超宽带技术—UWB

合集下载

UWB超宽带

UWB超宽带

UWB超宽带什么是UWB超宽带?UWB(Ultra-WideBand)超宽带是一种通过在超宽频带范围内传输数据的无线通信技术。

它基于短脉冲信号,能够在极短的时间内传输大量数据。

UWB超宽带技术在无线通信领域具有广泛应用,包括室内定位、物体追踪、雷达和无线传感器网络等。

UWB超宽带的特点1.宽频带范围: UWB超宽带技术的一项主要特点是其宽频带范围。

通常,UWB的频带范围从几百兆赫兹(MHz)到几千兆赫兹(GHz),因此能够支持高速数据传输和较长的传输距离。

2.低功率: UWB超宽带技术在传输数据时使用低功率,这使得它可以在不干扰其他无线设备的情况下工作。

3.高精度定位: UWB超宽带技术可以实现高精度的室内定位。

由于UWB信号能够穿透墙壁和障碍物,因此可以在室内环境中实现准确的物体定位。

4.抗多径干扰:多径干扰是指由于信号在传播过程中碰撞、反射和折射等原因导致信号传输路径的多样性。

UWB超宽带技术通过使用信号的多径特性来抵消多径干扰,提高信号传输的可靠性。

UWB超宽带的应用1. 室内定位UWB超宽带技术在室内定位方面具有特殊优势。

通过将UWB设备部署在建筑物内部,可以实现对人员和物体的高精度定位。

这在商场、医院和仓库等场所可以提供实时的位置信息,便于管理和安全监控。

2. 物体追踪利用UWB超宽带技术,可以实现对物体的追踪。

通过将UWB标签附着在物体上,可以准确追踪其位置和运动轨迹。

这在物流管理、仓库管理和供应链领域具有广泛应用。

3. 雷达应用UWB超宽带技术在雷达领域也得到了广泛应用。

与传统雷达相比,UWB雷达具有更高的分辨率和更好的目标检测能力。

它可以在不同的天气和环境条件下提供高质量的目标识别和跟踪。

4. 无线传感器网络UWB超宽带技术在无线传感器网络中起到重要作用。

通过使用UWB传感器,可以实现对环境参数(如温度、湿度和压力等)进行高精度和实时的测量。

这在工业自动化、环境监测和智能家居等领域有着广泛的应用前景。

uwb是什么意思啊

uwb是什么意思啊

uwb是什么意思啊
uwb 是什么意思?它与蓝牙、红外等技术有哪些区别呢?下面我们就来简单介绍一下:1. UWB(超宽带)技术,是基于 UWB 技术开发出的一种全新的宽带无线连接方式。

它不仅具备传统 WLAN( Wi- Fi)所拥有的802.11n 标准,而且还利用 UWB 的超大频谱范围特性在802.11N 的基础上进行扩展和提升,使之成为一种新型的 WLAN,其最高可达到100Mbps。

因此, UWB 是继蓝牙、 WLAN 之后的第三代无线通信技术。

2.蓝牙、红外等都属于无线数据传输技术,只能实现点对点的数据交换,而 UWB 则支持多点同步传输,也即是说,它既可以将数据从一台设备传送给另一台设备,也可以将数据从一个设备传送给多个设备。

3.相比较蓝牙和红外等传输技术, UWB 的优势非常明显。

它不仅能够提供更快速的数据传输,而且还具有很强的抗干扰能力。

4.另外, UWB 技术除了在无线数据传输领域得到应用外,还被广泛地运用于物联网、智慧城市等领域。

如今,在北京等一些城市已经率先试点了 UWB 技术,该项技术或许会逐渐走入千家万户中去。

今天上网的时候发现了这个,我认为应该是有人恶作剧吧!不过这样做确实没有什么意义啊,反正你又打不着他,只要让大家知道就好啦!另外,有谁听说过 UWB 技术吗?我觉得这种技术挺厉害的,毕竟是刚推出的嘛,所以才引起了那么多人的关注。

虽然这个技术很牛逼,但是并不适合在生活中普及,因为这种技术本身就太神秘了,想必真正见识过这种技术的人并不多。

UWB的名词解释

UWB的名词解释

UWB的名词解释无线超宽带(Ultra-Wideband,简称UWB)是一种现代通信技术,通过发送短脉冲信号来传输数据。

这种技术使用了宽带频谱,以更高的速率传输信息,其主要特点是信号的带宽远远超过传统无线通信技术。

传统的无线通信技术一般采用单一频带传输数据,而UWB则在较大的频谱范围内传输数据,这使得UWB具有很强的抗干扰能力。

由于UWB信号的短暂性质,它几乎不会与其他无线设备发生冲突,从而能够在复杂的无线环境中工作。

UWB技术的广泛应用领域之一是室内定位。

传统的室内定位技术往往需要在建筑物内放置大量基站,这对于成本和布局来说都是具有挑战性的。

而UWB可以在室内通过对信号传播的时间、相位和强度的测量,实现高精度的定位,不仅可以用于室内导航,还可以用于安全监控和物品追踪等领域。

此外,UWB还广泛应用于雷达系统中。

传统雷达系统一般使用脉冲信号来探测目标并测量其距离,但在这种技术中,多个目标的重叠距离难以精确测量。

而UWB雷达在测量目标之间的距离时,可以通过测量信号传播的时间差来实现高精度的距离测量。

除了室内定位和雷达系统,UWB还可以用于短距离通信。

由于UWB信号的高速率和低功率特性,它可以用于短距离高速数据传输。

这不仅在个人消费电子设备中有应用前景,也在无线传感器网络和工业自动化等领域具有潜力。

然而,尽管UWB在多个领域都显示出巨大的潜力,但目前其广泛应用仍面临着一些挑战。

首先,由于UWB技术属于新兴技术,其标准化和认证仍在进行中。

这使得不同厂商的产品可能并不兼容,限制了UWB技术的普及和应用。

其次,UWB技术的高频段使用可能会干扰其他无线设备,因此需要对频谱资源进行合理的规划和管理。

这需要制定相关的法规和标准来确保不同无线设备之间的和谐共存。

最后,UWB技术在室外环境中没有明显优势,因为其高速率和高精度的特性在较远距离下可能无法有效利用。

因此,在选择使用UWB技术时,需要综合考虑其性能和应用场景的匹配程度。

物联网中的UWB是什么,UWB技术介绍

物联网中的UWB是什么,UWB技术介绍

新版UWB技术介绍UWB技术使用两种方式传输数据:一种是无线收发,利用卫星信号进行传输,另一种是通过无线通信的方式传输数据。

无线收发采用的模式主要是同步、异步和自适应多址。

UWB系统是近几年来非常热门的一个技术了,在民用市场已经有很大优势了,但由于技术发展太快,现在很多都没有进行商用了,所以我们先从最新版的UWB技术开始介绍吧!一、超宽带超宽带(Ultra-wideband, UWB)是一种利用无线电信号进行数据传输的技术,是一种非授权频段的超宽带(UWB)系统。

超宽带通信系统的工作频率为1~10 GHz,波长为5~100μm,工作在C波段。

UWB具有高数据速率、低时延、穿透能力强、抗多径干扰等优点。

UWB是利用脉冲重复频率(PRS)和脉冲间隔时间(PLD)实现高速数据传输的技术。

脉冲重复频率指单位时间内脉冲发射次数,可分为连续或离散形式。

PRS可以根据频率来划分,常用的是20 MHz~100 MHz; PLD可以划分为2~4路数字信号处理模块组成;脉冲间隔时间(PL, pulse latency,即PL/PLD)主要用于实现时钟恢复等功能;脉冲重复频率与PRS有关,但更多地取决于天线形式、接收灵敏度、载波频率等因素,可通过测量PRS和PLD 的PL/DL值来计算。

二、时隙UWB技术的时隙分为两类:同步和异步。

同步时隙:同步信号使用固定时隙,每个载波接收信号,并在发送时同步它的相位和幅度;异步时隙:每个载波接收一个相位和幅度变化的正弦信号,将其解调成一个时间片,然后通过时频转换成一个时间片。

UWB系统中使用同步和异步的时隙。

由于UWB的波束窄且功率低,在对目标进行定位时通常使用UWB信号来传输数据,而不是传统的无线电系统使用多个射频天线来发射信号,而射频天线只能用于接收数据。

因此在使用UWB通信时,必须考虑发射功率问题,通常需要考虑的功率包括几个方面:首先是发射时间点选择;其次是在接收端需要设置接收器来识别是否来自目标位置;最后才是根据接收到的信号类型进行选择正确的波束。

UWB

UWB

一、什么是UWB超宽带UWB由Ultra Wideband缩写而成,它是一种无载波通信技术。

超宽带和其它的“窄带”或者是“宽带”主要有两方面的区别:超宽带的带宽,按照美国联邦通信委员会(FCC)的定义信号带宽大于1.5GHz,或信号带宽与中心频率之比大于25%为超宽带;信号带宽与中心频率之比在1%~25%之间为宽带,小于1%为窄带,可见UWB的带宽明显大于目前所有通信技术的带宽。

超宽带的无载波传输方式。

传统的“窄带”和“宽带”都是采用无线电频率(RF)载波来传送信号,载波的频率和功率在一定范围内变化,从而利用载波的状态变化来传输信息。

相反的,超宽带以基带传输。

按照FCC 的规定,从3. 1GHz 到10. 6GHz 之间的7. 5GHz 的带宽频率为UWB 所使用的频率范围。

二、UWB技术原理发射端将比特符号通过数字滤波器进行脉冲整形,然后转换成模拟信号发射出去,接收信号依次通过低噪声放大器(LAN)、可变增益放大器(VGA)和ADC后成为离散信号,接下来就可用DSP技术实现信号检测、估计、分集接收、判决译码等处理。

目前产生脉冲信号源的方法有两类:(1)光电方法(2)电子方法UWB的调制技术:(1)脉冲幅度调制(PAM)(2)脉冲位置调制(PPM)UWB技术的研究主要围绕以下几个方面:(1)可控窄脉冲产生技术(2)信道传播特性与信道模型(3)调制技术(4)多址技术(5)信号检测技术等。

三、UWB的主要特点1.简单系统结构UWB发射器直接用脉冲小型微带天线。

由于UWB 不需要对载波信号进行调制和解调,故不需要混频器、滤波器、RF/ IF 转换器及本地振荡器等复杂器件,同时更容易集成到CMOS 电路中。

2.高速数据传输理论上,一个宽度为0的脉冲具有无限的带宽,因此,脉冲信号要想发射出去并有足够带宽,必须有足够陡峭的上升/下降沿和足够窄的宽度。

3.功耗低由于不使用载波,仅在发射窄脉冲时消耗少量能量,从而节约了发射连续载波时的大量能耗。

超宽带技术——UWB

超宽带技术——UWB

UWB 蓝牙 802.11a HomeRF的区别
UWB 速率(bps) <=1G 距离(m) <10 功率(毫瓦) <=1 应用范围 探距离 多媒体 蓝牙 802.11a <1M 54M 10 10~100 1~100 1>= 家庭或 电脑和 办公室 Internet网关 HomeRF 1~2M 50 <=1 电脑、电话 及移动设备
与其它短距离ห้องสมุดไป่ตู้线技术的比较
(2)蓝牙(Bluetooth)与UWB
蓝牙的传输距离为10cm~10m,它采用2.4GHzISM频 段和调频、跳频技术,速率为1Mbps。从技术参数上来 看,UWB的优越性是比较明显的,有效距离差不多,功 耗也差不多,但UWB的速度却快得多,是蓝牙速度的几 百倍。从目前的情况来看,蓝牙唯一比UWB优越的地方 就是蓝牙的技术已经比较成熟,但是随着UWB的发展, 这种优势就不会再是优势。
UWB技术特点
(8) 工程简单造价便宜
在工程实现上,UWB比其它无线技术要简单得多,可全 数字化实现。它只需要以一种数学方式产生脉冲,并对 脉冲产生调制,而这些电路都可以被集成到一个芯片上, 设备的成本将很低。
与其它短距离无线技术的比较
(1)IEEE802.11a与UWB
IEEE802.11a是由IEEE制定的无线局域网标准之一, 物理层速率在54Mbps,传输层速率在25Mbps,它的通 信距离可能达到100M,而UWB的通信距离在10M左右。 在短距离的范围(如10M以内),IEEE802.11a的通信速率 与UWB相比却相差太大,UWB可以达到上千兆,是 IEEE802.11a的几十倍;超过这个距离范围(即大于10M), 由于UWB发射功率受限,UWB就性能就差很多(目前从 演示的产品来看,UWB的有效距离已扩展到20M左右)。 因此从总体来看,10M以内,802.11a无法与UWB相比; 但是在10M以外,UWB无法与802.11a相比。另外与 UWB相比,802.11a的功耗相当大。

超宽带技术概述

超宽带技术概述

超宽带(UWB)技术一、UWB技术简介UWB(Ultra Wide Band)是一种短距离的无线通信方式。

其传输距离通常在10m以内,使用1GHz以上带宽,通信速度可以达到几百Mbit/s以上。

UWB不采用载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此,其所占的频谱范围很宽,适用于高速、近距离的无线个人通信。

美国联邦通讯委员会(FCC)规定,UWB的工作频段范围从3.1GHz到10.6GHz,最小工作频宽为500MHz。

超宽带传输技术和传统的窄带、宽带传输技术的区别主要有如下两方面:一个是传输带宽,另一个是是否采用载波方式。

从传输带宽看,按照FCC的定义:信号带宽大于1.5G或者信号带宽与中心频率之比大于25%的为超宽带。

超宽带传输技术直接使用基带传输。

其传输方式是直接发送脉冲无线电信号,每秒可以发送数1O亿个脉冲。

然而,这些脉冲的频域非常宽,可覆盖数Hz~数GHz。

由于UWB发射的载波功率比较小,频率范围很广,所以,UWB对传统的无线电波影响相当小。

UWB的技术特点显示出其具有传统窄带和宽带技术不可比拟的优势。

二、UWB技术的发展历程现代意义上的超宽带UWB 数据传输技术,又称脉冲无线电( IR , Impulse Radio) 技术,出现于1960年,当时主要研究受时域脉冲响应控制的微波网络的瞬态动作。

通过Harmuth、Ross和Robbins等先行公司的研究, UWB 技术在70 年代获得了重要的发展,其中多数集中在雷达系统应用中,包括探地雷达系统。

到80 年代后期,该技术开始被称为"无载波"无线电,或脉冲无线电。

美国国防部在1989 年首次使用了"超带宽"这一术语。

为了研究UWB在民用领域使用的可行性,自1998 年起,美国联邦通信委员会( FCC) 对超宽带无线设备对原有窄带无线通信系统的干扰及其相互共容的问题开始广泛征求业界意见,在有美国军方和航空界等众多不同意见的情况下,FCC 仍开放了UWB 技术在短距离无线通信领域的应用许可。

超宽带技术(UWB)概述

超宽带技术(UWB)概述

UWB的特点
2、信道容量大,传输速率高
➢ 香农信道容量公式
C
W
log2 (1
S N
)
(b / s)
➢ 超宽带信号占有数百兆赫兹(MHz)甚至几吉赫兹
(GHz)带宽,理论上可以提供极高的信道容量,达
到Gbps以上的传输速率,或者在很低的信噪比下,
以一定的传输速率实现可靠传输。假定一个超宽带信
号使用7GHz带宽,当信噪比S/N低至-10dB时,超宽 带可以提供的信道容量为C=7G×log2(1+0.1)≈ 0.963Gbps,接近1Gbps。
• 时隔这么多年后,在最近七八年中其它先 进的无线技术如蓝牙技术、WiFi、WiMAX 都先后面世,UWB为什么会重出江湖并引 起如此密切的关注呢?
UWB:由来
• UWB技术特点与时代需求的结合
– 随着网络技术的发展,网络信息传输从以文字 为主过渡到以多媒体信息为主,因此对带宽的 要求就比较高;
– 从技术层面来说,可靠地传输视频图像所需的 数据传输速度超过了蓝牙与WiFi的能力;
➢ 例如基于UWB技术的无线USB 2.0,可取代有线USB, 实现PC之间及消费类电子设备(电视、数码相机、 DVD播放器、MP3等)之间的无线数据互连与通信。
➢ 无线个域网(WPAN) 、高速智能无线局域网、智能交 通系统,公路信息服务系统,汽车检测系统,舰船、 飞机内部通信系统,楼内通信系统、室内宽带蜂窝电 话,战术组网电台,非视距超宽带电台,战术/战略 通信电台,保密无线宽带因特网接入等等
非正弦波形传输
传统无线发射信号
UWB发射信号
Signal1
Signal2
时域共享
Signal1
Signal2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(6)发送功率非常小
UWB系统发射功率非常小,通信设备可以用小于1mW 的发射功率就能实现通信。低发射功率大大延长系统电 源工作时间。而且,发射功率小,其电磁波辐射对人体 的影响也会很小,
UWB技术特点
(7)定位精确
冲激脉冲具有很高的定位精确,采用超宽带无线电通 信,很容易将定位与通信合一,而常规无线电难以做到 这一点。超宽带无线电具有极强的穿透能力,可在室内 和地下进行精确定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之内; 与GPS 提供绝对地理位置不 同,超短脉冲定位器可以给出相对位置, 其定位精度可 达厘米级, 此外,超宽带无线电定位器更为便宜。
UWB实现上,UWB比其它无线技术要简单得多,可全 数字化实现。它只需要以一种数学方式产生脉冲,并对 脉冲产生调制,而这些电路都可以被集成到一个芯片 上,设备的成本将很低。
UWB 蓝牙 802.11a HomeRF的区别
UWB 速率(bps) <=1G 距离(m) <10 功率(毫瓦) <=1 应用范围 探距离 多媒体 蓝牙 802.11a <1M 54M 10 10~100 1~100 1>= 家庭或 电脑和 办公室 Internet网关 HomeRF 1~2M 50 <=1 电脑、电话 及移动设备
UWB应用
无线通信系统方面
(1)LAN和PAN (2)短距离无线(WSN)
UWB发展前景
与蓝牙、802111b、802115 等无线通信相比, UWB 可以提供更快、更远、更宽的传输速率,越来越多的研 究者投入到UWB 领域,有的单纯开发UWB技术,有的 开发UWB应有,有的兼而有之。相信UWB技术, 不仅 为低端用户所喜爱,且在一些高端技术领域,在军事需 求和商业市场的推动下,UWB 技术将会进一步发展和成 熟起来。
UWB应用
民用方面
(1) 地质勘探及可穿透障碍物的传感器(imaging system) (2)汽车防冲撞传感器等(vehicle radar system) (3)家电设备及便携设备之间的无线数据通信( communication and measurements system) (4)家庭数字娱乐中心
UWB的发展
• UWB(超宽带)概念在1960年就被提出 • 1973年,第一个UWB系统的专利被授予 • 从其出现到20世纪90年代之前,UWB技术 主要用于军事 上的雷达系统 • 1993年,R. A. Scholtz在军事 通信会议上发表"论证IR 进行 调时/调位多址技术"的论文, 开辟了将IR(脉冲无 线电)作 为无线通信载体的新途径 • 随着微电子器件的高速发展, UWB技术开始应用于民用 领 域,并在国际上掀起了研究和 应用的热潮,并被认为 是下一 代无线通信的革命性技术
UWB系统方案
一、MB-OFDM方案
二、DS-UWB方案
MB-OFDM方案
• 将频谱划分为多个宽度为528 MHz的子频带 – 3频带方案:3168 – 4752 MHz – 7频带方案: 3168 – 4752 MHz 和 6072 – 8184 MHz – 后续方案还可利用更高频率的子频带 • 时频交织(TFI) – OFDM符号在不同的时间调制不同中心频率的载波,从而在不 同子频带传输 – 不同的时频序列可以用来区分不同的Piconet • 优点 – 采用OFDM技术,能够简单、有效地收集多径能量 – 采用OFDM技术,频谱利用效率高,频谱使用灵活 – 技术较成熟,便于CMOS 实现
MB-OFDM方案
MB-OFDM方案发送端原理图
DS-UWB方案
• 频谱的使用
–将可用频谱分为高、 低两个频段,信号调 制在两个频段之一传 输,两个频段也可同 时或合并使用 –两个频段之间为U-NII DS-UWB信号频谱 频段,为避免干扰, 没有使用 • 最多支持8个Piconet同时工作 – FDM(高、低频段)+CDM(不同扩频码集合) –每个Piconet内,采用TDMA方式共享信道,与 IEEE 802.15.3 MAC层协议兼容
Ultra-Wideband, UWB
定义 单位频带 1990年美国军方首次 窄带 发射功率 提出“超宽带”这一概 念,并规定在-20dB处的 宽带 绝对带宽大于 1.SGHz 或相对带宽大于25%的 超宽带 任何信号均称之为超宽 频率 带信号。2002年,FCC 对美国军方的定义作了 修改, 规定信号-10dB绝对带宽大于0.5GHz或相对带宽大于、等于 20%,就称之为超宽带信号。这个定义使得超宽带信号不再 局限于脉冲发射.
Thank you !
DS-UWB方案
DS-UWB方案发送端原理图
• 三进制扩频码,码长为24 • M进制双正交键控(M-BOK) • 平方根升余弦(RRC)脉冲
UWB应用
军用方面
(1)UWB 雷达 (2)UWB L PI/ D 无线内通系统(预警机、舰船等) (3)战术手持和网络的PL I/ D 电台 (4)警戒雷达 (5)UAV/UGV 数据链 (6)探测地雷 (7)检测地下埋藏的军事目标或以叶簇伪装的物体
超宽带技术——UWB
U W B
• • • • • • • UWB简介 UWB的发展 UWB技术特点 UWB与其他近距离无线技术比较 UWB系统方案 UWB的应用 UWB的前景
2
UWB简介
UWB(Ultra Wideband)超宽带是一种 不用载波,而采用时间间隔极短(小于1ns) 的脉冲进行通信的技术,也称做脉冲无线 电( Impulse Radio)、时域(Time Domain) 或无载波(Carrier Free)通信。
UWB技术特点
(1) 抗干扰性能强
UWB采用跳时扩频信号,系统具有 较大的处理增益, 在发射时将微弱的无线电脉冲信号分散在宽阔的频带 中,输出功率甚至低于普通设备产生的噪声。接收时将 信号能量还原出来,在解扩过程中产生扩频增益。因 此,与IEEE802.11a、IEEE802.11b和蓝牙相比,在 同等码速条件下,UWB具有更强的抗干扰性。
(4) 消耗电能小
通常情况下,无线通信系统在通信时需要连续发射载 波,因此要消耗一定电能。而UWB不使用载波,只是发 出瞬间脉冲电波,也就是直接按0和1发送出去,并且在 需要时才发送脉冲电波,所以消耗电能小。
UWB技术特点
(5)保密性好
UWB保密性表现在两方面: 一方面是采用跳时扩频,接收机只有已知发送端扩频码 时才能解出发射数据; 另一方面是系统的发射功率谱密度极低,用传统的接收机 无法接收。
(2)传输速率高
UWB的数据速率可以达到几十Mbit/s到几百Mbit/ s,有望高于蓝牙100倍,也可以高于IEEE802.11a和 IEEE802.11b。
UWB技术特点
(3) 带宽极宽
UWB使用的带宽在1GHz以上,高达几个GHz。超宽带 系统容量大,并且可以和目前的窄带通信系统同时工作 而互不干扰。这在频率资源日益紧张的今天,开辟了一 种新的时域无线电资源。
相关文档
最新文档