原子核外电子的运动状态 PPT
合集下载
原子核外电子的运动PPT演示文稿

卢瑟福——原子之父
α粒子散射实验
4.波尔原子模型
1913年,丹麦物理学家玻尔把普朗克的相关理 论与卢瑟福的原子模型相结合,较好地解释了氢原 子光谱,提出新的原子结构模型。
5、电子云模型
针对训练
1 道尔顿的原子学说曾经起了很大作用。他的学说中包 含有下述论点:①原子是不能再分的微粒;②同种元素的 原子的各种性质和质量都相同;③原子是微小的实心球体。 从现代的观点看,你认为这3个论点中,不确切的是( ) A.只有③ B.只有①,③ C.只有②③ D.有①②③
1、电子层 n
取值: n =1,2,3,4,5……;
物理意义: n值的大小表示电子的能量高低。 n值越 大表示电子所在的层次离核较远,电子具有的能量也越高。 对于n =1,2,3,…分别称为第第一能层,第二能层,第 三能层…
n
对应电子层 符号
1
第一层
2
第二层
3
第三层
4
第四层
5
第五层
· · ·
· · ·
一、知识与技能 1、了解人类对原子结构的认识历史。 2、了解原子核外电子的运动状况、能级分布、原子结构构 造原理、及基态原子与激发态原子的能量状况。 3、掌握核外电子排布规律以及表示方法。 二、过程与方法 运用模型化的思想方法将抽象的概念形象化;用演绎、归纳等 多种逻辑思维方法培养学生的分析问题解决问题的能力。 三、情感、态度和价值观 通过本节课的复习,进一步感受和体会科学家进行研究和认识 物质的科学方法,培养科学的思维方式,激发学生探究未知世 界的兴趣和勇气。
d 能 级 的 原 子 轨 道
核外电子的运动状态
n 电子层 轨道 轨道数 可容纳 电子数 1 第一 1s 1条 2 第二 2s 2p 4条 3 第三 3s 3p 3d 9条 4 第四 4s 4p 4d 4f 16条 n … … n2
高中化学 11.2量子力学对原子核外电子运动状态的描述课件 鲁科版选修3

钠原子的部分光谱 为什么在通常条件下,钠原子中的处于n=4的电子跃迁到n=3的状 态时,在高分辨光谱仪上看到的不是一条谱线,而是两条谱线?
探究一
探究二
即时检测
问题引导
名师精讲
提示:原子的线状光谱产生于原子核外的电子在不同的、能量 量子化的轨道之间的跃迁。多电子原子光谱中原有的谱线之所以 能分裂为多条谱线,可能是量子数n标记的核外电子运动状态包含 多个能量不同的“轨道”,电子在不同能量的“轨道”之间跃迁时 产生的谱线就会增多。
1
2
(3)磁量子数m:在没有外磁场时,量子数n、l相同的状态的能量是 相同的;有外磁场时,这些状态的能量就不同,我们用磁量子数m来 标记这些状态,对于确定的l,m值可取0,±1,±2,…,±l,共(2l+1)个值。 磁量子数用来描述核外电子的空间运动方向。 自主思考3.引入磁量子数m解决了什么问题? 提示:引入磁量子数m解决了在外磁场的作用下,某一特定跃迁 原来产生的一条谱线都可能分裂为多条的问题。 (4)自旋磁量子数ms:高分辨光谱实验事实揭示核外电子还存在着 一种奇特的量子化运动,人们称其为自旋运动。人们用自旋磁量子 数ms来标记电子的自旋运动状态,处于同一原子轨道上的电子自旋 运动状态只能有两种,分别用“↑”和“↓”来表示。
探究一
探究二
即时检测
问题引导
名师精讲
主量子数 电子层 符号 能级符号 能级中 轨道数 电子层中 轨道数 电子运动 状态种数
1 K
2 L 2p 3
3 M
4 N 4p 4d 4f 3 5 7
… … … … … …
n
1s 2s 1 1 2 1 4 8
3s 3p 3d 4s 1 9 18 3 5 1 16 32
无机化学——多电子原子核外电子的运动状态

H He
Li Be B C N O F Ne NaMg Al Si P S Cl Ar
K Ca Sc Ti V CrMn Fe Co Ni CuZn Ga Ge As Se Br Kr Rb Sr Y Zr NbMo Tc Ru RhPd Ag Cd In Sn Sb Te I Xe
Cs Ba La Ce Pr NdPmSmEu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np PuAmCmBk Cf Es FmMd No Lr Rf Db Sg BhHs MtUunUuuUub
第三节多电子原子核外电子的运动状态第三节主要内容一屏蔽效应与穿透效应二多电子原子的原子轨道能级图三原子核外的电子排布一屏蔽效应与穿透效应1屏蔽效应对多电子原子其薛定谔方程的求解十分困难通常是采用某些近似方法如在中心力场模型中把多电子原子中其它电子对某个指定电子的作用近似看作是该电子对部分核电荷的抵消作用即指定电子受到核的作用力为具有z个核电荷对该电子的作用力
6 55 Cs 56 Ba 57-71 72 Hf 73 Ta 74 W 75Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn
铯 钡 La-Lu 铪 钽 钨 铼 锇 铱 铂 金 汞 铊 铅 铋 钋 砹 氡
7 87 Fr 88 Ra 89-103 104 Rf 105 Db 106Sg 107 Bh 108 Hs 109 Mt 110 111 112
第四节、原子结构和元素周期律
第四节 主要内容 一、核外电子排布与周期律 二、元素周期表的结构 三、原子半径及其变化规律 四、Ionization Energy(电离能) 五、Electron Affinity(电子亲合能) 六、电负性及其变化规律 七、Periodic Properties of the Elements(元素的周期性)
Li Be B C N O F Ne NaMg Al Si P S Cl Ar
K Ca Sc Ti V CrMn Fe Co Ni CuZn Ga Ge As Se Br Kr Rb Sr Y Zr NbMo Tc Ru RhPd Ag Cd In Sn Sb Te I Xe
Cs Ba La Ce Pr NdPmSmEu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np PuAmCmBk Cf Es FmMd No Lr Rf Db Sg BhHs MtUunUuuUub
第三节多电子原子核外电子的运动状态第三节主要内容一屏蔽效应与穿透效应二多电子原子的原子轨道能级图三原子核外的电子排布一屏蔽效应与穿透效应1屏蔽效应对多电子原子其薛定谔方程的求解十分困难通常是采用某些近似方法如在中心力场模型中把多电子原子中其它电子对某个指定电子的作用近似看作是该电子对部分核电荷的抵消作用即指定电子受到核的作用力为具有z个核电荷对该电子的作用力
6 55 Cs 56 Ba 57-71 72 Hf 73 Ta 74 W 75Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn
铯 钡 La-Lu 铪 钽 钨 铼 锇 铱 铂 金 汞 铊 铅 铋 钋 砹 氡
7 87 Fr 88 Ra 89-103 104 Rf 105 Db 106Sg 107 Bh 108 Hs 109 Mt 110 111 112
第四节、原子结构和元素周期律
第四节 主要内容 一、核外电子排布与周期律 二、元素周期表的结构 三、原子半径及其变化规律 四、Ionization Energy(电离能) 五、Electron Affinity(电子亲合能) 六、电负性及其变化规律 七、Periodic Properties of the Elements(元素的周期性)
量子力学对原子核外电子运动状态的描述课件高二化学选择性必修

二、量子力学对原子核外电子运动状态的描述 原子轨道示意图:
二、量子力学对原子核外电子运动状态的描述
d 轨道(l = 2, m = +2, +1, 0, -1, -2) m 五种取值, 空间五种取向, 五条等价(简并) d 轨道。
二、量子力学对原子核外电子运动状态的描述
f 轨道 ( l = 3, m = +3, +2, +1, 0, -1, -2, -3 ) m 七种取值, 空间七种取向, 七条等价(简并) f 轨道。
用方框表示一个原子轨道,用箭头“↑”或“↓”来区别自旋状态不同的电子。钠三、基态子的核外电子排布构造原理
为了使整个原子体系的能量最低,随着原子 序数的递增,基态原子的"外层电子"按照箭头的 方向依次排布在各原子轨道上∶ 1s、2s、2p、3s、3p、4s、3d、4p、5s、4d、 5p、 6s……
电子填满了一个能级,开始填入下一个能级。
三、基态原子的核外电子排布
写出Mn元素(25号)基态原子的电子排布式和轨道表示式。
1s22s22p63s23p63d54s2
电子按构造原理顺序在原子轨道上排布,但书写电子排布式 或轨道表示式时,应按电子层数由小到大的顺序书写。
排布顺序:1s 2s 2p 3s 3p 4s 3d 4p 书写顺序:1s 2s 2p 3s 3p 3d 4s 4p
三、基态原子的核外电子排布
K2 2
1s
Na
L 8 2 222
2s
2p
M1 1
3s
3p
原则二:泡利不相容原理
一个原子轨道中最多只能容纳两个电子,且这两个 电子的自旋状态不同。
3d
↑↑
He ↑↓
(化学课件)原子核外电子的运动状态

讨论:见课本P5
一个小黑点仅表示电子在此出现了一次。
小黑点的疏密仅表示电子出现几率的大小。
即小黑点较稀的地方表示电子在此出现的机 会少;小黑点较密的地方表示电子在此出现 的机会多。
(三)、决定核外电子运动状态的因素
1、电子层: 在多电子的原子里,它们的运动区域 也不同。能量低的电子通常在离核较近的空间范 围运动,能量高的电子通常在离核较远的空间范 围内运动,
[说明]1、自左向右、自上而下,轨道能量依次递增。
2、每个能级组以ns轨道开始、以np轨道结束。
(3)为什么每个电子层所能容纳的电子数最 多为2n2(n为电子层数)?
1、4d轨道中最多容纳电子数为
A、2
B√ 、 10 C、 14 D、 18
2、下列轨道含有轨道数目为3的是
A、1s B√ 、2p √C、3p D、4d
3、第三电子层含有的轨道数为 A、3 B、 5 C、 7 D√ 、 9
五、电子亚层的能量比较规律
1、相同电子层上电子亚层能量的高低: ns<np<nd<nf
2、形状相同的电子亚层能量的高低: 1s<2s<3s<4s…… 2p<3p<4p<5p…… ……
3、电子层和形状相同的电子亚层的能量相等: 如2px = 2py =2pz
/ / / / / / 1s<—2s<—2p<3—s<3—p<—4s<3d<4—p<5—s<4d<5—p<—6s<4f<5d<6—p<7—s<5f<6d<—7p
结合电子云的形状及伸展方向显然可知:S亚层有 1个轨道,P亚层有3个轨道, d 亚层有5个轨道, f亚层有7个轨道。
四、电子自旋
无机化学 原子核外电子的运动状态

1
能量最低原理
排布 规律
2
泡利不相容原理
3
洪特规则及特例
第五章 原子结构与元素周期律 第一节 原子核外电子的运动状态与排布
2.1 原子核外电子排布-基态原子中电子的排布原理 1.能量最低原理 核外电子的分布总是尽量先分布在能量较低的轨道, 使整个原子处于能量最低的状态。只有当能量最低的轨 道已占满后,电子才能依次进入能量较高的轨道。
m——电子质量
h——普朗克常数
E——体系总能量 V——电子的势能
第五章 原子结构与元素周期律 第一节 原子核外电子的运动状态与排布
1.4 原子核外电子的运动状态-电子云
电子运动有规律,但无法确定其运动轨迹。 概率—在核外某些区域电子出现的机会;某些 区域电子出现的机会多,概率大;某些区域电 子出现的机会少,概率小。 概率密度——电子在原子核外某处单位体积内 出现的概率
第五章 原子结构与元素周期律 第一节 原子核外电子的运动状态与排布
1.1 原子核外电子的运动状态-量子化 波尔氢原子模型 成功地解释了氢原子和类氢原子(如He+、Li2+) 的光谱现象, 推动了原子结构的发展。 严重的局限性。只能解释单电子原子(或离子) 光谱的一般现象,不能解释多电子原子光谱。
波尔理论的缺陷,促使人们去研究和建立能 描述原子内电子运动规律的量子力学原子模型。
而是表示电子出现在各点的几率高低。
第五章 原子结构与元素周期律 第一节 原子核外电子的运动状态与排布 1.4 原子核外电子的运动状态-电子云 电子云的图形表示:
电子云图
电子云界面图
(电子出现几率>95%的 区域)
电子云 等密度面图
第五章 原子结构与元素周期律 第一节 原子核外电子的运动状态与排布 1.5 取原子核外电子的运动状态-四个量子数
核外电子运动状态的描述_图文

概率(W)= 概率密度 体积(V) 这种关系相当于质量,密度和
体积三者之间的关系。
量子力学理论证明,| |2 的
物理意义是电子在空间某点的概 率密度,于是有
W = | |2 V
W = | |2 V
当空间某区域中概率密度一 致时,我们可用乘法按公式求得 电子在该空间区域中的概率。
对于 H 原子 n = 1 E = - 13.6 eV
n = 2 E = - 3.40 eV ……
E = -13.6 eV Z 2 n2
n E=0 即自由电子,其能量最大, 为 0。
E = -13.6 eV Z 2 n2
主量子数 n 只能取 1,2,3,4 ……等正整数,故能量只有不连续的 几种取值,即能量是量子化的。
例如 n = 4 时,l 有 4 种取 值,就是说核外第 4 层有 4 种形 状不同的原子轨道:
l = 0 表示 4s 轨道,球形
l = 0 表示 4s 轨道,球形 l = 1 表示 4p 轨道,哑铃形 l = 2 表示 4d 轨道,花瓣形 l = 3 表示 4f 轨道,
由此可知,在第 4 层上,共有 4 种不同形状的轨道。
E = -13.6 eV Z 2 n2
E = -13.6 eV Z 2 n2
E 电子能量,Z 原子序数, eV 电子伏特,能量单位, 1 eV = 1.602 10-19 J
E = -13.6 eV Z 2 n2
n 的数值大,电子距离原 子核远, 且具有较高的能量。
E = -13.6 eV Z 2 n2
2 O
cos
=
OA′
OA
h
2
cos =
h 2 2
所以 = 45°
体积三者之间的关系。
量子力学理论证明,| |2 的
物理意义是电子在空间某点的概 率密度,于是有
W = | |2 V
W = | |2 V
当空间某区域中概率密度一 致时,我们可用乘法按公式求得 电子在该空间区域中的概率。
对于 H 原子 n = 1 E = - 13.6 eV
n = 2 E = - 3.40 eV ……
E = -13.6 eV Z 2 n2
n E=0 即自由电子,其能量最大, 为 0。
E = -13.6 eV Z 2 n2
主量子数 n 只能取 1,2,3,4 ……等正整数,故能量只有不连续的 几种取值,即能量是量子化的。
例如 n = 4 时,l 有 4 种取 值,就是说核外第 4 层有 4 种形 状不同的原子轨道:
l = 0 表示 4s 轨道,球形
l = 0 表示 4s 轨道,球形 l = 1 表示 4p 轨道,哑铃形 l = 2 表示 4d 轨道,花瓣形 l = 3 表示 4f 轨道,
由此可知,在第 4 层上,共有 4 种不同形状的轨道。
E = -13.6 eV Z 2 n2
E = -13.6 eV Z 2 n2
E 电子能量,Z 原子序数, eV 电子伏特,能量单位, 1 eV = 1.602 10-19 J
E = -13.6 eV Z 2 n2
n 的数值大,电子距离原 子核远, 且具有较高的能量。
E = -13.6 eV Z 2 n2
2 O
cos
=
OA′
OA
h
2
cos =
h 2 2
所以 = 45°
原子的核外电子排布

能级交错现象的原因是电子之间的相互作用和相互影响,这 种相互作用会导致电子的能量发生变化,从而影响其排布的 能级。
04 核外电子排布的实例
氢原子的核外电子排布
1
氢原子只有一个电子,排布在1s轨道上。
2
氢原子是所有原子中最简单的,其核外电子排布 遵循泡利不相容原理和能量最低原理。
3
氢原子核外电子排布的能量状态由主量子数n决 定,本例中n=1。
轨道表示式
轨道表示式是另一种表示原子核外电 子排布的方法,它通过图形的方式表 示电子云的分布和电子的运动状态。
轨道表示式的优点是可以直观地展示 电子云的分布情况和电子的运动状态, 有助于理解电子的行为和性质。
能级交错现象
能级交错现象是指在实际的原子核外电子排布中,有些电子 会出现在比其理论能级高的能级上,这种现象称为能级交错 。
。
05 核外电子排布的意义
对元素性质的影响
决定元素的化学性质
核外电子排布决定了元素的化学性质,因为元素的化学反应主要涉及电子的得失或偏移。
元素周期表中的位置与性质
同一周期内,随着原子序数的增加,核外电子数增多,电子填充到更高能级,元素的非金属性增强,金属性减弱。
对周期律的解释
周期表的形成
核外电子排布规律是形成元素周期表的基础,周期表中元素的排列顺序是根据核外电子排布来确定的 。
最低。
当电子从高能级跃迁到低能级时, 会释放出能量,这个能量可以通
过发射光子的方式释放出去。
洪特规则
洪特规则指出,在任何一个原子中,对于同一 能级上的电子,总是优先以等价的方式占据不 同的轨道。
这个规则的原因是,当电子以等价的方式占据 不同的轨道时,它们之间的相互作用是最小的, 从而使得整个原子的能量最低。
04 核外电子排布的实例
氢原子的核外电子排布
1
氢原子只有一个电子,排布在1s轨道上。
2
氢原子是所有原子中最简单的,其核外电子排布 遵循泡利不相容原理和能量最低原理。
3
氢原子核外电子排布的能量状态由主量子数n决 定,本例中n=1。
轨道表示式
轨道表示式是另一种表示原子核外电 子排布的方法,它通过图形的方式表 示电子云的分布和电子的运动状态。
轨道表示式的优点是可以直观地展示 电子云的分布情况和电子的运动状态, 有助于理解电子的行为和性质。
能级交错现象
能级交错现象是指在实际的原子核外电子排布中,有些电子 会出现在比其理论能级高的能级上,这种现象称为能级交错 。
。
05 核外电子排布的意义
对元素性质的影响
决定元素的化学性质
核外电子排布决定了元素的化学性质,因为元素的化学反应主要涉及电子的得失或偏移。
元素周期表中的位置与性质
同一周期内,随着原子序数的增加,核外电子数增多,电子填充到更高能级,元素的非金属性增强,金属性减弱。
对周期律的解释
周期表的形成
核外电子排布规律是形成元素周期表的基础,周期表中元素的排列顺序是根据核外电子排布来确定的 。
最低。
当电子从高能级跃迁到低能级时, 会释放出能量,这个能量可以通
过发射光子的方式释放出去。
洪特规则
洪特规则指出,在任何一个原子中,对于同一 能级上的电子,总是优先以等价的方式占据不 同的轨道。
这个规则的原因是,当电子以等价的方式占据 不同的轨道时,它们之间的相互作用是最小的, 从而使得整个原子的能量最低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A、3 B、 5
C、 7
D、 9
√
4.第二电子层最多含有的电子数是
A、2 B、4 C√、 8 D、10
【练习】
1、有下列四种轨道:①2s②2p③3p④4d,其
中能量最高的是( D)
A. 2s B.2p C.3p D.4d
2、用“>”“<”或“=”表示下列各组多电
子原子的原子轨道能量的高低
⑴3s < 3p
• 离核近,小黑点密,电子云密度大,电 子出现的机会多;
• 离核远,小黑点疏,电子云密度小,电 子出现的机会少。
巩固练习
1、关于“电子云”的描述中,正确的是BD
A、一个小黑点表示一个电子
B、一个小黑点代表电子在此出现过
C、电子云是带正电的云雾
D、小黑点的疏密表示电子在核外空间单位 体积内出现机会的多少
如:Na:1s22s22p63s1 或 Na:[Ne]3s1。
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
10
四个量子数
1、电子层(异和主要运动区域离 核远近的不同。
离核越来越远,能量越来越高
2. 亚层(角量子数l,能级)
• 符号: S,P,d,f • 意义:(1)确定原子轨道形状
(2)和电子层n共同决定原子
定结构。 泡利不相容原理: 一个原子轨道中最多只能容纳两个电子,并且这两个
电子的自旋方向必须相反。 洪特规则: 对于基态原子,电子在能量相同的轨道上排布时,应
尽可能的分占不同的轨道并且自旋方向相同。
原子核外电子排布的表示方法
电子排布式: 用数字在能级符号的右上角表明该能级上排
布的电子数;为了避免电子排布式过于繁琐, 可以把内层电子达到稀有气体结构的部分以 相应稀有气体元素符号外加方括号表示。
中电子的能量大小(确定能级)
规律: 每层的能级数值(亚层数)=电子层数
3.伸展方向(磁量子数m)
• 意义: 决定原子轨道在空间的伸展方向(轨道的数目)
①s轨道是球形对称的,所以只有1个轨道;
②p轨道在空间上有x、y、z三个伸展方向, 所以p轨道包括px、py、pz 3个轨道; ③d轨道有5个伸展方向(5个轨道)
⑵2px = 2py
⑶3s < 3d
⑷4s > 3p
3、比较下列多电子原子的原子轨道能量的高低
⑴2s 2p 4s 2s<2p<4s
⑵3s 3p 4p 3s<3p<4p
基态原子的核外电子排布 (基态原子是处于能量最低状态下的原子)
基态原子的核外电子排布三大原则
能量最低原则: 核外电子的排布要使整个原子的能量最低,以形成稳
3、电子云:
好像带 负电荷 的云雾 笼罩在 原子核 周围形 象的称 为电子 云
电子云演示
(1)电子云的概念: 电子在原子核外空间一定范围内出现,好 像带负电荷的云雾笼罩在原子核周围,人 们形象的称为电子云。
(2)小黑点的含义:
并非表示电子,而是表示电子在此空间出现过 (3)小黑点疏密的含义: 电子出现的机会
f轨道有7个伸展方向(7个轨道) ;
• n,l,m 表明了:
• (1)轨道能量高低(电子层的数目, 电 子距离核的远近);
(2)轨道的形状; (3)轨道在空间分布的方向
结论: 利用三个量子数可以描述一个
电子的空间运动状态,即可将一个原 子轨道描述出来.
4. 自旋量子数ms
意义:表示电子自旋方向
通常用“↑”和“↓”表示。 所以, 描述一个电子的运动状态,
1s < 2s < 3s < 4s……
③电子层和形状相同的原子轨道的能量相
等。
如:2px=2py=2pz
原子轨道能量顺序图
动动脑
1、下列轨道含有轨道数目为3的是 A、1s √B、2p √C、3p D、4d
2、3d轨道中最多容纳电子数为
A、2
B√ 、 10 C、 14 D、 18
3、第三电子层含有的轨道数为
第四电子层:有四种形状,决定有四种类型轨道。 记作4s,4p,4d,4f 第五电子层:有五种形状,决定有五种类型轨道。
1s
1
2
2s,2p
4
8
3s,3p,3d
9
18
4s,4p,
16
32
4d,4f
n2
2n2
(5)各原子轨道的能量高低:
①相同电子层上原子轨道能量的高低:
ns < np < nd < nf ②形状相同的原子轨道能量的高低:
要用四个量子数: n, l, m 和 ms.
原子轨道种类数与电子层序数相等,即n层有n种轨道。
第一电子层:只一种形状,只一种类型轨道,用s表示,叫s轨 道,记作1s。
第二电子层:有二种形状,所以有二种类型轨道。分别是: 球形,记作2s;纺锤形,用p表示,叫p轨道,记作2p。
第三电子层:有三种形状,决定有三种类型轨道。 记作3s,3p,3d。
一、原子核外电子运动的特征:
1、核外电子的特征:
(1)质量很小,带负电荷 (2)运动速度高(接近光速) (3)运动空间范围很小(相对于宏
观物体而言)
不遵循宏观物体的运动规律
2、电子运动的特征: 无确定的轨迹;不能准确地测定 电子在某一时刻所处的位置和运动 速度;也不能描画出它的轨迹。
采用统计的方法来描述电子在原子 核外空间某一区域出现的机会。 电子在原子核外空间出现的机会是 有规律的。
第一节 原子结构模型
原子结构
原子
A Z
X
原子核 质子(Z)
中子(N=A - Z) 核外电子(Z)
核电荷数=核内质子数=核外电子数=原子序数
质量数=质子数+ 中子数 (A=Z+N)
+d
X a C+ a、b、c、d、e各代表什么?
be
a——代表质量数; b——代表质子数; c——代表离子所带得电荷; d——代表化合价 e ——代表原子个数