2019-2020浙江杭州萧山高桥初中九年级下第一次检测数学试题(图片版)
浙江省杭州市2019-2020学年数学中考一模试卷(含答案)

浙江省杭州市2019-2020学年数学中考一模试卷(含答案)一、单选题1.﹣32=()A. ﹣3B. ﹣9C. 3D. 9【答案】B【考点】有理数的乘方2.某企业今年1月份产值为x万元,2月份比1月份增加了10%,3月份比2月份减少了20%,则3月份的产值是()万元.A. (1+10%)(1﹣20%)xB. (1+10%+20%)xC. (x+10%)(x﹣20%)D. (1+10%﹣20%)x【答案】A【考点】列式表示数量关系3.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A. 5B. 6C. 7D. 8【答案】B【考点】平行线分线段成比例4.右图是某市10月1日至7日一周内“日平均气温变化统计图”.在这组数据中,众数和中位数分别是()A. 13,13B. 14,14C. 13,14D. 14,13【答案】 D【考点】利用统计图表分析实际问题,中位数,众数5.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A. 2B.C. 1D.【答案】C【考点】等腰三角形的性质,圆周角定理,锐角三角函数的定义6.已知m=|﹣|÷ ,则()A.﹣9<m<﹣8B.﹣8<m<﹣7C.7<m<8D.8<m<9【答案】C【考点】估算无理数的大小,二次根式的乘除法7.已知二次函数y=﹣x2+2mx,以下点可能成为函数顶点的是()A. (﹣2,4)B. (1,2)C. (﹣1,﹣1)D. (2,﹣4)【答案】A【考点】二次函数y=a(x-h)^2+k的性质,二次函数y=ax^2+bx+c与二次函数y=a(x-h)^2+k的转化8.在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A. C与∠α的大小有关B. 当∠α=45°时,S=C. A,B,C,D四个点可以在同一个圆上D. S随∠α的增大而增大【答案】 D【考点】菱形的性质,确定圆的条件9.对于二次函数y=x2﹣2mx+3m﹣3,以下说法:①图象过定点(),②函数图象与x轴一定有两个交点,③若x=1时与x=2017时函数值相等,则当x=2018时的函数值为﹣3,④当m=﹣1时,直线y=﹣x+1与直线y=x+3关于此二次函数对称轴对称,其中正确命题是()A. ①②B. ②③C. ①②④D. ①③④【答案】C【考点】二次函数与一次函数的综合应用,二次函数y=ax^2+bx+c的性质10.如图,在△ABC中,∠A=36°,AC=AB=2,将△ABC绕点B逆时针方向旋转得到△DBE,使点E在边AC 上,DE交AB于点F,则△AFE与△DBF的面积之比等于()A. B. C. D.【答案】C【考点】平行线的性质,等腰三角形的性质,等边三角形的性质,相似三角形的判定与性质二、填空题11.已知正n边形的每一个内角为135°,则n=________.【答案】8【考点】正多边形的性质12.已知a= ,则(4a+b)2﹣(4a﹣b)2为________.【答案】4【考点】代数式求值,因式分解的应用13.标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是________.【答案】奇数【考点】概率的简单应用14.在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC绕AB所在直线旋转一周,得到的几何体的侧面积为________.【答案】【考点】圆锥的计算15.定义:关于x的函数y=mx2+nx与y=nx2+mx(其中mn≠0)叫做互为交换函数,若这两个函数图象的顶点关于x轴对称,那么m,n满足的关系式为________.【答案】m=﹣n【考点】关于坐标轴对称的点的坐标特征,二次函数y=a(x-h)^2+k的性质,二次函数y=ax^2+bx+c与二次函数y=a(x-h)^2+k的转化16.已知△ABC与△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,则CD=________.【答案】1或【考点】等边三角形的判定与性质,勾股定理,翻折变换(折叠问题)三、解答题17.已知x=﹣3,求代数式(1+ )÷ 的值.【答案】解:当x=﹣3时,原式= ÷ ,= • ,=x(x+1),=﹣3×(﹣2),=6【考点】利用分式运算化简求值18.如图,BE是△ABC的角平分线,延长BE至D,使得BC=CD.(1)求证:△AEB∽△CED;(2)若AB=2,BC=4,AE=1,求CE长.【答案】(1)证明:∵BE是△ABC的角平分线,∴∠ABE=∠CBE.∵BC=CD,∴∠CDE=∠CBE=∠ABE.又∵∠AEB=∠CED,∴△AEB∽△CED(2)解:∵BC=4,∴CD=4.∵△AEB∽△CED,∴= ,即= ,∴CE=2.【考点】相似三角形的判定与性质19.从数﹣1,0,1,2,3中任取两个,其和的绝对值为k(k是自然数)的概率记作P k,(如:P2是任取两个数,其和的绝对值为2的概率)(1)求k的所有取值;(2)求P3.【答案】(1)解:k的所有取值情况如下:(2)解:由树状图可知共有20种等可能结果,其中和的绝对值为3的有4种结果,所以P3= = .【考点】列表法与树状图法,概率公式20.二次函数y=(m+1)x2﹣2(m+1)x﹣m+3.(1)求该二次函数的对称轴;(2)过动点C(0,n)作直线l⊥y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;(3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m.【答案】(1)解:∵y=(m+1)x2﹣2(m+1)x﹣m+3,∴对称轴方程为x=﹣=1.(2)解:∵y=(m+1)x2﹣2(m+1)x﹣m+3=(m+1)(x﹣1)2﹣2m+2,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+2(3)解:抛物线y=(m+1)x2﹣2(m+1)x﹣m+3的顶点坐标是(1,﹣2m+2).依题可得,解得﹣2≤m<﹣1,∴整数m的值为﹣2.【考点】二次函数与不等式(组)的综合应用,二次函数与一次函数的综合应用,二次函数y=a(x-h)^2+k 的性质,二次函数y=ax^2+bx+c的图像,二次函数y=ax^2+bx+c与二次函数y=a(x-h)^2+k的转化21.已知:在△ABC中,∠A=90°,AB=6,AC=8,点P在边AC上,且⊙P与AB,BC都相切.(1)求⊙P半径;(2)求sin∠PBC.【答案】(1)解:如图所示:过P作PE⊥BC,∵⊙P与AB,BC都相切,∴BA=BE=6,PA=PE,∵在△ABC中,∠A=90°,AB=6,AC=8,∴△ABC的面积= ,即,解得:PA=3,即⊙P半径=3(2)解:在Rt△BPE中,BP= ,∴sin∠PBC= .【考点】三角形的面积,角平分线的性质,勾股定理,切线的性质,锐角三角函数的定义22.已知函数y1=x﹣m+1和y2= (n≠0)的图象交于P,Q两点.(1)若y1的图象过(n,0),且m+n=3,求y2的函数表达式:(2)若P,Q关于原点成中心对称.①求m的值;②当x>2时,对于满足条件0<n<n0的一切n总有y1>y2,求n0的取值范围.【答案】(1)解:∵若y1的图象过(n,0),∴0=n﹣m+1 且m+n=3,∴m=2,n=1,∴y2的函数表达式:y2=(2)解:①设P(x,y),∵P,Q关于原点成中心对称,∴Q(﹣x,﹣y).∵函数y1=x﹣m+1和y2= (n≠0)的图象交于P,Q两点,∴y=x﹣m+1,∴﹣y=﹣x﹣m+1,②当m=1时,y1=x,∵当x>2时,对于满足条件0<n<n0的一切n总有y1>y2,∴x>,∴x2>n,且x>2,∴n<4,∴0<n0≤4;【考点】反比例函数与一次函数的交点问题,一次函数的性质,反比例函数图象上点的坐标特征23.已知△ABD与△GDF都是等腰直角三角形,BD与DF均为斜边(BD<DF).(1)如图1,B,D,F在同一直线上,过F作MF⊥GF于点F,取MF=AB,连结AM交BF于点H,连结GA,GM.①求证:AH=HM;②请判断△GAM的形状,并给予证明;③请用等式表示线段AM,BD,DF的数量关系,并说明理由.(2)如图2,GD⊥BD,连结BF,取BF的中点H,连结AH并延长交DF于点M,请用等式直接写出线段AM,BD,DF的数量关系.【答案】(1)解:①证明:如图1,∵MF⊥GF,∴∠GFM=90°,∵△ABD与△GDF都是等腰直角三角形,∴∠DFG=∠ABD=45°,∴∠HFM=90°﹣45°=45°,∴∠ABD=∠HFM,∵AB=MF,∠AHB=∠MHF,∴△AHB≌△MHF,∴AH=HM;②如图1,△GAM是等腰直角三角形,理由是:∵△ABD与△GDF都是等腰直角三角形,∴AB=AD,DG=FG,∠ADB=∠GDF=45°,∴∠ADG=∠GFM=90°,∵AB=FM,∴△GAD≌△GMF,∴AG=GM,∠AGD=∠MGF,∴∠ADG+∠DGM=∠MGF+∠DGM=90°,∴△GAM是等腰直角三角形;③如图1,AM2=BD2+DF2,理由是:∵△AGM是等腰直角三角形,∴AM2=2MG2,Rt△GMF中,MG2=FG2+FM2=AB2+FG2,∵△ABD与△GDF都是等腰直角三角形,∴AB= ,FG= ,∴AM2=2MG2=2(+ )=BD2+DF2(2)解:如图2,∵GD⊥BD,∠ADB=45°,∴∠ADG=45°,∴∠ADM=45°+45°=90°,∵∠HMF=∠ADM+∠DAM=90°+∠DAM=∠BAH,∵H是BF的中点,∴BH=HF,∵∠AHB=∠MHF,∴△ABH≌△HFM,∴FM=AB,在Rt△ADM中,由勾股定理得:AM2=AD2+DM2,=AD2+(DF﹣FM)2,=AD2+DF2﹣2DF•FM+FM2,=BD2+DF2﹣2DF ,=BD2+DF2﹣DF•BD.【考点】全等三角形的判定与性质,勾股定理,等腰直角三角形。
2019-2020年九年级下学期第一次检测数学试卷

2019-2020年九年级下学期第一次检测数学试卷一.选择题(共10小题,30分)1.下列说法正确的是( )A 、任意两个等腰三角形都相似B 、任意两个菱形都相似C 、任意两个正五边形都相似D 、对应角相等的两个多边形相似2.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )A ..C .D .3.△ABC 在如图所示的平面直角坐标系中,将△ABC 向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O 旋转180°后得到△A2B2C2,则下列说法正确的是( )A 、A1的坐标为(3,1)B 、11A ABB S 四边形=3C 、B2C =22D 、∠AC2O =45° 4.二次函数y=ax 2+bx+c 的图象大致位置如图所示,下列判断错误的是( ) A.a<0 B.b>0 C.c>0 D.b2a>0第④题图 第⑤题图5.如图,抛物线y=ax 2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c 的值为( )A.0B.-1C.1D.26.二次函数y=ax 2+x+a 2-1的图象可能是 ( )7.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( )A .40°B .80°C .160°D .120°8. 已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( )A .310B .512C .2D .39.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A.甲B.乙C.丙D.不能确定10.已知反比例函数的图象2y x =-上有两点A (x1,y1)、B (x2,y2),若y1>y2,则x1﹣x2的值是( )A . 正数B . 负数C . 非正数D . 不能确定 二填空题(共4小题,16分)11.在Rt △ABC 中,∠C=90゜,AC=5,BC=12,以C 为圆心,R 为半径作圆与斜边AB 相切,则R 的值为__________。
2019-2020学年杭州市中考数学学业质量监测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+312.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×1093.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°4.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)5.等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )A.8374y xy x+=⎧⎨-=⎩B.8374x yx y+=⎧⎨-=⎩C.8374x yx y-=⎧⎨+=⎩D.8374y xy x-=⎧⎨+=⎩7.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-48.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A .1∶3B .2∶3C .3∶2D .3∶39.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .10.-2的倒数是( )A .-2B .12-C .12D .2二、填空题(本题包括8个小题)11.如图,折叠长方形纸片ABCD ,先折出对角线BD ,再将AD 折叠到BD 上,得到折痕DE ,点A 的对应点是点F ,若AB=8,BC=6,则AE 的长为_____.12.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.13.已知23-是一元二次方程240x x c -+=的一个根,则方程的另一个根是________.14.如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B ,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E .设BP=x ,BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )15.写出一个大于3且小于4的无理数:___________.16.如图,在△ABC 中,P ,Q 分别为AB ,AC 的中点.若S △APQ =1,则S 四边形PBCQ =__.17.若23a b =,则a b b +=_____. 18.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .三、解答题(本题包括8个小题)19.(6分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.20.(6分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.21.(6分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.22.(8分)先化简,再求值:2441x xx+++÷(31x+﹣x+1),其中x=sin30°+2﹣1+4.23.(8分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E 是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.24.(10分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.25.(10分)解不等式组:2(3)47{22x x x x +≤++>并写出它的所有整数解. 26.(12分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:184467440737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.2.A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可.【详解】39000000000=3.9×1.故选A .【点睛】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.3.B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算4.C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.5.B【解析】【分析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键. 6.C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y-=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.7.D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .8.A【解析】∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE ,同理可得:∠B=∠DFE ,∠A=DEF ,∴△DEF ∽△CAB ,∴△DEF 与△ABC 的面积之比=2DE AC ⎛⎫ ⎪⎝⎭, 又∵△ABC 为正三角形,∴∠B=∠C=∠A=60°∴△EFD 是等边三角形,∴EF=DE=DF ,又∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴△AEF ≌△CDE ≌△BFD ,∴BF=AE=CD ,AF=BD=EC ,在Rt △DEC 中,DE=DC×sin ∠C=2DC ,EC=cos ∠C×DC=12DC , 又∵DC+BD=BC=AC=32DC ,∴232DC DE AC DC ==, ∴△DEF 与△ABC的面积之比等于:221:3DE AC ⎛⎫== ⎪⎝⎭⎝⎭故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DE AC之比,进而得到面积比. 9.B【解析】【分析】根据相似三角形的判定方法一一判断即可.【详解】 解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 10.B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握二、填空题(本题包括8个小题)11.3【解析】【分析】先利用勾股定理求出BD ,再求出DF 、BF ,设AE=EF=x .在Rt △BEF 中,由EB 2=EF 2+BF 2,列出方程即可解决问题.【详解】∵四边形ABCD 是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD ==1.∵△DEF 是由△DEA 翻折得到,∴DF=AD=6,BF=2.设AE=EF=x .在Rt △BEF 中,∵EB 2=EF 2+BF 2,∴(8﹣x )2=x 2+22,解得:x=3,∴AE=3.故答案为:3.【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.12.(32,2).【解析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.13.23【解析】【分析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将3【详解】设方程的另一根为x1,又∵x1,解得x1.故答案为:2【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.14.C【解析】【分析】先证明△BPE∽△CDP,再根据相似三角形对应边成比例列出式子变形可得.【详解】由已知可知∠EPD=90°,∴∠BPE+∠DPC=90°,∵∠DPC+∠PDC=90°,∴∠CDP=∠BPE,∵∠B=∠C=90°,∴△BPE∽△CDP,∴BP:CD=BE:CP,即x:3=y:(5-x),∴y=253x x-+(0<x<5);故选C.考点:1.折叠问题;2.相似三角形的判定和性质;3.二次函数的图象.15π等,答案不唯一.【解析】【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.16.1【解析】【分析】根据三角形的中位线定理得到PQ=12BC,得到相似比为12,再根据相似三角形面积之比等于相似比的平方,可得到结果.【详解】 解:∵P ,Q 分别为AB ,AC 的中点,∴PQ ∥BC ,PQ =12BC , ∴△APQ ∽△ABC ,∴APQABC SS =(12)2=14, ∵S △APQ =1,∴S △ABC =4,∴S 四边形PBCQ =S △ABC ﹣S △APQ =1,故答案为1.【点睛】本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.53【解析】2,3a b = a b b +∴=2511b 33a +=+=. 18.(7+63)【解析】【分析】过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,得到两个直角三角形和一个矩形,在Rt △AEF 中利用DF 的长,求得线段AF 的长;在Rt △BCE 中利用CE 的长求得线段BE 的长,然后与AF 、EF 相加即可求得AB 的长.【详解】解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,∵坝顶部宽为2m ,坝高为6m ,∴DC=EF=2m ,EC=DF=6m ,∵α=30°,∴BE=63tan30EC =︒(m ), ∵背水坡的坡比为1.2:1,∴ 1.2 1.21DF AF AF ==, 解得:AF=5(m ),则AB=AF+EF+BE=5+2+63=(7+63)m ,故答案为(7+63)m .【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.三、解答题(本题包括8个小题)19.见解析【解析】【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P 点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.20.(1)200,(2)图见试题解析 (3)540【解析】【详解】试题分析:(1)根据A 级的人数与所占的百分比列式进行计算即可求出被调查的学生人数;(2)根据总人数求出C 级的人数,然后补全条形统计图即可;(3)1减去A 、B 两级所占的百分比乘以360°即可得出结论.试题解析::(1)调查的学生人数为:5025%=200名; (2)C 级学生人数为:200-50-120=30名,补全统计图如图;(3)学习态度达标的人数为:360×[1-(25%+60%]=54°.答:求出图②中C级所占的圆心角的度数为54°.考点:条形统计图和扇形统计图的综合运用21.(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为1元.【解析】【分析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.【详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1﹣x)2=39.2,解得:x1=0.3=30%,x2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a%)﹣30]×10(1+2a%)=30000,整理得:a2+75a﹣2500=0,解得:a1=25,a2=﹣1(不合题意,舍去),∴80(1+a%)=80×(1+25%)=1.答:乙网店在“双十一”购物活动这天的网上标价为1元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.-5【解析】【分析】根据分式的运算法则以及实数的运算法则即可求出答案.【详解】当x=sin30°+2﹣14时,∴x=12+12+2=3,原式=2(x2)x1++÷24xx1-+=x2x2+--=﹣5.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(1)详见解析;(2)①67.5°;②90°.【解析】【分析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此时点P与点O重合,∴此时DE是直径,∴∠EAD=90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.24.(1)50;(2)240;(3)1 2 .【解析】【分析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1)510%50n=÷=;(2)样本中喜爱看电视的人数为501520510---=(人),10120024050⨯=,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率61 122 ==.【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.25.原不等式组的解集为122x -≤<,它的所有整数解为0,1. 【解析】【分析】 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.【详解】解:()2347{22x x x x +≤++>①②, 解不等式①,得1-2x ≥, 解不等式②,得x <2, ∴原不等式组的解集为122x -≤<, 它的所有整数解为0,1.【点睛】本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).26.(1)3;(2)1312n +-;(3)1218,95N N == 【解析】【分析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可.()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++= ()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n ---⋯-,每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,n n S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10, ②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=, 满足:10100N <<, ③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=, 满足:10100N <<, ④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=, 不满足100N <, ∴1218,95N N ==【点睛】 考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE2.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将AED∆以DE为折痕向右折叠,AE与BC交于点F,则CEF∆的面积为()A.4 B.6 C.8 D.103.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣91255,)B.(﹣12955,)C.(﹣161255,)D.(﹣121655,)4.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°5.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹6.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=7.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:48.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.129.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①12AFFD=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③10.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌二、填空题(本题包括8个小题)11.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.12.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.13.如图,已知AB∥CD,α∠=____________14.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)15.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= .16.64的立方根是_______.17.分解因式:2288a a-+=_______18.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.三、解答题(本题包括8个小题)19.(6分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:本次调查中,王老师一共调查了名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.20.(6分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)22.(8分)已知关于x的方程x2-(m+2)x+(2m-1)=0。
浙江省杭州市2019-2020学年中考数学一模考试卷含解析

浙江省杭州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图的立体图形,从左面看可能是()A.B.C.D.2.下列事件中,必然事件是()A.若ab=0,则a=0B.若|a|=4,则a=±4C.一个多边形的内角和为1000°D.若两直线被第三条直线所截,则同位角相等3.不解方程,判别方程2x2﹣32x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根4.已知下列命题:①对顶角相等;②若a>b>0,则1a<1b;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A.15B.25C.35D.455.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条6.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A.B.C.D7.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.55B.105C.103D.1538.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°9.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是()A.点A落在BC边的中点B.∠B+∠1+∠C=180°C.△DBA是等腰三角形D.DE∥BC10.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为( )A .15°B .35°C .25°D .45°11.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .12.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是( )A .两点之间的所有连线中,线段最短B .经过两点有一条直线,并且只有一条直线C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .经过一点有且只有一条直线与已知直线垂直二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm ),计算出这个立体图形的表面积.14.如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .15.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .16.已知关于x 的方程有两个不相等的实数根,则m 的最大整数值是 . 17.一机器人以0.2m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .18.已知函数||(2)31m y m x x =+-+是关于x 的二次函数,则m =__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为»BC的中点,作DE ⊥AC ,交AB 的延长线于点F ,连接DA .求证:EF 为半圆O 的切线;若DA =DF =63,求阴影区域的面积.(结果保留根号和π)20.(6分)如图,在⊙O 中,弦AB 与弦CD 相交于点G ,OA ⊥CD 于点E ,过点B 的直线与CD 的延长线交于点F ,AC ∥BF .(1)若∠FGB=∠FBG ,求证:BF 是⊙O 的切线;(2)若tan ∠F=34,CD=a ,请用a 表示⊙O 的半径; (3)求证:GF 2﹣GB 2=DF•GF .21.(6分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率. 22.(8分)(1)解方程:11122x x --+=0;(2)解不等式组32193(1)xx x->⎧⎨+<+⎩,并把所得解集表示在数轴上.23.(8分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知A,B两个粮仓原有存粮共450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的35支援 C 粮仓,从B 粮仓运出该粮仓存粮的25支援 C 粮仓,这时A,B两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)(1)A,B 两处粮仓原有存粮各多少吨?(2)C 粮仓至少需要支援200 吨粮食,问此调拨计划能满足C 粮仓的需求吗?(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到B 地?请你说明理由.24.(10分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.25.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接DC,若BC=4,求弧DC与弦DC所围成的图形的面积.26.(12分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.⑴用含t的代数式表示:AP=,AQ=.⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?27.(12分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.2.B【解析】【分析】直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案.【详解】解:A 、若ab=0,则a=0,是随机事件,故此选项错误;B 、若|a|=4,则a=±4,是必然事件,故此选项正确;C 、一个多边形的内角和为1000°,是不可能事件,故此选项错误;D 、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;故选:B .【点睛】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键.3.B【解析】一元二次方程的根的情况与根的判别式∆有关,24b ac ∆=-2(42(3)=--⨯⨯-420=>,方程有两个不相等的实数根,故选B4.B【解析】∵①对顶角相等,故此选项正确;②若a >b >0,则1a <1b,故此选项正确; ③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x 2﹣2x 与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误; ∴从中任选一个命题是真命题的概率为:25. 故选:B .5.D【解析】【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n ﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.【点睛】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.6.D【解析】【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,()2210210x xx x x-+--+⎧⎨⎩>①<②,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.7.B【解析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB 于点G′,如图所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=2255''+'=,E G GG∴C四边形EFGH=2E′G=105,故选B.【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.8.B【解析】【分析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【详解】如图,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选B.【点睛】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.9.A【解析】【分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA 是等腰三角形.故只有A错,BA≠CA.故选A.【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.10.A【解析】【分析】根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC 的度数.【详解】∵AB=AC ,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB ,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键. 11.C【解析】【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a >0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .12.B【解析】【分析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故选:B.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.100 mm1【解析】【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【详解】根据三视图可得:上面的长方体长4mm,高4mm,宽1mm,下面的长方体长8mm,宽6mm,高1mm,∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).故答案为100 mm1.【点睛】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.14.1【解析】【详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=1.15.2【解析】试题分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x =;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2.考点:反比例函数系数k 的几何意义.16.1.【解析】试题分析:∵关于x 的方程有两个不相等的实数根, ∴.∴m 的最大整数值为1. 考点:1.一元二次方程根的判别式;2.解一元一次不等式.17.240【解析】根据图示,得出机器人的行走路线是沿着一个正八边形的边长行走一周,是解决本题的关键,考察了计算多边形的周长,本题中由于机器人最后必须回到起点,可知此机器人一共转了360°,我们可以计算机器人所转的回数,即360°÷45°=8,则机器人的行走路线是沿着一个正八边形的边长行走一周,故机器人一共行走6×8=48m ,根据时间=路程÷速度,即可得出结果.本题解析: 依据题中的图形,可知机器人一共转了360°,∵360°÷45°=8,∴机器人一共行走6×8=48m .∴该机器人从开始到停止所需时间为48÷0.2=240s .18.1【解析】【分析】根据一元二次方程的定义可得:2m =,且20m +≠,求解即可得出m 的值.【详解】解:由题意得:2m =,且20m +≠,解得:2m =±,且2m ≠-,m∴2故答案为:1.【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析(2)﹣6π2【解析】【分析】(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.【详解】(1)证明:连接OD,∵D为弧BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC为等边三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt △ODF 中,DF =63, ∴OD =DF•tan30°=6,在Rt △AED 中,DA =63,∠CAD =30°,∴DE =DA•sin30°=33,EA =DA•cos30°=9,∵∠COD =180°﹣∠AOC ﹣∠DOF =60°,由CO =DO ,∴△COD 是等边三角形,∴∠OCD =60°,∴∠DCO =∠AOC =60°,∴CD ∥AB ,故S △ACD =S △COD ,∴S 阴影=S △AED ﹣S 扇形COD =216093362360π⨯⨯-⨯=2736π-.【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S △ACD =S △COD 是解题关键.20.(1)证明见解析;(2)25r a 48=;(3)证明见解析. 【解析】【分析】(1)根据等边对等角可得∠OAB=∠OBA ,然后根据OA ⊥CD 得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB ⊥FB ,再根据切线的定义证明即可.(2)根据两直线平行,内错角相等可得∠ACF=∠F ,根据垂径定理可得CE=12CD=12a ,连接OC ,设圆的半径为r ,表示出OE ,然后利用勾股定理列式计算即可求出r .(3)连接BD ,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF ,然后求出∠DBG=∠F ,从而求出△BDG 和△FBG 相似,根据相似三角形对应边成比例列式表示出BG 2,然后代入等式左边整理即可得证.【详解】解:(1)证明:∵OA=OB ,∴∠OAB=∠OBA.∵OA⊥CD,∴∠OAB+∠AGC=90°.又∵∠FGB=∠FBG,∠FGB=∠AGC,∴∠FBG+∠OBA=90°,即∠OBF=90°.∴OB⊥FB.∵AB是⊙O的弦,∴点B在⊙O上.∴BF是⊙O的切线.(2)∵AC∥BF,∴∠ACF=∠F.∵CD=a,OA⊥CD,∴CE=12CD=12a.∵tan∠F=34,∴AE3tan ACFCE4∠==,即AE314a2=.解得3AE a8=.连接OC,设圆的半径为r,则3OE r a8=-,在Rt△OCE中,222CE OE OC+=,即22213a r a r28⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭,解得25r a48=.(3)证明:连接BD,∵∠DBG=∠ACF,∠ACF=∠F(已证),∴∠DBG=∠F .又∵∠FGB=∠FGB ,∴△BDG ∽△FBG . ∴DG GB GB GF=,即GB 2=DG•GF . ∴GF 2﹣GB 2=GF 2﹣DG•GF=GF (GF ﹣DG )=GF•DF ,即GF 2﹣GB 2=DF•GF .21.小王在这两年春节收到的年平均增长率是【解析】【分析】 增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x )元,在2018年的基础上再增长x ,就是2019年收到微信红包金额400(1+x )(1+x )元,由此可列出方程400(1+x )2=484,求解即可.【详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量. 22.(1)x=13;(2)x >3;数轴见解析; 【解析】【分析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)方程两边都乘以(1﹣2x )(x+2)得:x+2﹣(1﹣2x )=0,解得:1,3x =-检验:当13x =-时,(1﹣2x )(x+2)≠0,所以13x =-是原方程的解,所以原方程的解是13x =-; (2)()321931x x x ->⎧⎪⎨+<+⎪⎩①② ,∵解不等式①得:x>1,解不等式②得:x>3,∴不等式组的解集为x>3,在数轴上表示为:.【点睛】本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.23.(1)A、B 两处粮仓原有存粮分别是270,1 吨;(2)此次调拨能满足C 粮仓需求;(3)小王途中须加油才能安全回到B 地.【解析】【分析】(1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A 处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;(2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;(3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=BCAB,要求BC的长,可以运用三角函数解直角三角形.【详解】(1)设A,B两处粮仓原有存粮x,y吨根据题意得:45032 (1)(1)55 x yx y +⎧⎪⎨--⎪⎩==解得:x=270,y=1.答:A,B两处粮仓原有存粮分别是270,1吨.(2)A粮仓支援C粮仓的粮食是35×270=162(吨),B粮仓支援C粮仓的粮食是25×1=72(吨),A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).∵234>200,∴此次调拨能满足C粮仓需求.(3)如图,根据题意知:∠A=26°,AB=1千米,∠ACB=90°.在Rt△ABC中,sin∠BAC=BC AB,∴BC=AB•sin∠BAC=1×0.44=79.2.∵此车最多可行驶4×35=140(千米)<2×79.2,∴小王途中须加油才能安全回到B地.【点睛】求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.(1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.【解析】【分析】(1)根据题意只需要证明a2+b2=c2,即可解答(2)根据题意将n=5代入得到a=12(m2﹣52),b=5m,c=12(m2+25),再将直角三角形的一边长为37,分别分三种情况代入a=12(m2﹣52),b=5m,c=12(m2+25),即可解答【详解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n为正整数,∴a、b、c是一组勾股数;(2)解:∵n=5∴a=12(m2﹣52),b=5m,c=12(m2+25),∵直角三角形的一边长为37,∴分三种情况讨论,①当a=37时,12(m2﹣52)=37,解得m=±11(不合题意,舍去)②当y=37时,5m=37,解得m=375(不合题意舍去);③当z=37时,37=12(m2+n2),解得m=±7,∵m>n>0,m、n是互质的奇数,∴m=7,把m=7代入①②得,x=12,y=1.综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.【点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键25.(1)详见解析;(2)23 3π-.【解析】【分析】(1)连接OD,由平行线的判定定理可得OD∥AC,利用平行线的性质得∠ODE=∠DEA=90°,可得DE 为⊙O的切线;(2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可.【详解】解:(1)证明:连接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)连接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC为直径,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等边三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC与弦DC所围成的图形的面积=﹣=﹣.【点睛】本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.26.(1)AP=2t,AQ=16﹣3t;(2)运动时间为167秒或1秒.【解析】【分析】(1)根据路程=速度⨯时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可.【详解】(1)AP=2t,AQ=16﹣3t.(2)∵∠PAQ=∠BAC,∴当AP AQAB AC=时,△APQ∽△ABC,即2163816t t-=,解得167t=;当AP AQAC AB=时,△APQ∽△ACB,即2163168t t-=,解得t=1.∴运动时间为167秒或1秒.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解. 27.(1)50件;(2)120元.【解析】【分析】(1)设第一批购进文化衫x件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y元,根据利润=销售单价×销售数量-进货总价,即可得出关于y的一元一次不等式,解之取其内的最小值即可得出结论.【详解】解:(1)设第一批购进文化衫x件,根据题意得:4000x+10=6300(140)0x,解得:x=50,经检验,x=50是原方程的解,且符合题意,答:第一批购进文化衫50件;(2)第二批购进文化衫(1+40%)×50=70(件),设该服装店销售该品牌文化衫每件的售价为y元,根据题意得:(50+70)y﹣4000﹣6300≥4100,解得:y≥120,答:该服装店销售该品牌文化衫每件最低售价为120元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.。
2019年浙江杭州萧山区中考数学月考试卷

2019年浙江省杭州市萧山区中考数学月考试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案1.(3分)(2019•萧山区月考)如图,图中数轴的单位长度为1,若点A 、B 表示的数是互为相反数,则在图中表示的A 、B 、C 、D4个点中,其中表示绝对值最小的数的点是( )223.(3分)(2019•萧山区月考)义务教育阶段学校积极响应教育部要求,认真组织实施“体育、艺术2+1项目”.小明同学报名参加了实心球项目,在一段时间练习后进行了成绩测评,测得5次投掷的成绩(单位:m )为:8,8.5,4.(3分)(2019•萧山区月考)已知实数m 、n 满足关系式:,则平面直角坐标系中点P (m ,n )在( )5.(3分)(2019•萧山区月考)关于x 的分式方程有增根,则m 的值是( )6.(3分)(2019•萧山区月考)如图,直线AB ∥CD ,∠E=30°,∠C=40°,则∠A 等于( )7.(3分)(2019•萧山区月考)如图,若干个小立方体组成的几何体的主视图和俯视图如右图所示,则在给出的下列图形中,肯定不是此几何体的左视图的是( )CD .9.(3分)(2019•萧山区月考)如图,已知⊙O的半径等于5,圆心O到直线a的距离为6;又点P是直线上任意一点,过点P作⊙O的切线PA,切点为A,则切线长PA的最小值为()C10.(3分)(2019•萧山区月考)如图,正方形ABCD中,点E是AD的中点,点P是AB上的动点,PE的延长线与CD的延长线交于点Q,过点E作EF⊥PQ交BC的延长线于点F.给出下列结论:①△APE≌△DQE;②点P在AB上总存在某个位置,使得△PQF为等边三角形;③若tan∠AEP=,则.其中正确的是()二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)(2011•烟台)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_________.12.(4分)(2019•萧山区月考)已知x﹣y=﹣3,x2﹣y2=﹣12,则x+y的值为_________.13.(4分)(2019•萧山区月考)已知a是整数,且,则a的值是_________.14.(4分)(2019•萧山区月考)如图,已知小圆的圆心为坐标原点O,半径为3,大圆圆心P的坐标为(a,0),半径为5.如果⊙O与⊙P内含,则字母a的取值范围是_________.15.(4分)(2019•萧山区月考)若关于x的一元二次方程a(x+m)2=3的两个实数根x1=﹣1,x2=3,则抛物线y=a (x+m﹣2)2﹣3与x轴的交点坐标是_________.16.(4分)(2019•萧山区月考)如图,在平面直角坐标系中,点D的坐标为(3,7),过点D的直线y=kx+b交x 轴、y轴于点M、N,四边形ABCD、A1B1C1C、A2B2C2C1,…均为正方形.(1)正方形ABCD的边长为_________;点M的坐标是_________;(2)若如此连续组成正方形,则正方形A n B n C n C n﹣1的边长为_________(用含n的代数式表示)三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2019•萧山区月考)如图,从顶点A出发,沿着边长为1的正方形的四个顶点依次跳舞,舞步长为1.第一次顺时针移动1步,第二次逆时针移动2步,第三次顺时针移动3步,…以此类推.(1)移动4次后到达何处?(直接写出答案)(2)移动2019次后到达何处?18.(8分)(2019•萧山区月考)如图△ABC.(1)作∠ABC的平分线交AC于点D,作BD的中垂线分别交AB、BC于点E、F(要求尺规作图,不写作法,保留画图痕迹);(2)试说明线段DE与BF的位置关系.19.(8分)(2019•萧山区月考)为了了解某区2019年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该区若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:(1)求出本次抽查的学生人数和表中x,y和m所表示的值;(2)请补全条形统计图;(3)根据抽样调查结果,请你估计2019年该区14000名初中毕业生实验考查成绩为D类的学生人数.20.(10分)(2019•萧山区月考)已知点A(1,0)、B(0,﹣1)、C(﹣1,2)、D(2,﹣1)、E(4,2),且抛物线y=a(x﹣1)2+k(a>0)经过其中三点.(l)求证:C、E两点不可能同时在抛物线y=a(x﹣1)2+k(a>0)上;(2)试问点A在抛物线y=a(x﹣1)2+k(a>0)上吗?说明理由;(3)直接写出抛物线可能经过的三点.21.(10分)(2019•萧山区月考)某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.22.(12分)(2019•萧山区月考)如图,△ABC中,∠ABC=Rt∠,AB=BC,点M是BC边上任意一点,点D是AB的延长线上一点,且BM=BD;又点E、F分别是CD、AM边上的中点,连接FE、EB.(1)求证:△AMB≌△CDB;(2)点M在BC边上移动时,试问∠BEF的度数是否会发生变化?若不变,请求出∠BEF的度数;若变化,请说明理由;(3)若,且设∠MAB=α,试求cosα的值.23.(12分)(2019•萧山区月考)已知在平面直角坐标系中,点O是坐标原点,直线y=kx+b与x轴、y轴分别交于点A、B,与双曲线相交于点C、D,且点D的坐标为(1,6).(1)如图1,当点C的横坐标为2时,求点C的坐标和的值;(2)如图2,当点A落在x轴负半轴时,过点C作x轴的垂线,垂足为E,过点D作y轴的垂线,垂足为F,连接EF.①判断△EFC的面积和△EFD的面积是否相等,并说明理由;②当时,求点C的坐标和tan∠OAB的值;(3)若tan∠OAB=,请直接写出的值(不必书写解题过程)2019年浙江省杭州市萧山区中考数学月考试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案1.(3分)(2019•萧山区月考)如图,图中数轴的单位长度为1,若点A、B表示的数是互为相反数,则在图中表示的A、B、C、D4个点中,其中表示绝对值最小的数的点是()223.(3分)(2019•萧山区月考)义务教育阶段学校积极响应教育部要求,认真组织实施“体育、艺术2+1项目”.小明同学报名参加了实心球项目,在一段时间练习后进行了成绩测评,测得5次投掷的成绩(单位:m)为:8,8.5,4.(3分)(2019•萧山区月考)已知实数m、n满足关系式:,则平面直角坐标系中点P(m,n)在()(5.(3分)(2019•萧山区月考)关于x的分式方程有增根,则m的值是()6.(3分)(2019•萧山区月考)如图,直线AB∥CD,∠E=30°,∠C=40°,则∠A等于()7.(3分)(2019•萧山区月考)如图,若干个小立方体组成的几何体的主视图和俯视图如右图所示,则在给出的下列图形中,肯定不是此几何体的左视图的是()C D.,的取值范围是<9.(3分)(2019•萧山区月考)如图,已知⊙O的半径等于5,圆心O到直线a的距离为6;又点P是直线上任意一点,过点P作⊙O的切线PA,切点为A,则切线长PA的最小值为()CAP==10.(3分)(2019•萧山区月考)如图,正方形ABCD中,点E是AD的中点,点P是AB上的动点,PE的延长线与CD的延长线交于点Q,过点E作EF⊥PQ交BC的延长线于点F.给出下列结论:①△APE≌△DQE;②点P在AB上总存在某个位置,使得△PQF为等边三角形;③若tan∠AEP=,则.其中正确的是()可以得出=,=,设DRE=,=,=二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)(2011•烟台)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.=.故答案为:..12.(4分)(2019•萧山区月考)已知x﹣y=﹣3,x2﹣y2=﹣12,则x+y的值为4.13.(4分)(2019•萧山区月考)已知a是整数,且,则a的值是﹣4.,再根据可得,,(14.(4分)(2019•萧山区月考)如图,已知小圆的圆心为坐标原点O,半径为3,大圆圆心P的坐标为(a,0),半径为5.如果⊙O与⊙P内含,则字母a的取值范围是﹣2<a<2.15.(4分)(2019•萧山区月考)若关于x的一元二次方程a(x+m)2=3的两个实数根x1=﹣1,x2=3,则抛物线y=a (x+m﹣2)2﹣3与x轴的交点坐标是(5,0)和(1,0).,则(,,(,则(16.(4分)(2019•萧山区月考)如图,在平面直角坐标系中,点D的坐标为(3,7),过点D的直线y=kx+b交x 轴、y轴于点M、N,四边形ABCD、A1B1C1C、A2B2C2C1,…均为正方形.(1)正方形ABCD的边长为5;点M的坐标是(0,);(2)若如此连续组成正方形,则正方形A n B n C n C n﹣1的边长为(用含n的代数式表示)MQ=OM=MQ+OQ=+7=,,,即==;===的边长为.)三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2019•萧山区月考)如图,从顶点A出发,沿着边长为1的正方形的四个顶点依次跳舞,舞步长为1.第一次顺时针移动1步,第二次逆时针移动2步,第三次顺时针移动3步,…以此类推.(1)移动4次后到达何处?(直接写出答案)(2)移动2019次后到达何处?×=18.(8分)(2019•萧山区月考)如图△ABC.(1)作∠ABC的平分线交AC于点D,作BD的中垂线分别交AB、BC于点E、F(要求尺规作图,不写作法,保留画图痕迹);(2)试说明线段DE与BF的位置关系.19.(8分)(2019•萧山区月考)为了了解某区2019年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该请根据以上统计图表提供的信息,解答下列问题:(1)求出本次抽查的学生人数和表中x,y和m所表示的值;(2)请补全条形统计图;(3)根据抽样调查结果,请你估计2019年该区14000名初中毕业生实验考查成绩为D类的学生人数.×20.(10分)(2019•萧山区月考)已知点A(1,0)、B(0,﹣1)、C(﹣1,2)、D(2,﹣1)、E(4,2),且抛物线y=a(x﹣1)2+k(a>0)经过其中三点.(l)求证:C、E两点不可能同时在抛物线y=a(x﹣1)2+k(a>0)上;(2)试问点A在抛物线y=a(x﹣1)2+k(a>0)上吗?说明理由;(3)直接写出抛物线可能经过的三点.,a=,符合题意;21.(10分)(2019•萧山区月考)某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.)首先根据题意列出不等式组得由题意得22.(12分)(2019•萧山区月考)如图,△ABC中,∠ABC=Rt∠,AB=BC,点M是BC边上任意一点,点D是AB的延长线上一点,且BM=BD;又点E、F分别是CD、AM边上的中点,连接FE、EB.(1)求证:△AMB≌△CDB;(2)点M在BC边上移动时,试问∠BEF的度数是否会发生变化?若不变,请求出∠BEF的度数;若变化,请说明理由;(3)若,且设∠MAB=α,试求cosα的值.a BF=BE=AM=2BF=3CD AMBF=BE=aAM=2BF=3MAB===23.(12分)(2019•萧山区月考)已知在平面直角坐标系中,点O是坐标原点,直线y=kx+b与x轴、y轴分别交于点A、B,与双曲线相交于点C、D,且点D的坐标为(1,6).(1)如图1,当点C的横坐标为2时,求点C的坐标和的值;(2)如图2,当点A落在x轴负半轴时,过点C作x轴的垂线,垂足为E,过点D作y轴的垂线,垂足为F,连接EF.①判断△EFC的面积和△EFD的面积是否相等,并说明理由;②当时,求点C的坐标和tan∠OAB的值;(3)若tan∠OAB=,请直接写出的值(不必书写解题过程)y=的图象上可求出然后可算出的值;|ab|=3×DB==,再证明OAB==2,二是﹣上,,,得,,=;(﹣=×=2,=,===OAB==2,,,,OAB=,∴直线方程的斜率为,即k=,x+)=x+,解得,=,,所以.OAB=∴直线方程的斜率为,即﹣,,﹣x+,)=x+,解得y=,=,=.综上所述:的值为或.。
2019-2020杭州市中考数学一模试题(及答案)

2019-2020杭州市中考数学一模试题(及答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 2.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm3.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .4.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17C .平均数是2D .方差是25.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数k y x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .56.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .长方体D .正方体7.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <8.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .9.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒10.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 11.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .412.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则 2019a =___________ .15.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.16.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.17.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________18.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.19.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.20.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.三、解答题21.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠ACB =30°,菱形OCED 的而积为83,求AC 的长.22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). (参考数据:2 1.414≈,3 1.732≈)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD ,AO=OC ,根据三角形的中位线求出BC ,即可得出答案.【详解】∵四边形ABCD 是菱形,∴AB=BC=CD=AD ,AO=OC ,∵AM=BM ,∴BC=2MO=2×5cm=10cm , 即AB=BC=CD=AD=10cm ,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.3.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.4.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.5.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.6.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.7.A解析:A【解析】【分析】 根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:a b =,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.8.A解析:A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A .9.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】解:直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.10.A解析:A【解析】【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF , ∴AD BC DF CE=. 故选A .【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.11.A解析:A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1故选A.考点: 1.旋转;2.勾股定理.12.C解析:C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan ∠BAC=故答案为点睛:本题考查了锐角三角函 解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---,a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得 解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.【详解】∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.16.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.17.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.18.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC 的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC 交OB 于D .∵四边形OABC 是菱形,∴AC ⊥OB .∵点A 在反比例函数y=2x 的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:419.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.20.2000【解析】【分析】设这种商品的进价是x 元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x 元由题意得(1+40)x×08=2240解得:x =2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.三、解答题21.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴.∴.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.22.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P (C 粽)==.答:他第二个吃到的恰好是C 粽的概率是.…(10分)24.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.25.该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB 、DB 的长,结合图形求出DH ,比较即可. 详解:由题意得,10AH =米,10BC =米,在Rt ABC ∆中,45CAB ∠=︒,∴10AB BC ==,在Rt DBC ∆中,30CDB ∠=︒, ∴103tan BC DB CDB==∠ ∴()DH AH AD AH DB AB =-=-- 101031020103 2.7=-=-≈(米), ∵2.7米3<米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.。
2019-2020年九年级数学下学期第一次质量检测试题(I)

O C
A
图1
B图2 D
23.(本题满分 10 分) 如图, AB是⊙ O的直径, BC是⊙ O的切线,弦 AD的延长线交直线
( 1)若 AB =10,∠ ACB=60°,求 BD的长; ( 2)若点 E 是线段 BC的中点,求证: DE是⊙ O的切线.
2019-2020 年九年级数学下学期第一次质量检测试题 (I)
(满分: 150 分;考试时间: 120 分钟)
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.每小题只有一个正确的选项,请在
答.题.的相应位置作题) 1. -3 的相反数是……………………………………………………………………
()
A. -3 B. 3 C. D .
2.下列汽车标志中,可以看作中心对称图形的是………………………………
.( )
3.下列运算正确的是……………………………………………………………
()
A. B . C. D .
4.如图所示几何体的主视图是 ………………………………………………… ( )
5.为了解本地区老年人一年中生病次数,下列样本抽取方式最合理的是
..(
)
A.到公园调查 100 名晨练老人 B .到医院调查 100 名老年病人
C.到某小区调查 10 名老年居民
D.利用户籍资料,按规则抽查 10%老年人
6.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花
果,质量只有 0.000 000 076 克.将 0.000 000 076 用科学记数法表示为…… (
14.如图,四边形 ABCD是⊙ O的内接四边形,若∠ A =75°,则∠ C =_______°.
2020届初三中考数学一诊联考试卷含参考答案 (浙江)

2020届**市初三中考一诊联考试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.对于实数a ,b 下列判断正确的是( )A .若a b =,则 a b =B .若22a b >,则 a b >C b =,则a b =D =a b =2.某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:关于这组数据,下列说法正确的是( )A .众数是2册B .中位数是2册C .平均数是3册D .方差是1.53.如图1,在矩形ABCD 中,动点M 从点A 出发,沿A →B →C 方向运动,当点M 到达点C 时停止运动,过点M 作MN ⊥AM 交CD 于点N ,设点M 的运动路程为x ,CN =y ,图2表示的是y 与x 的函数关系的大致图象,则矩形ABCD 的面积是( )A .20B .18C .10D .94.下列命题是假命题的是( )A .到线段两端点距离相等的点在线段的垂直平分线上B .等边三角形既是轴对称图形,又是中心对称图形C .n 边形(3)n ≥的内角和是180360n ︒︒-D .旋转不改变图形的形状和大小5.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A .众数是5B .中位数是5C .平均数是6D .方差是3.66.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )A.任意买一张电影票,座位号是2的倍数的概率B.一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正方体骰子,落下后朝上的面点数是3D.一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球7.对于函数y=-2(x-3)2,下列说法不正确的是()A.开口向下B.对称轴是3x=C.最大值为0D.与y轴不相交8.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.2 3π9.设A,B,C表示三种不同的物体,现用天平称了两次,情况如上图所示,那么A,B,C这三种物体按质量从大到小的顺序排应为( )A.A,B,C B.C,B,A C.B,A,C D.B,C,A10.已知四边形ABCD 的对角线AC 、BD 相交于点O ,下列条件中,不能判定四边形ABCD 是平行四边形的是( )A .ADB CBD ∠=∠,//AB CDB .ADB CBD ∠=∠,DAB BCD ∠=∠C .DAB BCD ∠=∠,AB CD =D .ABD CDB ∠=∠,OA OC =二、填空题(共4题,每题4分,共16分)11.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1﹣S 2为_____.12.矩形ABCD 中,AB=8,AD=6,E 为BC 边上一点,将△ABE 沿着AE 翻折,点B 落在点F 处,当△EFC 为直角三角形时BE=_____.13.在五边形ABCDE 中,若440A B C D ∠+∠+∠+∠=︒,则E ∠=______︒.14.直线y =2x +1经过点(0,a ),则a =________.三、解答题(共6题,总分54分)15.“五一”小长假期间,小李一家想到以下四个5A 级风景区旅游:A .石林风景区;B .香格里拉普达措国家公园;C .腾冲火山地质公园;D .玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.16.如图,在平面直角坐标系中,△ABC 的一边AB 在x 轴上,∠ABC=90°,点C(4,8)在第一象限内,AC 与y 轴交于点E,抛物线y=234x +bx+c 经过A .B 两点,与y 轴交于点D(0,−6).(1)请直接写出抛物线的表达式;(2)求ED 的长;(3)点P 是x 轴下方抛物线上一动点,设点P 的横坐标为m ,△PAC 的面积为S ,试求出S 与m 的函数关系式;(4)若点M 是x 轴上一点(不与点A 重合),抛物线上是否存在点N ,使∠CAN=∠MAN.若存在,请直接写出点N 的坐标;若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题有 10 小题,每小题 3 分,共 30 分.请选出每小题中一个最符合题意的选项,不选、
多选、错选,均不给分)
1.下列各数中,比﹣3 小的数是( )
A.﹣1
B.﹣4
Cቤተ መጻሕፍቲ ባይዱ0
D.2
2.抛物线 y=3x2 向左平移 1 个单位,再向上平移 2 个单位,所得到的抛物线是( )
④如果 ac>0,则一定存在两个实数 m<n,使 am2+bm+c<0<an2+bn+c
A. ③
B. ①③
C. ②④
D. ①③④
二、填空题(本大题有 6 小题,每小题 4 分,共 24 分)
11.计算: a 5a _______ .
12.因式分解: a b2 2b a
13.二次函数 y x2 6x 14(0 x 7) 的最大值是____________,
高桥初中教育集团 2019 学年第二学期第一次质量检测
九年级数学试题卷
命题人:王国维 审核人:城南九年级备课组 请同学们注意:
1、试卷分试题卷和答题卷两部分。满分 120 分,考试时间为 100 分钟。 2、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。 3、考试结束后,只需上交答题卷。
第 18 题
19.(本小题满分 8 分)
如图,在△ABC 中,D 为 AB 上的一点,过点 D 作 DE∥AC,DF∥BC,分别交 BC,AC 于点 E,F.
(1) 求证:△ADF∽△DBE. (2) 若 BE∶CE=2∶3,求 AF∶DE 的值.
C
F E
A
D
B
第 19 题
20.(本小题满分 10 分)
CD=1,且 BD=CE,则 BD=
.
九年级数学试卷 第 2 页 共 4 页
第 16 题
三、解答题(本大题共 7 个小题,共 66 分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分 6 分)
先化简并求值: a b ab ,其中 a 1,b 2 b a ab
18.(本小题满分 8 分) 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字 1, 2,3. (1) 转动转盘两次,当转盘停止转动时,分别记录下指针所指扇形中的数字,请用画树状图或列 表等方法,求两次指针所指扇形中数字之和的所有可能结果. (2)求这两个数字之和是 2 的倍数的概率.
第 21 题
22.(本小题满分 12 分) 在平面直角坐标系中,设二次函数 y1=(x+m)(x﹣m+1),其中 m≠0.
(1)若函数 y1 的图象经过点(2,-6),求函数 y1 的函数表达式. (2)若一次函数 y2=mx+n 的图象与 y1 的图象经过 x 轴上同一点,探究实数 m,n 满足的关系式. (3)已知点 P(x0,a)和 Q(﹣2,b)在函数 y1 的图象上,若 a>b,求 x0 的取值范围.
A.y=3(x﹣1)2﹣2
B.y=3(x+1)2﹣2
C.y=3(x+1)2+2
D.y=3(x﹣1)2+2
3.下列计算正确的是( )
A.a2+a3=a5
B.a2•a3=a6
C.(ab)2=ab2
D.(a2)3=a6
4.若 x>y,a<1,则( )
A.x+1>y+a
B.x>y+1
C.ax>ay
D.x﹣2>y﹣1
第7题
长为( ) A. π
B. 2
C. 2
D. 2 2
9.在△ABC 中,D,E 分别为 BC,AC 上的点,且 AE=2EC,连结AD,BE,交于
点F.设 x CD:BD , y AF:FD ,则( )
第8题
A. y 2x 2 x
B. y 8 x 2 3
C. y 2 x 1 x
10.对于代数式 ax2+bx+c(a≠0),下列说法正确的是(
最小值是___________.
14. 已知实数 x 满足 x 2 ▪ x+1 ≤0 , 则 x 的值为
.
第 15 题
15. 如图,圆内接四边形 ABCD 中,∠BCD=90°,AB=AD,点 E 在 CD 的延
长线上,且 DE=BC,连结 AE,若 AE=6,则四边形 ABCD 的面积为
.
16. 如图,在△ABC 中,AB=AC=5,E,D 分别是 AB,AC 上的点,BE=2,
D. y 2x 2
)
第9题
①如果存在两个实数 p≠q,使得 ap2+bp+c=aq2+bq+c=0,则 a x2 +bx+c=a(x-p)(x-q)
②存在三个实数 m≠n≠s,使得 am2+bm+c=an2+bn+c=as2+bs+c
③如果 ac<0,则一定存在两个实数 m<n,使 am2+bm+c<0<an2+bn+c
7.如图,在△ABC 中,AC=BC,过 C 作 CD∥AB.若 AD 平分∠CAB,则下列
说法错误的是( )
A.BC=CD
B.BO :OC=AB :CD
C.△CDO≌△BAO
D.S△AOC :S△CDO=AB :CD
8.如图,△ABC 内接于圆 O,∠B =65°,∠C =70°,若 BC = 4 2 ,则 BC 的
泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多 1 倍,则在该游泳池中男孩和女孩各有多少
人?设男孩有 x 人,女孩有 y 人,则可列方程组为( )
A.
x+1=y x= 2(y+1)
B.
x-1=y x= 2(y-1)
x+1=y
C. x= 2 y+1
x-1=y
D. x=2y-1 九年级数学试卷 第 1 页 共 4 页
5.有 11 位同学参加学校举行的歌唱比赛,比赛后根据每个学生的最后得分计算出中位数、平均数、众
数和方差,如果去掉一个最高分和一个最低分,则一定不会发生变化的是( )
A. 中位数
B. 平均数
C. 众数
D.方差
6.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.如果每位男孩看到蓝色与红色的游
已知菱形的两条对角线的长分别为 2x 5 与 10 x ,设菱形的面积为 y .
(1)求 y 关于 x 的函数表达式,请写出自变量 x 的取值范围; (2)判断命题“当面积取到最大值时,此菱形为正方形”是真命题还是假命题?请说明理由.
九年级数学试卷 第 3 页 共 4 页
21.(本小题满分 10 分) 已知△ABC 中,AB=AC,∠BAC 为钝角,以 AB 为直径的⊙O 交 BC 于点 D,CA 的延长线与⊙O 相 交于点 E,连结 BE. (1)求证:∠BAC=2∠EBC; (2)若 AC=10,BC=16,求 BE 的长.