1=
1 3.
故选 D.
4. 解析: 选 A. 满足题意时,椭圆上的点 P(acos θ,bsin θ)到圆心 O(0, 0)的距离:
d2= (acos θ-0) 2+ (bsin θ - 0)2> r 2= a2- b2,
D.
13 π+ 4
22
1
8.函数 f(x)= x+ x ln |x|图象的大致形状为 (
)
9.已知一次函数 f(x)=kx+ b 的图象经过点 P(1,2)和 Q(- 2,- 4),令 an= f(n)f(n+ 1),
n∈ N *,记数列
1 an 的前
n 项和为
Sn,当 Sn= 265时, n 的值等于 (
故 B 正确; C 显然错误;
对于
D ,周期
T=2π= π,g
3π =-
2,
2
8
2
故图象不关于点 38π, 0 对称.
7.解析: 选 A. 由三视图可知, 该几何体是由四分之三圆锥和一个三棱锥组成的组合体, 其中:
2024年高考第二次模拟考试数学(新高考专用01)含答案

2024年高考第二次模拟考试高三数学(答案在最后)全解全析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .B . C.1x x ≤-,或3x >D .【答案】B【分析】先化简集合,再利用集合的交并补运算求解即可,【详解】由题意得{}3A x x =>,{}1B x x =≤-,又{}1B x x =>-R ð则(){}1A B x x ⋃=>-R ð,故选:B.【分析】利用复数的概念及四则运算法则运算即可求解.【详解】因为i z a b =+,所以()2222(i)2i z a b a b ab =+=-+,又因为2z 为纯虚数,所以22020a b ab ⎧-=⎨≠⎩,即0a b =≠(舍)或0a b =-≠,所以i z a a =-,所以i z a a =+,所以2i 1i (1i)i i 1i (1i)(1i)z a a a a z ---====-+++-.故选:D3.已知向量()2,4a =- ,()1,b t = ,若a 与b 共线,则向量a b +在向量()0,1j = 上的投影向量为()A.jB.j -C.2jD.2j- 【答案】C 【解析】【分析】根据a 与b 共线,可得240t --=,求得2t =-,再利用向量a b +在向量()0,1j = 上的投影向量为()a b jjjj+⋅⋅ ,计算即可得解.【详解】由向量()2,4a =-,()1,b t = ,若a与b共线,则240t --=,所以2t =-,(1,2)a b +=-,所以向量a b +在向量()0,1j = 上的投影向量为:()(1,2)(0,1)21a b jj j j jj+⋅-⋅⋅=⋅=,故选:C4.“1ab >”是“10b a>>”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义判断.【详解】当0a >时,由1ab >,可得10b a>>,当a<0时,由1ab >,得10b a<<;所以“1ab >”不是“10b a>>”的充分条件.因为01010a b ab a a>⎧⎪>>⇔-⎨>⎪⎩,所以1ab >,所以“1ab >”是“10b a>>”的必要不充分条件.故选:B.【点睛】本题考查不等式性质与充分、必要条件的判定,还考查了理解辨析问题的能力,属于基础题.5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是()A.60B.114C.278D.336【答案】D【解析】命题意图本题考查排列与组合的应用.录用3人,有353360C A =种情况;录用4人,有4232354333162C C A C A -=种情况;录用5人,有12323331345333333225)4(C C A C A (C A C A )11A -+-=种情况.所以共有336种.6.已知D :222210x y ax a +---=,点()3,0P -,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是()A.()5,11,3⎡⎫--⋃-+∞⎪⎢⎣⎭ B.[)5,1,3⎛⎤-∞-⋃+∞ ⎥⎝⎦C.(][) ,21,-∞-⋃+∞D.[)()2,11,---+∞ 【答案】B 【解析】【分析】D 的圆心坐标为(),0D a ,半径为1r a =+,要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,故sin sin 30rMPD PD∠=≥︒,由此可求解.【详解】D 的标准方程为()()2221x a y a -+=+,圆心坐标为(),0D a ,半径为1r a =+.因为,PM PN MD ND ==,所以PMD PND ≅△△.所以30MPD NPD ∠=∠=︒.要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=︒,当PM 与D 相切时,MPD ∠最大,此时30MPD ∠≥︒,故1sin sin 302r MPD PD ∠=≥︒=,即()1132a a +≥+,整理得23250a a +-≥,解得[)5,1,3a ⎛⎤∈-∞-⋃+∞ ⎥⎝⎦.故选:B.7.已知ABC 中,60BAC ∠=︒,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC 所成角的正弦值的最大值为3,则三棱锥-P ABC 的外接球的表面积为()A.4πB.6πC.8πD.9π【答案】B 【解析】【分析】根据题意得PQ AQ 的最小值是1,即A 到BC 的距离为1,则∠ACB =90°,结合图形找出△ABC 的外接圆圆心与三棱锥-P ABC 外接球的球心,求出外接球的半径,再计算它的表面积.【详解】三棱锥-P ABC 中,PA ⊥平面ABC ,设直线PQ 与平面ABC 所成角为θ,∵sin θ的最大值是63,∴sin 3PA PQ PQ θ==≤,解得PQ ≥即PQ AQ 的最小值是1,即A 到BC 的距离为1,直角三角形△ABQ 中,AB =2,所以∠BAQ =60°,又∠BAC =60°,所以,A Q 重合,则∠ACB =90°,则△ABC 的外接圆圆心M 为AB 的中点,又PA ⊥平面ABC ,从而外接球的球心O 为PB 的中点,外接球的半径2R OB =====,∴三棱锥-P ABC 的外接球的表面积2264π4π6π2S R ⎛==⨯= ⎝⎭.故选:B .B.椭圆M的蒙日圆方程为D.长方形G的面积的最大值为【分析】由椭圆标准方程求得,a b后再求得c,从而可得离心率,利用特殊的长方形(即边长与椭圆的轴平行)求得蒙日圆方程,从而可得长方形边长的关系,结合基本不等式得面积最大值,并得出长方形为正方形时的边长.【详解】由椭圆方程知a2b=,则c==e==A正确;当长方形G的边与椭圆的轴平行时,长方形的边长分别为4,=因此蒙2210x y+=,B正确;设矩形的边长分别为,m n,因此22402m n mn+=≥,即20mn≤,当且仅当m n=时取等号,所以长方形G的面积的最大值是20,此时该长方形G为正方形,边长为C正确,D错误.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【分析】A,根据12||=MN x x p++结合基本不等式即可判断;B,由抛物线定义知当,,P M A三点共线时MF MP+;C,D,设直线方程,联立抛物线,应用韦达定理即可求解.【详解】对A,设112212(,),(,),(,0)M x y N x y x x>,因为这些MN倾斜角不为0,则设直线MN的方程为32x ky=+,联立抛物线得2690y ky--=,则12126,9y y k y y+=⋅=-,所以()()221212121212399363,244k x x k y y k x x k y y y y ∴+=++=+=+++=,则212||=3666MN x x k ++=+≥(当且仅当0k =时等号成立),A 正确;对B ,如图MA ⊥抛物线准线,MF MP MA MP +=+要使其最小,即,,P M A 三点共线时取得最小值,即53||422MF MP MA MP PA +=+==+=,B 正确;对C ,由()121212311||||239||||||||324x x NF MF MF NF MF NF x x x x ++++===+++,C 错误;对D ,1212123339(()()2224MF NF x x x x x x ⋅=+⋅+=+++2293993(63)(63)1842422k k =+++=++=,解得1k =±,D 正确故选:ABD.10.已知双曲线()222:102x y E a a -=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则()A.若E的两条渐近线相互垂直,则a =B.若EE 的实轴长为1C.若1290F PF ∠=︒,则124PF PF ⋅=D.当a 变化时,1F PQ周长的最小值为【答案】ACD 【解析】【分析】根据双曲线的渐近线、离心率、定义、三角形的周长等知识对选项进行分析,从而确定正确答案.【详解】依题意,b =,A选项,若双曲线的两条渐近线相互垂直,所以1,ba b a===A 正确;B 选项,若E的离心率为c e a =====,解得1a =,所以实轴长22a =,故B 错误;C 选项,若1290F PF ∠=︒,则122221224PF PF aPF PF c⎧-=⎪⎨+=⎪⎩,整理得222121224448,4PF PF c a b PF PF ⋅=-==⋅=,故C 正确;D 选项,根据双曲线的定义可知,121222PF PF aQF QF a ⎧-=⎪⎨-=⎪⎩,两式相加得11114,4PF QF PQ a PF QF a PQ +-=+=+,所以1F PQ 周长为42a PQ +,当12PQ F F ⊥时,PQ 取得最小值224b a a=,所以8424a PQ a a +≥+≥=,当且仅当84a a=,即a =所以1F PQ周长的最小值为D 正确.故选:ACD【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P ⎛⎫⎪⎝⎭,得到平面1APB 的法向量()1,0,1m =- ,根据数量积为0得到BC m ⊥,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =-=- ,由于112B D EF =,故11B D 与EF 平行,A 错误;B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z ----=,即224222x xy y z z=-⎧⎪=-⎨⎪-=-⎩,解得242,,333x y z ===,故242,,333P ⎛⎫ ⎪⎝⎭,设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a b c mAB a b c a c ⎧⎛⎫⋅=⋅=++= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ ,令1a =,则0,1b c ==-,则()1,0,1m =-,因为()()0,2,01,0,10BC m ⋅=-= ,故BC m ⊥,BC //平面1APB ,故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =r,故1A F 与平面1B EB 所成角的正弦值为1113A F n A F n ⋅==⋅,则1A F 与平面1B EBC 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⎧⋅=⋅-=+-=⎪⎨⋅=⋅-=-+=⎪⎩ ,令11x =,则1131,2y z ==,故131,1,2n ⎛⎫= ⎪⎝⎭ ,则点1B 到平面1A EF的距离为111141717A B n n ⋅=,D 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.若二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,则二项展开式中系数最大的项为【答案】240【解析】【详解】因为二项式2nx x ⎛+ ⎝的展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式为6x x ⎛+ ⎝,则二项式展开式的通项3662166C (C 2r r rr r rr T xx x--+==,令第1r +项的系数最大,则11661166C 2C 2C 2C 2r r r r r r r r --++⎧≥⎨≥⎩,解得111433r ≤≤,因为N r ∈,所以4r =,则二项展开式中系数最大的项为36444256C 2240T x-⨯==,所以填24013.若函数()sin f x ax x =+的图像上存在两条互相垂直的切线,则实数a 是__________.【答案】0【解析】【详解】注意到,()cos f x a x =+'.若函数()f x 上存在两条切线垂直,则存在1x 、2x R ∈,使得()()()()12121cos cos 1f x f x a x a x ''=-⇔++=-()21212cos cos cos cos 10a a x x x x ⇔+++⋅+=221212cos cos cos cos 1022x x x x a +-⎛⎫⎛⎫⇔++-= ⎪ ⎪⎝⎭⎝⎭12cos cos 1,0x x a ⇔=-=±=.故答案为014.若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +-=于,,,A B C D 四点,则3AB CD +的最小值为________.【答案】2+【解析】【分析】根据抛物线的定义求得求出11,22A D AB y CD y =+=+,当l y ⊥轴时,则1D A y y ==,可求3AB CD +的值;当直线方程为()1x n y =-时,代入抛物线方程,根据韦达定理结合基本不等式求得此时3AB CD +的最小值,即可得结论.【详解】解:如图,其中抛物线214y x =的焦点坐标为()0,1F ,抛物线的准线方程为:1y =-,圆()22114x y +-=的半径12r =又抛物线的定义可得:1,1A D AF y DF y =+=+,又11,22A D AB AF BF y CD DF CF y =-=+=-=+,当l y ⊥轴时,则1A D y y ==,所以113131622AB CD ⎛⎫+=+++= ⎪⎝⎭;当l 不垂直于y 轴时,设l 的方程为:()1x n y =-,代入抛物线方程得:()2222240n y n y n -++=,所以2224,1A D A D n y y y y n++=⋅=。
2023届高考二轮总复习试题适用于老高考旧教材 数学(理) 圆锥曲线中的定点、定值、证明问题含解析

考点突破练15 圆锥曲线中的定点、定值、证明问题1.(2022·湖南岳阳质检二)已知椭圆C :y 2a 2+x 2b 2=1(a>b>0),F 为上焦点,左顶点P 到F 的距离为√2,且离心率为√22,设O 为坐标原点,点M 的坐标为(0,2). (1)求椭圆C 的标准方程;(2)若过F 的直线l 与C 交于A ,B 两点,证明:∠OMA=∠OMB.2.(2022·陕西西安四区县联考一)已知抛物线x 2=ay (a>0),过点M 0,a2作两条互相垂直的直线l 1,l 2,设l 1,l 2分别与抛物线相交于A ,B 及C ,D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1. (1)求抛物线的方程;(2)设线段AB ,CD 的中点分别为E ,F ,O 为坐标原点,求证:直线EF 过定点.3.(2022·北京石景山一模)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的短轴长等于2√3,离心率e=12. (1)求椭圆C 的标准方程;(2)过右焦点F 作斜率为k 的直线l ,与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点P ,判断|PF ||AB |是否为定值,请说明理由.4.(2022·全国乙·理20)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点. (1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.5.(2022·河南濮阳一模)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e=√32,且圆x 2+y 2=2过椭圆C 的上、下顶点.(1)求椭圆C 的方程;(2)若直线l 的斜率为12,且直线l 与椭圆C 相交于P ,Q 两点,点P 关于原点的对称点为E ,点A (-2,1)是椭圆C 上一点,若直线AE 与AQ 的斜率分别为k AE ,k AQ ,证明:k AE ·k AQ ≤0.6.(2022·广西柳州三模)已知点A (2,√3),B (-2,-√3),点M 与y 轴的距离记为d ,且点M 满足MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =d24-1,记点M 的轨迹为曲线W. (1)求曲线W 的方程;(2)设点P 为x 轴上除原点O 外的一点,过点P 作直线l 1,l 2,l 1交曲线W 于C ,D 两点,l 2交曲线W 于E ,F 两点,G ,H 分别为CD ,EF 的中点,过点P 作x 轴的垂线交GH 于点N ,设CD ,EF ,ON 的斜率分别为k 1,k 2,k 3,求证:k 3(k 1+k 2)为定值.考点突破练15 圆锥曲线中的定点、定值、证明问题1.(1)解 左顶点P 到F 的距离为√2,可得a=√2,又e=ca=√22,故c=1,从而b=1.∴椭圆C 的标准方程为y 22+x 2=1.(2)证明 当l 与y 轴重合时,∠OMA=∠OMB=0°.当l 与y 轴不重合时,设l 的方程为y=kx+1,A (x 1,y 1),B (x 2,y 2),直线MA ,MB 的斜率之和为k MA +k MB =y 1-2x 1+y 2-2x 2=kx 1-1x 1+kx 2-1x 2=2k-(1x 1+1x 2)=2k-x 1+x 2x 1x 2,联立方程{y =kx +1,y 22+x 2=1,可得(2+k 2)x 2+2kx-1=0,x 1+x 2=-2k 2+k2,x 1x 2=-12+k2,∴2k-x 1+x 2x 1x 2=2k-2k=0,从而k MA +k MB =0,故直线MA ,MB 的倾斜角互补,∴∠OMA=∠OMB. 综上,∠OMA=∠OMB. 2.(1)解 ∵y'=2xa ,由题意得2×2a=1,∴a=4,∴抛物线的方程为x 2=4y. (2)证明 由题意得直线l 1,l 2的斜率都存在且都不为0,由M (0,2),可设直线AB 的方程为y=kx+2(k ≠0), 设A (x 1,y 1),B (x 2,y 2),由{y =kx +2,x 2=4y ,得x 2-4kx-8=0,则x 1+x 2=4k ,∴y 1+y 2=k (x 1+x 2)+4=4k 2+4,∴AB 的中点E (2k ,2k 2+2).∵l 1⊥l 2,∴直线CD 的斜率为-1k,同理可得CD 的中点F -2k ,2k2+2,∴EF 的方程为y-(2k 2+2)=2k 2+2-2k 2-22k+2k(x-2k ),化简整理得y=k-1k x+4, ∴直线EF 恒过定点(0,4).3.解 (1)由题意得b=√3,e=√1-b 2a 2=√1-3a 2=12,解得a=2,所以椭圆的方程为x 24+y23=1.(2)是定值.理由如下:由椭圆的方程x 24+y 23=1,得右焦点F (1,0),设直线l 的方程为y=k (x-1),A (x 1,y 1),B (x 2,y 2), 由{y =k (x -1),x 24+y23=1,得(3+4k 2)x 2-8k 2x+4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2, |AB|=√1+k 2|x1-x 2|=√1+k 2√(x 1+x 2)2-4x 1x 2=12(1+k 2)3+4k 2,设线段AB 的中点为D (x 0,y 0),则x 0=x 1+x 22=4k 23+4k2,则y 0=k (x 0-1)=-3k3+4k2,即D (4k 23+4k2,-3k 3+4k 2),所以直线l 的中垂线的方程为y--3k3+4k2=-1k x-4k 23+4k 2.令y=0,得x P =k 23+4k 2,所以|PF|=|x P -1|=|k 23+4k 2-1|=3(k 2+1)3+4k 2,所以|PF ||AB |=3(k 2+1)3+4k 212(1+k 2)3+4k2=14. 4.(1)解 设椭圆E 的方程为mx 2+ny 2=1(m>0,n>0), 则{4n =1,94m +n =1,解得{m =13,n =14. 故椭圆E 的方程为x 23+y 24=1. (2)证明 由点A (0,-2),B (32,-1),可知直线AB 的方程为y=23x-2.当过点P 的直线MN 的斜率不存在时,直线MN 的方程为x=1.由{x =1,x 23+y 24=1,解得{x =1,y =2√63或{x =1,y =-2√63,则点M (1,-2√63),N (1,2√63). 将y=-2√63代入y=23x-2,得x=3-√6,则点T (3-√6,-2√63). 又MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,所以点H (5-2√6,-2√63),所以直线HN 的方程为y-2√63=-2√63-2√635-2√6-1x-1),即y=(2√63+2)x-2, 所以直线HN 过点(0,-2).当过点P 的直线MN 的斜率存在时,设直线MN 的方程为y+2=k (x-1),点M (x 1,y 1),N (x 2,y 2). 由{y +2=k (x -1),x 23+y 24=1,消去y ,得(4+3k 2)x 2-6k (k+2)x+3k (k+4)=0,则Δ>0,x 1+x 2=6k (k+2)4+3k 2,x 1x 2=3k (k+4)4+3k 2. 将y=y 1代入y=23x-2,得x=32(y 1+2),则点T (32(y 1+2),y 1).又MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,所以点H (3y 1+6-x 1,y 1).所以直线HN 的方程为(3y 1+6-x 1-x 2)(y-y 2)=(y 1-y 2)(x-x 2),即(3y 1+6-x 1-x 2)(y-y 2)-(y 1-y 2)(x-x 2)=0.将x=0,y=-2代入上式,整理得12-2(x 1+x 2)+3y 1y 2+6(y 1+y 2)-x 1y 2-x 2y 1=0.(*) 因为x 1+x 2=6k (k+2)4+3k2,x 1x 2=3k (k+4)4+3k2,所以y 1+y 2=k (x 1-1)-2+k (x 2-1)-2=-8k -164+3k 2,x 1y 2+x 2y 1=x 1[k (x 2-1)-2]+x 2[k (x 1-1)-2]=-24k4+3k 2,y 1y 2=[k (x 1-1)-2][k (x 2-1)-2]=-8k 2+16k+164+3k 2,所以(*)式左边=12-12k (k+2)4+3k2+-24k 2+48k+484+3k2+-48k -964+3k2−-24k 4+3k 2=0=右边,即(*)式成立.所以直线HN 过点(0,-2).综上所述,直线HN 恒过定点(0,-2).5.(1)解 由题可知{b =√2,c a =√32,a 2=b 2+c 2,解得a=2√2,b=√2,∴椭圆C 的方程为x 28+y 22=1. (2)证明 设P (x 1,y 1),Q (x 2,y 2),则E (-x 1,-y 1).设直线l 为y=12x+t ,代入椭圆方程得x 2+2tx+2t 2-4=0,则Δ=4t 2-4(2t 2-4)>0,解得-2<t<2,x 1+x 2=-2t ,x 1x 2=2t 2-4,则k AE +k AQ =y 2-1x 2+2+-y 1-1-x 1+2=(2-x 1)(y 2-1)-(2+x 2)(y 1+1)(2+x 2)(2-x 1),又y 1=12x 1+t ,y 2=12x 2+t ,∴(2-x 1)(y 2-1)-(2+x 2)(y 1+1)=2(y 2-y 1)-(x 1y 2+x 2y 1)+x 1-x 2-4=x 2-x 1-(x 1x 2+tx 1+tx 2)+x 1-x 2-4=-x 1x 2-t (x 1+x 2)-4=-(2t 2-4)-t (-2t )-4=0,即k AE +k AQ =0,∴k AE =-k AQ .于是k AE ·k AQ =-k AQ 2≤0.6.(1)解 设M (x ,y ),由题意得d=|x|,MA⃗⃗⃗⃗⃗⃗ =(2-x ,√3-y ),MB ⃗⃗⃗⃗⃗⃗ =(-2-x ,-√3-y ), ∵MA ⃗⃗⃗⃗⃗⃗ ·MB ⃗⃗⃗⃗⃗⃗ =d 24-1,∴(2-x ,√3-y )·(-2-x ,-√3-y )=d 24-1,∴x 2-4+y 2-3=x 24-1.∴3x24+y 2=6,M 的轨迹方程为x 28+y 26=1. (2)证法一 显然GH 斜率存在,设P (x 0,0),设GH 的方程为y=k 4x+m ,由题意知CD 的方程为y=k 1(x-x 0),联立方程{y =k 1(x -x 0),y =k 4x +m ,解得{x =k 1x 0+mk 1-k 4,y =k 1(k 4x 0+m )k 1-k 4,可得G k 1x 0+m k 1-k 4,k 1(k 4x 0+m )k 1-k4,设C (x C ,y C ),D (x D ,y D ),则有x C28+y C26=1,x D28+y D26=1,两式相减得:x C 2-x D28+y C 2-y D26=0,则有k 1=y C -y D x C-x D=-34·x C +xD y C+y D,又G 为CD 中点,则有k 1=-34·k 1x 0+mk1(k 4x 0+m ),将G 坐标代入CD 的方程可得4(k 4x 0+m )k 12+3x 0k 1+3m=0,同理可得4(k 4x 0+m )k 22+3x 0k 2+3m=0,故k 1,k 2为关于k 的方程4(k 4x 0+m )k 2+3x 0k+3m=0的两实根. 由韦达定理得k 1+k 2=-3x 04(k4x 0+m ).将x=x 0代入直线GH :y=k 4x+m ,可得N (x 0,k 4x 0+m ),故有k 3=k 4x 0+m x 0,则k 3(k 1+k 2)=k 4x 0+m x 0[-3x 04(k 4x 0+m )]=-34, 故k 3(k 1+k 2)为定值-34.证法二 由题意知直线CD ,EF ,ON 的斜率都存在,分别为k 1,k 2,k 3,设P (t ,0),N (t ,k 3t )(t ≠0),则直线CD ,EF 的方程分别为y=k 1(x-t ),y=k 2(x-t ),两直线分别与曲线W 相交,联立方程{y =k 1(x -t ),x 28+y 26=1,得(6+8k 12)x 2-16k 12tx+8k 12t 2-48=0,解得{x G =x 1+x 22=4k 12t3+4k 12,y G =-3k 1t3+4k 12,可得G (4k 12t3+4k 12,-3k 1t3+4k 12),同理可得H (4k 22t3+4k 22,-3k 2t3+4k 22),。
高考数学二轮复习测试及答案

高考数学二轮复习测试数学试题参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的,把答案填写在答题卷相应位置上........ B1、设集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214则 A .M N = B .M ⊂NC .M ⊃ND .M N =∅IB2、已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = A .–4B .–6C . –8D . –10D3、在P (1,1)、Q (1,2)、M (2,3)和N )41,21(四点中,函数xa y =的图象与其反函数的图象的公共点只可能是点A .P .B .Q.C .M.D .N.C4、给出下列函数①3y x x =-,②sin cos ,y x x x =+③sin cos ,y x x =④22,x xy -=+其中是偶函数的有A .1个B .2个C .3 个D .4个 A5、若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 2D6、把函数y =cos2x +3的图像沿向量a ρ平移后,得到函数y =sin(2x +3π)的图像,则向量a ρ的坐标是 A .(-6π,-3) B .(6π,3) C .(-12π,3) D .(12π,-3) D7、球面上有三点,其中任意两点的球面距离都等于球的大圆周长的六分之一,经过这三点的小圆的周长为4π,则这个球的表面积为 A .12πB .24πC .48πD .64πD8、过点M(1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是 A . x =1B . y =1C . x -y +1=0D . x -2y +3=0A9、程序框图如下:如果上述程序运行的结果为S =132 中应填入A .10?k ≤B .10?k ≥C .11?k ≤D .11?k ≥ C 10、已知A 箱内有红球1个和白球(n +1)个,B 箱内有白球(n -1)个(n ∈N ,且n ≥2),现随意从A 箱中取出3个球放入B 箱,将B 箱中的球充分搅匀后,再从中随意取出3个球放入A 箱,则红球由A 箱移到B 箱,再返回到A 箱的概率等于 A .1n 2+ B .2n 3+ C .2)2n (9+ D .2)1n (1+ 二、填空题:本大题共6小题,每小题5分,共30分。
高考数学二轮复习专练六仿真模拟题(一)

仿真模拟题(一)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设i 为虚数单位,则复数z =2i 31+i在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.某雷达测速区规定:凡车速大于或等于80 km/h 的汽车视为“超速”,并将受到处罚.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以看出被处罚的汽车大约有( ) A .20辆 B .40辆 C .60辆 D .80辆3.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos 2x -sin 2x B .y =lg|x |C .y =e x-e-x 2D .y =x 34.(2013·高考北京卷)若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x5.(2013·高考安徽卷)如图所示,程序框图(算法流程图)的输出结果是( ) A.16 B.2524 C.34 D.11126.给出下列命题:①如果不同直线m 、n 都平行于平面α,则m 、n 一定不相交; ②如果不同直线m 、n 都垂直于平面α,则m 、n 一定平行;③如果平面α、β互相平行,若直线m ⊂α,直线n ⊂β,则m ∥n ;④如果平面α、β互相垂直,且直线m 、n 也互相垂直,若m ⊥α,则n ⊥β.则真命题的个数是( ) A .3 B .2 C .1 D .07.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A .(0,34)B .[34,43)C .[34,+∞) D .(1,+∞)8.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y +6≥0x +y ≥0x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( )A .[-1,0]B .[-1,1]C .[0,1]D .[-1,0)∪(0,1] 9.(2013·高考山东卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 C. 2 D .110.若函数f (x )=x 3-3x 在(a ,6-a 2)上有最小值,则实数a 的取值范围是( ) A .(-5,1) B .[-5,1) C .[-2,1) D .(-2,1)二、填空题(本大题5小题,考生作答4小题,每小题5分,共20分.) (一)必做题(11~13题)11.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为________.12.已知a n =cos n π6+161+2cos 2n π12(n ∈N *),则数列{a n }的最小值是________.13.已知函数y =f (x )的图象是开口向下的抛物线,且对任意x ∈R ,都有f (1-x )=f (1+x ),若向量a =(log 12m ,-1),b =(1,-2),则满足不等式f (a ·b )<f (-1)的实数m 的取值范围是________.(二)选做题(14~15,考生只能从中选做一题)14.(坐标系与参数方程选做题)若直线l 的参数方程为⎩⎨⎧x =-22ty =6+22t (t 为参数),圆C 的极坐标方程为ρ=4sin θ,则圆心到直线l 的距离为________.15.(几何证明选讲选做题)如图,PQ 为半圆O 的直径,A 为以OQ 为直径的半圆A 的圆心,⊙O 的弦PN 切⊙A 于点M ,PN =8,则⊙A 的半径为________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x ∈R )的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈[-π,-π6]时,求f (x )的取值范围.17.(本小题满分12分)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列表:(1)(2)如果采用分层抽样的方法从爱好该项运动的大学生中选取6人,组成一个兴趣小组,求被选取的男女生的人数各是多少?(3)在上述6人小组中,随机选定2人去做某件事,求这2人中有女生被选中的概率. 数据:公式:K 2=n ×(ad -bc )(a +b )(c +d )(a +c )(b +d )18.(本小题满分14分)在数列{a n }中,a 1=1,a 2=103,a n +1-103a n +a n -1=0(n ≥2,且n ∈N *).(1)若数列{a n +1+λa n }是等比数列,求实数λ; (2)求数列{a n }的通项公式.19.(本小题满分14分)如图,三棱柱ABC -A 1B 1C 1的侧棱AA 1⊥底面ABC ,∠ACB =90°,E 是棱CC 1的中点,F 是AB 的中点,AC =BC =1,AA 1=2. (1)求证:CF ∥平面AB 1E ; (2)求三棱锥C -AB 1E 在底面AB 1E 上的高.20.(本小题满分14分)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)以抛物线y 2=8x 的焦点为顶点,且离心率为12.(1)求椭圆E 的方程;(2)若直线l :y =kx +m 与椭圆E 相交于A 、B 两点,与直线x =-4相交于Q 点,P 是椭圆E 上一点且满足OP →=OA →+OB →(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP →·TQ →为定值?若存在,求出点T 的坐标及OP →·TQ →的值;若不存在,请说明理由.21.(本小题满分14分)已知函数f(x)=ax2-e x(a∈R).(1)当a=1时,试判断f(x)的单调性并给予证明;(2)若f(x)有两个极值点x1,x2(x1<x2).①求实数a的取值范围;②证明:-e2<f(x1)<-1.(注:e是自然对数的底数)答案:1.【解析】选C.因为z =2i 31+i =-2i1+i =-2i (1-i )(1+i )(1-i )=-i(1-i)=-1-i ,所以复数z =2i 31+i 在复平面内对应的点位于第三象限,故应选C. 2.【解析】选A.由频率分布直方图可得,大于或等于80 km/h 的汽车的频率为0.01×10=0.1,所以其频数为0.1×200=20,即被处罚的汽车大约有20辆. 3.【解析】选B.由偶函数排除C 、D ,再由在区间(1,2)内是增函数排除A.故选B.4.【解析】选B.∵e =3,∴ca =3,即a 2+b 2a 2=3,∴b 2=2a 2,∴双曲线方程为x 2a 2-y22a2=1,∴渐近线方程为y =±2x .5.【解析】选D.s =0,n =2,2<8,s =0+12=12;n =2+2=4,4<8,s =12+14=34;n =4+2=6,6<8,s =34+16=1112;n =6+2=8,8<8不成立,输出s 的值为1112.6.【解析】选C.当不同直线m 、n 都平行于平面α时,m 、n 的位置不能确定,因此命题①不是真命题;根据直线与平面垂直的性质定理可得命题②是真命题;命题③中m 、n 的位置关系不能确定,因此命题③不是真命题;命题④中的直线n 与平面β的位置关系不确定,因此命题④也不是真命题.故选C. 7.【解析】选B.A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤09-6a -1>0,所以⎩⎨⎧a ≥34a <43,即34≤a <43,故选B.8.【解析】选B.作出可行域如图中阴影部分所示,则z 在点A 处取得最大值,在点C 处取得最小值.又k BC =-1,k AB =1,∴-1≤-a ≤1,即-1≤a ≤1.9.【解析】选B.由正弦定理得:a sin A =bsin B,∵B =2A ,a =1,b =3,∴1sin A =32sin A cos A. ∵A 为三角形的内角,∴sin A ≠0.∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形.由勾股定理得c =12+(3)2=2.10.【解析】选C.f ′(x )=3x 2-3=3(x +1)·(x -1),令f ′(x )=0,得x =±1,所以f (x )的图象如图所示,因f (1)=-2,f (-2)=-2,若函数f (x )在(a ,6-a 2)上有最小值,则⎩⎪⎨⎪⎧-2≤a <16-a 2>1,解得-2≤a <1. 11.【解析】在x -y +1=0中,令y =0得x =-1,所以直线x -y +1=0与x 轴的交点为(-1,0),即圆C 的圆心为(-1,0).因为直线x +y +3=0与圆C 相切,所以圆心到直线的距离等于半径,即r =|-1+0+3|2=2,所以圆C 的方程为(x +1)2+y 2=2.【答案】(x +1)2+y 2=212.【解析】设t =2+cos n π6,有1≤t ≤3,则a n =cos n π6+162+cosn π6=t +16t -2.用导数可以证明,函数f (t )=t +16t在1≤t ≤3上是单调递减的,所以当t =3,即n =12k (k ∈N *)时,a n 取最小值193.【答案】19313.【解析】因为函数y =f (x )的图象是开口向下的抛物线,且对任意x ∈R ,都有f (1-x )=f (1+x ),所以函数y =f (x )为开口向下、以x =1为对称轴的二次函数,所以f (-1)=f (3).又因为a ·b =log 12m +2,所以不等式f (a ·b )<f (-1)即为不等式log 12m +2<-1或log 12m +2>3,解得m >8或0<m <12.【答案】(0,12)∪(8,+∞)14.【解析】圆C 的直角方程为x 2+(y -2)2=4,得圆心坐标为(0,2);由参数方程为⎩⎨⎧x =-22ty =6+22t 消去t 后,得直线方程为x +y =6,那么圆心到直线l 的距离为|0+2-6|12+12=22;【答案】2 215.【解析】设⊙A 的半径为R ,连接NQ 、MA ,∵∠PNQ =90°,∠PMA =90°,∴PMPN=P A PQ =34, 又PN =8,∴PM =6,而PM 2=PO ·PQ ,∴36=2R ·4R ,∴OA =R =322.【答案】32216.【解】(1)由图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1.将(π6,1)代入得1=sin(π6+φ),而-π2<φ<π2,所以φ=π3,因此函数f (x )=sin(x +π3).(2)由于x ∈[-π,-π6],-2π3≤x +π3≤π6,所以-1≤sin(x +π3)≤12,所以f (x )的取值范围是[-1,12].17.【解】(1)K 2=110×(40×30-20×20)260×50×60×50≈7.8>6.635,而P (K 2≥6.635)≈0.010=1%,即,认为“爱好该项运动与性别没有关系”的概率是1%,∴有99%以上的把握认为“爱好该项运动与性别有关”.(2)应抽取男生人数为660×40=4人,应抽取女生人数为660×20=2人.(3)设6人中2个女生分别为A ,B ,4个男生分别为c ,d ,e ,f , 则从6人中随机选定2人去做某件事的基本事件为:AB ,Ac ,Ad ,Ae ,Af ,Bc ,Bd ,Be ,Bf ,cd ,ce ,cf ,de ,df ,ef ,共15个基本事件,其中,有女生被选中的事件为AB ,Ac ,Ad ,Ae ,Af ,Bc ,Bd ,Be ,Bf ,共9个,∴有女生被选中的概率为P =915=35.18.【解】(1)设a n +1+λa n =μ(a n +λa n -1)(n ≥2), ∴a n +1+(λ-μ)a n -λμa n -1=0,∴⎩⎪⎨⎪⎧λ-μ=-103λμ=-1,∴λ=-13或λ=-3.(2)由(1)知当n ≥2时,a n -13a n -1=3n -1,①a n -3a n -1=13n -1,②由①②得a n =38(3n -13n ).经验证,n =1时也成立,∴a n =38(3n -13n ).19.【解】(1)证明:取AB 1的中点G ,连接EG ,FG , ∵F 、G 分别是AB 、AB 1的中点,∴FG ∥BB 1,FG =12BB 1.∵E 为侧棱CC 1的中点, ∴FG ∥EC ,FG =EC ,∴四边形FGEC 是平形四边形, ∴CF ∥EG ,∵CF ⊄平面AB 1E ,EG ⊂平面AB 1E , ∴CF ∥平面AB 1E . (2)∵三棱柱ABC -A 1B 1C 1的侧棱AA 1⊥底面ABC ,∴BB 1⊥平面ABC .又AC ⊂平面ABC ,∴AC ⊥BB 1. ∵∠ACB =90°,∴AC ⊥BC .∵BB 1∩BC =B ,∴AC ⊥平面EB 1C ,∴AC ⊥CB 1,∴VA EB 1C =13S △EB 1C ·AC =13×(12×1×1)×1=16.∵AE =EB 1=2,AB 1=6,∴S △AB 1E =32.∵VC AB 1E =VA EB 1C ,∴三棱锥C -AB 1E 在底面AB 1E 上的高为3VC -AB 1E S △AB 1E=33.20.【解】(1)抛物线y 2=8x 的焦点为椭圆E 的顶点, 即a =2. 又c a =12,故c =1,b = 3. ∴椭圆E 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m 3x 2+4y 2=12, 得(4k 2+3)x 2+8kmx +4m 2-12=0. 由根与系数的关系,得x 1+x 2=-8km 4k 2+3,y 1+y 2=k (x 1+x 2)+2m =6m4k 2+3.将P (-8km 4k 2+3,6m4k 2+3)代入椭圆E 的方程,得64k 2m 24(4k 2+3)2+36m 23(4k 2+3)2=1. 整理,得4m 2=4k 2+3.设T (t ,0),Q (-4,m -4k ).∴TQ →=(-4-t ,m -4k ),OP →=(-8km 4k 2+3,6m 4k 2+3).即OP →·TQ →=32km +8kmt 4k 2+3+6m (m -4k )4k 2+3=6m 2+8km +8kmt 4k 2+3.∵4k 2+3=4m 2,∴OP →·TQ →=6m 2+8km +8kmt 4m 2=32+2k (1+t )m.要使OP →·TQ →为定值,只需[2k (1+t )m ]2=4k 2(1+t )2m 2=(4m 2-3)(1+t )2m 2为定值,则1+t =0,∴t =-1,∴在x 轴上存在一点T (-1,0),使得OP →·TQ →为定值32. 21.【解】(1)当a =1时,f (x )=x 2-e x ,f (x )在R 上单调递减.f ′(x )=2x -e x ,只要证明f ′(x )≤0恒成立即可,设g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x ,当x =ln 2时,g ′(x )=0,当x ∈(-∞,ln 2)时,g ′(x )>0,当x ∈(ln 2,+∞)时,g ′(x )<0.∴f ′(x )max =g (x )max =g (ln 2)=2ln 2-2<0,故f ′(x )<0恒成立,∴f (x )在R 上单调递减.(2)①若f (x )有两个极值点x 1,x 2,则x 1,x 2是方程f ′(x )=0的两个根,故方程2ax -e x =0有两个根x 1,x 2,又x =0显然不是该方程的根,∴方程2a =e x x有两个根. 设φ(x )=e x x ,得φ′(x )=e x (x -1)x 2, 当x <0时,φ(x )<0且φ′(x )<0,φ(x )单调递减,当x >0时,φ(x )>0,当0<x <1时,φ′(x )<0,φ(x )单调递减,当x >1时,φ′(x )>0,φ(x )单调递增, 要使方程2a =e x x有两个根,需2a >φ(1)=e , 故a >e 2且0<x 1<1<x 2, 故a 的取值范围为(e 2,+∞). ②证明:由f ′(x 1)=0,得2ax 1-e x 1=0,故a =e x 12x 1,x 1 ∈(0,1), f (x 1)=ax 21-e x 1=e x 12x 1·x 21-e x 1=e x 1(x 12-1),x 1∈(0,1), 设φ(t )=e t (t 2-1)(0<t <1),则φ′(t )=e t ·t -12<0, φ(t )在0<t <1上单调递减,故φ(1)<φ(t )<φ(0),即-e 2<f (x 1)<-1.。
高三数学第二次模拟考试试卷 理含解析 试题

2021年宁夏平罗中学高考数学二模试卷〔理科〕创作人:历恰面日期:2020年1月1日一、选择题1.全集,集合2,,那么A. B. 5, C. 3, D. 3,5,【答案】B【解析】【分析】可求出集合U,然后进展补集的运算即可.【详解】2,3,4,5,,2,;5,.应选:B.【点睛】此题考察集合的运算,描绘法、列举法的定义,二次不等式解集,准确计算是关键,注意2.复数 (i为虚数单位)的一共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i 【答案】B【解析】分析:化简复数z,由一共轭复数的定义可得.详解:化简可得z=∴z的一共轭复数为1﹣i.应选:B.点睛:此题考察复数的代数形式的运算,涉及一共轭复数,属根底题.3.平面向量,均为单位向量,假设向量,的夹角为,那么A. 25B. 7C. 5D.【答案】D【解析】【分析】由题意可得,据此确定的模即可.【详解】因为,且向量,的夹角为,所以,所以.此题选择D选项.【点睛】此题主要考察向量的运算法那么,向量的模的计算公式等知识,意在考察学生的转化才能和计算求解才能.4.正项等差数列的前项和为(),,那么的值是( ).A. 11B. 12C. 20D. 22 【答案】D【解析】【分析】本道题结合等差数列性质,结合,代入,即可。
【详解】结合等差数列的性质,可得,而因为该数列为正项数列,可得,所以结合,可得,应选D。
【点睛】本道题考察了等差数列的性质,关键抓住,即可,难度中等。
5.将一长为4,宽为2的矩形沿、的中点、连线折成如下图的几何体,假设折叠后,那么该几何体的正视图面积为〔〕A. 4B.C. 2D.【答案】B【解析】【分析】先确定折叠后形状,再确定正视图形状,最后根据矩形面积公式求结果.【详解】由题意知,折叠后为正三角形,该几何体的正视图是一长为4,宽为的矩形,所以矩形的面积为,应选B.【点睛】由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的局部用实线表示,不能看到的局部用虚线表示.6.假设函数的最小正周期为,假设将其图象向左平移个单位,得到函数的图象,那么函数的解析式为A. B.C. D.【答案】D【解析】【分析】根据函数的最小正周期求出的值,再根据函数图象平移写出函数的解析式.【详解】函数的最小正周期为,,将函数图象向左平移个单位,得函数的图象,那么函数.应选:D.【点睛】此题考察了三角函数的图象与性质的应用问题,考察三角平移变换,熟记公式,及变换原那么是关键,是根底题.7.执行如下图的程序框图,输出的结果为A. B. C. D.【答案】C【解析】【分析】由中的程序语句可知:该程序的功能是利用循环构造计算并输出变量的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环构造计算并输出变量的值,由于.应选:C.【点睛】此题考察了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是根底题.8.函数的局部图象大致是A. B.C. D.【答案】A【解析】【分析】根据函数值的变化趋势,取特殊值即可判断.【详解】当时,,故排除C,当时,,故排除D,当时,,故排除B,应选:A.【点睛】此题考察了函数图象的识别,考察了函数值的特点,属于根底题.9.“勾股定理〞在西方被称为“毕达哥拉斯定理〞,国时期吴国的数学家赵爽创制了一幅“勾股圆方图〞,用数形结合的方法给出了勾股定理的详细证明如下图的“勾股圆方图〞中,四个一样的直角三角形与中间的小正方形拼成一个大正方形假设直角三角形中较小的锐角,如今向该大止方形区域内随机地投掷一枚飞镖,那么飞镖落在阴影局部的概率是A. B. C. D.【答案】A【解析】【分析】由解三角形得:直角三角形中较小的直角边长为1,由,得此直角三角形另外两直角边长为,进而得小正方形的边长和大正方形的边长,由几何概型中的面积型得解.【详解】设直角三角形中较小的直角边长为1,那么由直角三角形中较小的锐角,得此直角三角形另外直角边长为,斜边长,那么小正方形的边长为,大正方形的边长为,设“飞镖落在阴影局部〞为事件A,由几何概型中的面积型可得:,应选:A.【点睛】此题考察几何概型中的面积型,解三角形、正方形面积公式属中档题.10.,是双曲线E:的左、右焦点,点M在E上,与x轴垂直,,那么双曲线E的离心率为A. B. C. 2 D. 3【答案】A【解析】【分析】根据双曲线的定义,结合直角三角形的勾股定理建立方程关系进展求解即可.【详解】与x轴垂直,,设,那么,由双曲线的定义得,即,得,在直角三角形中,,即,即,即,那么,那么,应选:A.【点睛】此题主要考察双曲线离心率的计算,根据双曲线的定义结合直角三角形的勾股定理,结合双曲线离心率的定义是解决此题的关键.11.假设二项式的展开式中第项为常数项,那么,应满足〔〕A. B.C. D.【答案】A【解析】【分析】先根据二项展开式得,以及,解得,关系.【详解】由题意,的通项为,当即时,所得项为常数项,其中,所以,应满足,应选A.【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可根据条件写出第项,再由特定项的特点求出值即可.(2)展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.12.函数,要使函数恒成立,那么正实数应满足〔〕A. B.C. D.【答案】C【解析】【分析】先求导数,根据导函数零点分类讨论函数单调性,根据单调性确定最小值取法,最后根据最小值大于零得结果.【详解】由题意,得〔〕,令,由,得.当时,,此时函数在上单调递增,且时,,,,故,不合题意,舍去;当时,,此时函数在上单调递减,在上单调递增,所以,要使函数恒成立,只需,即.应选C.【点睛】不等式有解问题,不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.二、填空题13.某中学为调查在校学生的视力情况,拟采用分层抽样的方法,从该校三个年级中抽取一个容量为30的样本进展调查,该校高一、高二、高三年级的学生人数之比为4:5:6,那么应从高三年级学生中抽取______名学生.【答案】12【解析】【分析】由分层抽样方法,按比例抽样确定高三年级所占比例即可求解.【详解】由分层抽样可得:应从高三年级学生中抽取名学生,故答案为:12【点睛】此题考察了分层抽样方法,确定抽样比例是关键,属简单题.满足条件,那么的最大值为【答案】1【解析】【分析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【详解】先根据约束条件画出可行域,当直线过点时,z最大是1,故答案为:1.【点睛】此题主要考察了简单的线性规划,以及利用几何意义求最值,属于根底题.15.函数是定义域为的偶函数,且为奇函数,当时,,那么__.【答案】【解析】【分析】先由题意,是定义域为的偶函数,且为奇函数,利用函数的奇偶性推出的周期,可得,然后带入求得结果.【详解】因为为奇函数,所以又因为是定义域为的偶函数,所以即所以的周期因为所以故答案为【点睛】此题主要考察了函数的性质,函数性质的变形以及公式的熟记是解题的关键,属于中档题.16.四面体中,底面,,,那么四面体的外接球的外表积为______.【答案】【解析】【分析】根据题意,证明出CD平面ABC,从而证明出CD AC,然后取AD的中点O,可得OC=OA=OB=OD,求出O为外接球的球心,然后求得外表积即可.【详解】由题意,可得BC CD,又因为底面,所以AB CD,即CD平面ABC,所以CD AC取AD的中点O,那么OC=OA=OB=OD故点O为四面体外接球的球心,因为所以球半径故外接球的外表积故答案为【点睛】此题主要考察了三棱锥的外接球知识,找出球心的位置是解题的关键,属于中档题.三、解答题17.在中,内角的对边分别为,,.求边;求的值.【答案】〔1〕6;〔2〕.【解析】【分析】运用诱导公式和正弦定理可得,求得,再由余弦定理计算可得,由余弦定理计算,再由同角的平方关系可得,运用两角差的正弦公式,计算即可得到所求值.【详解】,,,即为,可得,,,解得;,,可得.【点睛】此题考察正弦定理和余弦定理的运用,考察两角和差的正弦公式,以及同角的平方关系,考察运算才能,属于中档题.18.网约车的兴起丰富了民众出行的选择,为民众出行提供便利的同时也解决了很多劳动力的就业问题,据某著名网约车公司“滴滴打车〞官网显示,截止目前,该公司已经累计解决退伍HY人转业为兼职或者专职司机三百多万人次,梁某即为此类网约车司机,据梁某自己统计某一天出车一次的总路程数可能的取值是20、22、24、26、28、,它们出现的概率依次是、、、、t、.〔1〕求这一天中梁某一次行驶路程X的分布列,并求X的均值和方差;〔2〕网约车计费细那么如下:起步价为5元,行驶路程不超过时,租车费为5元,假设行驶路程超过,那么按每超出〔缺乏也按计程〕收费3元计费.根据以上条件,计算梁某一天中出车一次收入的均值和方差.【答案】〔1〕分布列见解析,;〔2〕设梁某一天出车一次的收入为Y元,。
高考数学大二轮复习 刷题首选卷 第三部分 刷模拟 高考仿真模拟卷(四)文-人教版高三全册数学试题

2020高考仿真模拟卷(四)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={y |y =x 2-1,x ∈R },N ={x |y =3-x 2},则M ∩N =( ) A .[-3,3]B .[-1,3] C .∅D .(-1,3] 答案 B解析 因为集合M ={y |y =x 2-1,x ∈R }={y |y ≥-1},N ={x |y =3-x 2}={x |-3≤x ≤3},则M ∩N =[-1,3].2.设命题p :∃x ∈Q,2x-ln x <2,则綈p 为( ) A .∃x ∈Q,2x-ln x ≥2 B.∀x ∈Q,2x-ln x <2 C .∀x ∈Q,2x-ln x ≥2 D.∀x ∈Q,2x-ln x =2 答案 C解析 綈p 为∀x ∈Q,2x-ln x ≥2. 3.若函数f (x )是幂函数,且满足f 4f 2=3,则f ⎝ ⎛⎭⎪⎫12=( )A.13 B .3 C .-13 D .-3 答案 A解析 设f (x )=x α(α为常数),∵满足f 4f 2=3,∴4α2α=3,∴α=log 23.∴f (x )=x log23,则f ⎝ ⎛⎭⎪⎫12=2-log23=13.4.已知下列四个命题:①存在a ∈R ,使得z =(1-i)(a +i)为纯虚数;②对于任意的z ∈C ,均有z +z -∈R ,z ·z -∈R ;③对于复数z 1,z 2,若z 1-z 2>0,则z 1>z 2;④对于复数z ,若|z |=1,则z +1z∈R .其中正确命题的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 ①z =(1-i)(a +i)=a +1+(1-a )i ,若z 为纯虚数,则a +1=0,1-a ≠0,得a =-1,故①正确;②设z =a +b i(a ,b ∈R ),则z -=a -b i ,那么z +z -=2a ∈R ,z ·z -=a 2+b 2∈R ,故②正确;③令z 1=3+i ,z 2=-2+i ,满足z 1-z 2>0,但不满足z 1>z 2,故③不正确;④设z =a +b i(a ,b ∈R ),其中a ,b 不同时为0,由|z |=1,得a 2+b 2=1,则z +1z=a+b i +1a +b i =a +b i +a -b ia 2+b2=2a ∈R ,故④正确. 5.关于直线a ,b 及平面α,β,下列命题中正确的是( ) A .若a ∥α,α∩β=b ,则a ∥b B .若α⊥β,m ∥α,则m ⊥β C .若a ⊥α,α∥β,则α⊥β D .若a ∥α,b ⊥a ,则b ⊥α 答案 C解析 A 错误,因为a 不一定在平面β内,所以a ,b 有可能是异面直线;B 错误,若α⊥β,m ∥α,则m 与β可能平行,可能相交,也可能m 在β内;由直线与平面垂直的判断定理能得到C 正确;D 错误,直线与平面垂直,需直线与平面中的两条相交直线垂直.6.已知各项均为正数的等比数列{a n }的前n 项和为S n ,且满足a 6,3a 4,-a 5成等差数列,则S 4S 2=( )A .3B .9C .10D .13 答案 C解析 因为a 6,3a 4,-a 5成等差数列,所以6a 4=a 6-a 5,设等比数列{a n }的公比为q ,则6a 4=a 4q 2-a 4q ,解得q =3或q =-2(舍去),所以S 4S 2=S 2+q 2S 2S 2=1+q 2=10.7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-2,0),过点F 1作倾斜角为30°的直线与圆x 2+y 2=b 2相交的弦长为3b ,则椭圆的标准方程为( )A.y 28+x 24=1B.x 28+y 24=1C.y 216+x 212=1 D.x 216+y 212=1 答案 B解析 由左焦点为F 1(-2,0),可得c =2,即a 2-b 2=4,过点F 1作倾斜角为30°的直线的方程为y =33(x +2),圆心(0,0)到直线的距离d =233+9=1, 由直线与圆x 2+y 2=b 2相交的弦长为3b , 可得2b 2-1=3b ,解得b =2,a =22, 则椭圆的标准方程为x 28+y 24=1.8.甲、乙、丙、丁四人商量是否参加研学活动.甲说:“乙去我就肯定去.”乙说:“丙去我就不去.”丙说:“无论丁去不去,我都去.”丁说:“甲、乙中只要有一人去,我就去.”以下推论可能正确的是( )A .乙、丙两个人去了B .甲一个人去了C .甲、丙、丁三个人去了D .四个人都去了 答案 C解析 因为乙说“丙去我就不去”,且丙一定去,所以A ,D 不可能正确.因为丁说“甲、乙中只要有一人去,我就去”,所以B 不可能正确.选C.9.下图的程序框图的算法思路源于我国古代数学名著《数书九章》中的“中国剩余定理”.已知正整数n 被3除余2,被7除余4,被8除余5,求n 的最小值.执行该程序框图,则输出的n =( )A .50B .53C .59D .62 答案 B解析 模拟程序运行,变量n 值依次为1229,1061,893,725,557,389,221,53,此时不符合循环条件,输出n =53.10.(2019·某某高考)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,且f (x )的最小正周期为π,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( ) A .-2 B .- 2 C. 2 D .2 答案 C解析 ∵函数f (x )为奇函数,且|φ|<π,∴φ=0. 又f (x )的最小正周期为π, ∴2πω=π,解得ω=2.∴f (x )=A sin2x .由题意可得g (x )=A sin x ,又g ⎝ ⎛⎭⎪⎫π4=2, 即A sin π4=2,解得A =2.故f (x )=2sin2x .∴f ⎝⎛⎭⎪⎫3π8=2sin 3π4= 2.故选C.11.已知数列{a n },定义数列{a n +1-2a n }为数列{a n }的“2倍差数列”,若{a n }的“2倍差数列”的通项公式为a n +1-2a n =2n +1,且a 1=2,若数列{a n }的前n 项和为S n ,则S 33=( )A .238+1 B .239+2 C .238+2 D .239答案 B解析 根据题意,得a n +1-2a n =2n +1,a 1=2,∴a n +12n +1-a n2n =1,∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为1,公差d =1的等差数列,∴a n2n =1+(n -1)=n ,∴a n =n ·2n, ∴S n =1×21+2×22+3×23+…+n ·2n, ∴2S n =1×22+2×23+3×24+…+n ·2n +1,∴-S n =2+22+23+24+…+2n -n ·2n +1=21-2n1-2-n ·2n +1=-2+2n +1-n ·2n +1=-2+(1-n )2n +1,∴S n =(n -1)2n +1+2,S 33=(33-1)×233+1+2=239+2.12.(2019·全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)上单调递减,则( )A .f ⎝ ⎛⎭⎪⎫log 314>f (2-32 )>f (2-23 )B .f ⎝ ⎛⎭⎪⎫log 314>f (2-23 )>f (2-32 )C .f (2-32 )>f (2-23 )>f ⎝ ⎛⎭⎪⎫log 314D .f (2-23 )>f (2-32 )>f ⎝ ⎛⎭⎪⎫log 314答案 C解析 因为f (x )是定义域为R 的偶函数, 所以f ⎝ ⎛⎭⎪⎫log 314=f (-log 34)=f (log 34).又因为log 34>1>2-23 >2-32>0,且函数f (x )在(0,+∞)上单调递减, 所以f (log 34)<f (2-23 )<f (2-32).故选C.二、填空题:本题共4小题,每小题5分,共20分.13.某学校高一学生有720人,现从高一、高二、高三这三个年级学生中采用分层抽样方法,抽取180人进行英语水平测试,已知抽取高一学生人数是抽取高二学生人数和高三学生人数的等差中项,且高二年级抽取65人,则该校高三年级学生人数是________.答案 660解析 根据题意,设高三年级抽取x 人, 则高一抽取(180-x -65)人, 由题意可得2(180-x -65)=x +65, 解得x =55.高一学生有720人,则高三年级学生人数为720×55180-65-55=660.14.若实数x ,y 满足⎩⎪⎨⎪⎧x ≥y ,2x -y ≤2,y ≥0,且z =mx +ny (m >0,n >0)的最大值为4,则1m +1n的最小值为________.答案 2解析 不等式组⎩⎪⎨⎪⎧x ≥y ,2x -y ≤2,y ≥0表示的平面区域如图阴影部分所示,当直线z =mx +ny (m >0,n >0)过直线x =y 与直线2x -y =2的交点(2,2)时, 目标函数z =mx +ny (m >0,n >0)取得最大值4, 即2m +2n =4,即m +n =2, 而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n (m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,当且仅当m =n =1时取等号,故1m +1n的最小值为2.15.设F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 在双曲线上,若PF 1→·PF 2→=0,△PF 1F 2的面积为9,且a +b =7,则该双曲线的离心率为________.答案 54解析 设|PF 1→|=m ,|PF 2→|=n , ∵PF 1→·PF 2→=0,△PF 1F 2的面积为9, ∴12mn =9,即mn =18, ∵在Rt △PF 1F 2中,根据勾股定理,得m 2+n 2=4c 2, ∴(m -n )2=m 2+n 2-2mn =4c 2-36,结合双曲线的定义,得(m -n )2=4a 2,∴4c 2-36=4a 2,化简整理,得c 2-a 2=9,即b 2=9, 可得b =3.结合a +b =7得a =4,∴c =a 2+b 2=5,∴该双曲线的离心率为e =c a =54.16.已知函数f (x )=(2-a )(x -1)-2ln x .若函数f (x )在⎝ ⎛⎭⎪⎫0,12上无零点,则a 的最小值为________.答案 2-4ln 2解析 因为f (x )<0在区间⎝ ⎛⎭⎪⎫0,12上恒成立不可能,故要使函数f (x )在⎝ ⎛⎭⎪⎫0,12上无零点,只要对任意的x ∈⎝ ⎛⎭⎪⎫0,12,f (x )>0恒成立,即对任意的x ∈⎝ ⎛⎭⎪⎫0,12,a >2-2ln x x -1恒成立. 令l (x )=2-2ln x x -1,x ∈⎝ ⎛⎭⎪⎫0,12,则l ′(x )=2ln x +2x-2x -12,再令m (x )=2ln x +2x -2,x ∈⎝ ⎛⎭⎪⎫0,12, 则m ′(x )=-2x 2+2x =-21-xx 2<0,故m (x )在⎝ ⎛⎭⎪⎫0,12上为减函数,于是m (x )>m ⎝ ⎛⎭⎪⎫12=2-2ln 2>0, 从而l ′(x )>0,于是l (x )在⎝ ⎛⎭⎪⎫0,12上为增函数,所以l (x )<l ⎝ ⎛⎭⎪⎫12=2-4ln 2,故要使a >2-2ln xx -1恒成立,只要a ∈[2-4ln 2,+∞),综上,若函数f (x )在⎝ ⎛⎭⎪⎫0,12上无零点,则a 的最小值为2-4ln 2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(2019·某某某某模拟二)(本小题满分12分)交强险是车主须为机动车购买的险种.若普通7座以下私家车投保交强险第一年的费用(基本保费)是a 元,在下一年续保时,实行费率浮动制,其保费与上一年度车辆发生道路交通事故情况相联系,具体浮动情况如下表:的该品牌同型号私家车的下一年续保情况,统计得到如下表格:将这100险条例》汽车交强险价格为a =950元.(1)求m 的值,并估计该地本年度使用这一品牌7座以下汽车交强险费大于950元的辆数; (2)试估计该地使用该品牌汽车的一续保人本年度的保费不超过950元的概率. 解 (1)m =100-50-10-10-3-2=25,3分估计该地本年度使用这一品牌7座以下汽车交强险费大于950元的辆数为5000×5100=250.6分(2)解法一:保费不超过950元的类型有A 1,A 2,A 3,A 4,所求概率为50+10+10+25100=0.95.12分解法二:保费超过950元的类型有A 5,A 6,概率为3+2100=0.05,因此保费不超过950元的概率为1-0.05=0.95.12分18.(本小题满分12分)已知向量a =(cos x ,-1),b =⎝ ⎛⎭⎪⎫3sin x ,-12,函数f (x )=(a +b )·a -2.(1)求函数f (x )的最小正周期及单调递增区间;(2)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,已知函数f (x )的图象经过点⎝ ⎛⎭⎪⎫A ,12,b ,a ,c 成等差数列,且AB →·AC →=9,求a 的值.解 f (x )=(a +b )·a -2=|a |2+a ·b -2=12cos2x +32sin2x =sin ⎝ ⎛⎭⎪⎫2x +π6.2分(1)最小正周期T =2π2=π,由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).4分所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).5分 (2)由f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6=12可得,2A +π6=π6+2k π或5π6+2k π(k ∈Z ),所以A =π3,7分又因为b ,a ,c 成等差数列,所以2a =b +c ,而AB →·AC →=bc cos A =12bc =9,所以bc =18,9分所以cos A =12=b +c 2-a 22bc -1=4a 2-a 236-1=a 212-1,所以a =3 2.12分19.(2019·某某模拟)(本小题满分12分) 如图,在三棱柱ABC -A 1B 1C 1中,AB ⊥平面BCC 1B 1,∠BCC 1=π3,AB =BB 1=2,BC =1,D 为CC 1的中点.(1)求证:DB 1⊥平面ABD ; (2)求点A 1到平面ADB 1的距离. 解 (1)证明:在平面四边形BCC 1B 1中,因为BC =CD =DC 1=1,∠BCD =π3,所以BD =1,又易知B 1D =3,BB 1=2,所以∠BDB 1=90°, 所以B 1D ⊥BD ,因为AB ⊥平面BB 1C 1C ,所以AB ⊥DB 1,3分所以B 1D 与平面ABD 内两相交直线AB 和BD 同时垂直, 所以DB 1⊥平面ABD .5分(2)对于四面体A 1-ADB 1,A 1到直线DB 1的距离,即A 1到平面BB 1C 1C 的距离,A 1到B 1D 的距离为2,设A 1到平面AB 1D 的距离为h ,因为△ADB 1为直角三角形,所以S △ADB 1=12AD ·DB 1=12×5×3=152,所以V A 1-ADB 1=13×152×h =156h ,7分因为S △AA 1B 1=12×2×2=2,D 到平面AA 1B 1的距离为32, 所以V D -AA 1B 1=13×2×32=33,9分因为V A 1-ADB 1=V D -AA 1B 1,所以15h 6=33, 解得h =255.所以点A 1到平面ADB 1的距离为255.12分20.(2019·某某师大附中模拟三)(本小题满分12分)已知点F (1,0),直线l :x =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ →.(1)求动点P 的轨迹C 的方程;(2)设直线y =kx +b 与轨迹C 交于两点,A (x 1,y 1)、B (x 2,y 2),且|y 1-y 2|=a (a >0,且a 为常数),过弦AB 的中点M 作平行于x 轴的直线交轨迹C 于点D ,连接AD ,BD .试判断△ABD的面积是否为定值.若是,求出该定值;若不是,请说明理由.解 (1)设P (x ,y ),则Q (-1,y ),∵QP →·QF →=FP →·FQ →,∴(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),即2(x +1)=-2(x -1)+y 2,即y 2=4x ,所以动点P 的轨迹C 的方程为y 2=4x .4分(2)联立⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,得ky 2-4y +4b =0,依题意,知k ≠0,且y 1+y 2=4k ,y 1y 2=4bk,由|y 1-y 2|=a ,得(y 1+y 2)2-4y 1y 2=a 2, 即16k 2-16b k=a 2,整理,得16-16kb =a 2k 2, 所以a 2k 2=16(1-kb ),①7分 因为AB 的中点M 的坐标为⎝⎛⎭⎪⎫2-bk k 2,2k ,所以点D ⎝ ⎛⎭⎪⎫1k2,2k ,则S △ABD =12|DM |·|y 1-y 2|=12⎪⎪⎪⎪⎪⎪1-bk k 2a ,9分由方程ky 2-4y +4b =0的判别式Δ=16-16kb >0,得1-kb >0,所以S △ABD =12·1-bkk2·a , 由①,知1-kb =a 2k 216,所以S △ABD =12·a 216·a =a332,又a 为常数,故S △ABD 的面积为定值.12分21.(2019·某某某某二模)(本小题满分12分)已知函数f (x )=1+ln x -ax 2. (1)讨论函数f (x )的单调区间; (2)证明:xf (x )<2e 2·e x +x -ax 3.解 (1)f (x )=1+ln x -ax 2(x >0), f ′(x )=1-2ax2x,当a ≤0时,f ′(x )>0,函数f (x )的单调增区间为(0,+∞),无单调递减区间;2分 当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a ,f ′(x )>0,x ∈⎝ ⎛⎭⎪⎫12a ,+∞,f ′(x )<0,∴函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a , 单调递减区间为⎝⎛⎭⎪⎫12a ,+∞.4分 (2)证法一:xf (x )<2e 2·e x +x -ax 3,即证2e 2·e xx -ln x >0,令φ(x )=2e 2·e xx -ln x (x>0),φ′(x )=2x -1e x -e 2x e 2x2,令r (x )=2(x -1)e x -e 2x ,r ′(x )=2x e x -e 2,7分 r ′(x )在(0,+∞)上单调递增,r ′(1)<0,r ′(2)>0,故存在唯一的x 0∈(1,2)使得r ′(x )=0,∴r (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∵r (0)<0,r (2)=0, ∴当x ∈(0,2)时,r (x )<0,当x ∈(2,+∞)时,r (x )>0; ∴φ(x )在(0,2)上单调递减,在(2,+∞)上单调递增, ∴φ(x )≥φ(2)=1-ln 2>0,得证.12分证法二:要证xf (x )<2e 2·e x -ax 3,即证2e 2·e xx 2>ln x x ,令φ(x )=2e 2·e xx 2(x >0),φ′(x )=2x -2exe 2x3,7分∴当x ∈(0,2)时,φ′(x )<0,当x ∈(2,+∞)时,φ′(x )>0. ∴φ(x )在(0,2)上单调递减,在(2,+∞)上单调递增, ∴φ(x )≥φ(2)=12.令r (x )=ln x x ,则r ′(x )=1-ln xx2, 当x ∈(0,e)时,r ′(x )>0,当x ∈(e ,+∞)时,r ′(x )<0. ∴r (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴r (x )≤r (e)=1e,∴φ(x )≥12>1e ≥r (x ),∴2e 2·e xx 2>ln xx,得证.12分(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),M 为曲线C 1上的动点,动点P 满足OP →=aOM →(a >0且a ≠1),P 点的轨迹为曲线C 2.(1)求曲线C 2的方程,并说明C 2是什么曲线;(2)在以坐标原点为极点,以x 轴的正半轴为极轴的极坐标系中,A 点的极坐标为⎝⎛⎭⎪⎫2,π3,射线θ=α与C 2的异于极点的交点为B ,已知△AOB 面积的最大值为4+23,求a 的值.解 (1)设P (x ,y ),M (x 0,y 0),由OP →=aOM →,得⎩⎪⎨⎪⎧x =ax 0,y =ay 0,∴⎩⎪⎨⎪⎧ x 0=xa ,y 0=ya .∵M 在C 1上,∴⎩⎪⎨⎪⎧xa=2+2cos θ,ya =2sin θ,即⎩⎪⎨⎪⎧x =2a +2a cos θ,y =2a sin θ(θ为参数),消去参数θ得(x -2a )2+y 2=4a 2(a ≠1),∴曲线C 2是以(2a,0)为圆心,以2a 为半径的圆.5分 (2)解法一:A 点的直角坐标为(1,3), ∴直线OA 的普通方程为y =3x ,即3x -y =0,设B 点的坐标为(2a +2a cos α,2a sin α),则B 点到直线3x -y =0的距离d =a |23cos α-2sin α+23|2=a ⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π6+3,∴当α=-π6时,d max =(3+2)a ,∴S △AOB 的最大值为12×2×(3+2)a =4+23,∴a =2.10分解法二:将x =ρcos θ,y =ρsin θ代入(x -2a )2+y 2=4a 2并整理得,ρ=4a cos θ,令θ=α得ρ=4a cos α,∴B (4a cos α,α),∴S △AOB =12|OA |·|OB |sin ∠AOB=4a cos α⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3 =a |2sin αcos α-23cos 2α|=a |sin2α-3cos2α-3|=a ⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫2α-π3-3.∴当α=-π12时,S △AOB 取得最大值(2+3)a ,依题意有(2+3)a =4+23,∴a =2.10分 23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|3x -1|+|3x +k |,g (x )=x +4. (1)当k =-3时,求不等式f (x )≥4的解集;(2)设k >-1,且当x ∈⎣⎢⎡⎭⎪⎫-k 3,13时,都有f (x )≤g (x ),求k 的取值X 围. 解 (1)当k =-3时,f (x )=⎩⎪⎨⎪⎧-6x +4,x <13,2,13≤x ≤1,6x -4,x >1,故不等式f (x )≥4可化为⎩⎪⎨⎪⎧x >1,6x -4≥4或⎩⎪⎨⎪⎧13≤x ≤1,2≥4或⎩⎪⎨⎪⎧x <13,-6x +4≥4.解得x ≤0或x ≥43,∴所求解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤0或x ≥43.5分 (2)当x ∈⎣⎢⎡⎭⎪⎫-k 3,13时,由k >-1有,3x -1<0,3x +k ≥0,∴f (x )=1+k ,不等式f (x )≤g (x )可变形为1+k ≤x +4,故k ≤x +3对x ∈⎣⎢⎡⎭⎪⎫-k 3,13恒成立, 即k ≤-k 3+3,解得k ≤94,而k >-1,故-1<k ≤94.∴k 的取值X 围是⎝ ⎛⎦⎥⎤-1,94.10分。
2024年高考数学第二轮复习:高考数学模拟试题精编(七)

高考数学模拟试题精编(七) (考试用时:120分钟 分值:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,把答题卡上对应题目的答案标号填在表格内.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |log 2(x -1)≤1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪21-x ≥12,则A ∩B =( )A .(-∞,2]B .[1,2]C .(1,2]D .(1,3]2.已知α,β∈(0,π)且tan α=12,cos β=-1010,则α+β=( ) A .π4 B .3π4 C .5π6D .5π43.已知某种垃圾的分解率为v ,与时间t (月)满足函数关系式v =ab t (其中a ,b 为非零常数),若经过12个月,这种垃圾的分解率为10%,经过24个月,这种垃圾的分解率为20%,那么这种垃圾完全分解,至少需要经过(参数数据:lg 2≈0.3)( )A .48个月B .52个月C .64个月D .120个月4.函数f (x )=x 36+sin 2x 的图象的大致形状是( )5.如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有阴眼,阴鱼的头部有个阳眼,表示万物都在相互转化,互相渗透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律.其平面图形记为图乙中的正八边形ABCDEFGH ,其中OA =2,则以下结论错误的是( )甲 乙A .2OB→+OE →+OG →=0B .OA →·OD →=-2 2C .|AH→+EH →|=4 D .|AH→+GH →|=4+2 2 6.已知正实数a ,b 满足ab +2a -2=0,则4a +b 的最小值是( ) A .2 B .42-2 C .43-2D .67.从编号分别为1,2,3,4,5,6,7的七个大小完全相同的小球中,随机取出三个小球,则至少有两个小球编号相邻的概率为( )A .57B .35C .25D .138.若函数f (x )=e x +x 3-2x 2-ax ,则a >e 是f (x )在(0,+∞)上有两个不同零点的( )A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件二、选择题:本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知复数z =a +b i(a ,b ∈R 且b ≠0),z 是z 的共轭复数,则下列命题中的真命题是( )A .z +z ∈RB .z -z ∈RC .z ·z ∈RD .zz ∈R10.某市组织2023年度高中校园足球比赛,共有10支球队报名参赛.比赛开始前将这10支球队分成两个小组,每小组5支球队,其中获得2022年度冠、亚军的两支球队分别在第一小组和第二小组,剩余8支球队抽签分组.已知这8支球队中包含甲、乙两队,记“甲队分在第一小组”为事件M 1,“乙队分在第一小组”为事件M 2,“甲、乙两队分在同一小组”为事件M 3,则( )A .P (M 1)=12B .P (M 3)=37C .P (M 1)+P (M 2)=P (M 3)D .事件M 1与事件M 3相互独立11.已知抛物线C :y 2=4x 的焦点为F ,点A (x 1,y 1),B (x 2,y 2)在C 上,则下列说法正确的是( )A .若点P (2,1),则△P AF 的周长的最小值为3+ 2B .若点P (m ,2)是C 上的一点,且AF →+BF →=FP →,则|AF |,|FP |,|BF |成等差数列C .若A ,F ,B 三点共线,则y 1y 2=-2D .若|AB |=8,则AB 的中点到y 轴距离的最小值为3 12.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为棱BB 1的中点,Q 为正方形BB 1C 1C 内一动点(含边界),则下列说法中正确的是( )A .若D 1Q ∥平面A 1PD ,则动点Q 的轨迹是一条线段B .存在Q 点,使得D 1Q ⊥平面A 1PDC .当且仅当Q 点落在棱CC 1上某处时,三棱锥Q -A 1PD 的体积最大 D .若D 1Q =62,那么Q 点的轨迹长度为24π三、填空题:本大题共4小题,每小题5分,共20分.13.在二项式⎝ ⎛⎭⎪⎫x +a x 8的展开式中,若前三项的系数成等差数列,则实数a =________.14.写出一个同时具有下列性质①②③的函数解析式f (x )=________. ①f (x )的最大值为2; ②∀x ∈R ,f (2-x )=f (x ); ③f (x )是周期函数.15.在一次社团活动中,甲、乙两人进行象棋比赛,规定每局比赛胜的一方得3分,负的一方得1分(假设没有平局).已知甲胜乙的概率为0.6,若甲、乙两人比赛两局,且两局比赛结果互不影响,设两局比赛结束后甲的得分为ξ,则E (ξ)=________.16.已知函数f (x )的定义域为R ,f (x +2)为偶函数,f (x 3+1)为奇函数,当x ∈[0,1]时,f (x )=ax +b .若f (4)=1,则∑100k =1 ⎣⎢⎡⎦⎥⎤k ·f ⎝ ⎛⎭⎪⎫k +12=________. 四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2a -c =2b cos C .(1)求B ;(2)A 的角平分线与C 的角平分线相交于点D ,AD =3,CD =5,求AC 和BD . 18.(本小题满分12分)已知各项为正数的数列{a n }的前n 项和为S n ,若4S n =a 2n +2a n +1.(1)求数列{a n }的通项公式; (2)设b n =2a n a n +1,且数列{b n }的前n 项和为T n ,求证:23≤T n <1. 19.(本小题满分12分)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,AN ∥BM ,AN =AB =BC =2,BM =4,CN =2 3.(1)证明:BM ⊥平面ABCD ;(2)在线段CM (不含端点)上是否存在一点E ,使得二面角E -BN -M 的余弦值为33.若存在,求出CE EM 的值;若不存在,请说明理由.20.(本小题满分12分)人们用大数据来描述和定义信息时代产生的海量数据,并利用这些数据处理事务和做出决策.某公司通过大数据收集到该公司销售的某电子产品1月至5月的销售量如下表.该公司为了预测未来几个月的销售量,建立了y 关于x 的回归模型:y ^=u ^x 2+v^. (1)根据所给数据与回归模型,求y 关于x 的回归方程(u^的值精确到0.1);(2)已知该公司的月利润z (单位:万元)与x ,y 的关系为z =24x -5y +2x ,根据(1)的结果,该公司哪一个月的月利润预报值最大?参考公式:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x+a ^的斜率和截距的最小二乘估计公式分别为b ^=∑ni =1 (x i -x )(y i -y )∑ni =1 (x i -x )2,a ^=y -b ^x .21.(本小题满分12分)已知f (x )=ln x +ax +1(a ∈R ),f ′(x )为f (x )的导函数. (1)若对任意x >0都有f (x )≤0,求a 的取值范围;(2)若0<x 1<x 2,证明:对任意常数a ,存在唯一的x 0∈(x 1,x 2),使得f ′(x 0)=f (x 1)-f (x 2)x 1-x 2成立.22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),其右焦点为F (3,0),点M 在圆x 2+y 2=b 2上但不在y 轴上,过点M 作圆的切线交椭圆于P ,Q 两点,当点M 在x 轴上时,|PQ |= 3.(1)求椭圆C 的标准方程;(2)当点M 在圆上运动时,试探究△FPQ 周长的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学第二轮复习模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试用时120分钟. 本试卷的解答均应填在答题卷上,在本试卷上答题无效.第Ⅰ卷(选择题 共50分)参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k )=C kn P (1-P )n -k一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知不等式23|21|≤-x 的解集为A ,函数)4lg(2x x y -=的定义或为B ,则=B AA .)4,1[B .)0,1[-C .)4,2[D .]2,0(2.在等比数列}{n a 中,36,352=-=a a ,则8a 的值为(A )-432 (B )432 (C )-216 (D )以上都不对 3.设直线l :y = 3x – 2与椭圆2222b x a y +=1(a >b >0)相交于A 、B 两点,且弦AB 的中点M 在直线x + y = 0上,则椭圆的离心率为 A .36B .22C .32D .334.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设6(),5a f = 3(),2b f = 5(),2c f = 则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.从颜色不同的5个球中任取4个球放入3个不同的盒子中,要求每个盒子不空,则不同的放法总数为A .120B .90C .180D .3606.在锐二面角l αβ--中,直线a ⊂平面α,直线b ⊂平面β,且a , b 都与l 斜交,则 A .a 可能与b 垂直,也可能与b 平行 B .a 可能与b 垂直,但不可能与b 平行C .a 不可能与b 垂直,也不可能与b 平行D .a 不可能与b 垂直,但可能与b 平7.已知函数()(01)f x x ≤≤的图象是一段圆弧(如图所示), 若0<1x <2x <1,则 A .11()f x x <22()f x x B .11()f x x =22()f x x C .11()f x x >22()f x x D .前三个判断都不正确 8.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足[)(),0,cos cos AB AC OP OA AB B AC Cl l =++??uu u r uuu ruu u r uu r uu u r uuu r.则P 点的轨迹一定通过ABC ∆的 (A)重心 (B )垂心 (C )内心 (D )外心9.“关于xk 有解”是“关于x 的不等式12x x k -++≥恒成立”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件10.已知函数()f x =()2n n nf x a x -=,若1-≤1230x x x <<<,则 A .231a a a << B .123a a a <<C .132a a a <<D .321a a a <<第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分.) 11.曲线在53123+-=x x y 在1=x 处的切线的倾斜角为 。
12.已知函数[]()sin ,0,f x x x π=∈,则()()2y f x x π=-的值域为13.在坐标平面内,不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩所表示的平面区域的面积为14.在正四面体的一个顶点处,有一只蚂蚁每一次都以13的概率从一个顶点爬到另一个顶点,那么它爬行了4次又回到起点的概率是 15.数列{}n x 满足2111,,2k k k x x x x +==+则122007111111x x x ++++++ 的整数部分是 16.如图,AB 是过椭圆22221x y a b+=(a >b >0)的左焦点F 的一条动弦,AB 的斜率34,43k ⎡⎤∈⎢⎥⎣⎦并且22340a b -=,记AFFBλ=,则λ的取值范围为三、解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分,第1小问满分5分,第2小问满分7分)设函数()()f x a b c =+ ,其中向量(sin ,cos )a x x =- ,(sin ,3cos )b x x =-,(cos ,sin )c x x =-,x R ∈。
(Ⅰ)、求函数()f x 的最大值和最小正周期;(Ⅱ)、将函数()f x 的图像按向量d平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d 。
18.(本小题满分12分,第1小问满分6分,第2小问满分6分)在某次空战中,甲机先向乙机开火,击落乙机的概率时0.2;若乙机未被击落,就进行还击,击落甲机的概率时0.3;若甲机未被击落,则再进攻乙机,击落乙机的概率时0.4,求在这个三个回合中: (1)甲机被击落的概率; (2)乙机被击落的概率。
19.(本小题满分15分,第1小问满分5分,第2小问满分5分,第3小问满分5分) 已知,如图四棱锥P —ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且AG=31GD ,BG ⊥GC ,GB=GC=2,E 是BC 的中点,四面体P —BCG 的体积为38.(1)求异面直线GE 与PC 所成的角; (2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF ⊥GC ,求FCPF的值.20.(本小题满分15分,第1小问满分6分,第2小问满分9分)已知椭圆C 的方程是22221x y a b+=(a >b >0),斜率为1的直线l 与椭圆C 交于11(,)A x y ,22(,)B x y 两点。
(Ⅰ)若椭圆的离心率2e =,直线l 过点(,0),M b 且32cot ,5OA OB AOB ∙=∠ 求椭圆的方程; (Ⅱ)直线l 过椭圆的右焦点F ,设向量()OP OA OB λ=+(λ>0),若点P 在椭圆C 上,求λ的取值范围。
21. (本小题满分16分,第1小问满分5分,第2小问满分5分,第3小问满分6分) 已知()f x 在(1,1)-上有定义,1()12f =,且满足,(1,1)x y ∈-有()()()1x yf x f y f xy--=-。
对数列{}n x 有*11221,()21n n nx x x n N x +==∈+ (1) 证明:()f x 在(1,1)-上为奇函数。
(2)求()n f x 的表达式。
(3)是否存在自然数m ,使得对于任意*n N ∈且12111()()()n f x f x f x +++<84m -成立?若存在,求出m 的最小值。
高考数学第二轮复习模拟试卷答案一、选择题 (每小题5分,共50分)D ,A ,A ,D ,C ,B ,C ,B ,A ,A 二、填空题(每小题5分,共30分) 11.4π3 12.[]1,2 13.32 14.727 15.1 16.13773λ≤≤ 三、解答题(5大题,共70分)17.解:(Ⅰ)由题意得,f(x)=a·(b+c)=(sinx,-cosx)·(sinx -cosx,sinx -3cosx) =sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π). 所以,f(x)的最大值为2+2, 最小正周期是22π=π. (Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),,4)832(2+-=ππk d k ∈Z. 因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求. 18.设A 表示“甲机被击落”这一事件,则A 发生只可能在第2回合中发生,而第2回合又只能在第1回合甲失败了才可能进行,用i A 表示第i 回合射击成功(1,2,3)i =。
B 表示“乙机被击落”的事件,则121123,A A A B A A A A ==+ ()(1)0.80.30.24P A ∴=⨯= ()(2)0.20.80.70.40.424P B =+⨯⨯=。
答:略 19解:(1) 由已知38213131=⋅⋅⋅=⋅=∆-PG GC BG PG S V BCG BGC P ,∴PG=4. 在平面ABCD 内,过C 点作CH//EG ,交AD 于H ,连结PH ,则∠PCH (或其补角)就是异面直线GE 与PC 所成的角. 在△PCH 中,18,20,2===PH PC CH ,由余弦定理得,cos ∠PCH=1010∴异面直线GE 与PC 所成的角为arccos 1010(2)∵PG ⊥平面ABCD ,PG ⊂平面PBG ∴平面PBG ⊥平面ABCD在平面ABCD 内,过D 作DK ⊥BG ,交BG 延长线于K ,则DK ⊥平面PBG ∴DK 的长就是点D 到平面PBG 的距离.223434322===∴=BC AD GD BC 在△DKG ,DK=DGsin45°=23 ∴点D 到平面PBG 的距离为23.(3)在平面ABCD 内,过D 作DM ⊥GC ,M 为垂足,连结MF ,又因为DF ⊥GC∴GC ⊥平面MFD , ∴GC ⊥FM .由平面PGC ⊥平面ABCD ,∴FM ⊥平面ABCD ,∴FM//PG .由GM ⊥MD ,得GM=GD·cos45°=23.20、(1)2e =,2,a b c ∴==,将直线l 的方程y x b =-代入到椭圆方程22244x y b +=中,得83(0,),(,)55b b B b A -。
又2AOB AOx π∠=+∠,3cot tan 8AOB AOx ∴∠=-∠=-,从而由32cot 5OA OB AOB ∙=∠ ,得23332585b -=-⨯224,16b a ∴==即椭圆的方程为:221164x y += (2) 将y x c =-代入到椭圆方程, 得2222222()2()0b a x a cx a c b +-+-=22222222(,)a c b c OA OB a b a b -∴+=++ ,故22222222(,),a c b cOP a b a bλλ-∴=++ 又点P 在椭圆上,从而22222222222222()()0a c b c b a a b a b a b-+-=++, 化简得22224a b cλ+=,设椭圆的离心率为e , 则01e <<,且22111(,)244e λ=-∈+∞,故λ的取值范围为1(,)2+∞ 21、(1)当0x y ==时,(0)0f =,再令0x =得(0)()()f f y f y -=-即()()0f y f y +-=323,, 3.12PF GM PF DF GC FC MC FC ===∴⊥= 由可得()f x ∴在(1,1)-上为为奇函数。