配电主站协同式馈线自愈技术实践

合集下载

10kV配电网馈线自动化自愈系统

10kV配电网馈线自动化自愈系统

10kV配电网馈线自动化自愈系统发布时间:2022-11-11T06:42:16.150Z 来源:《新型城镇化》2022年21期作者:王瀚[导读] 在配电网中,有着大量的中低压馈线路,一旦这些线路出现故障,会导致部分区域出现停电。

天津天大求实电力新技术股份有限公司天津 300392摘要:经过几十年的建设,电力系统主网已经取得很大的成绩,无论技术水平还是管理水平都得到极大的提升。

而10kV配电馈线系统作为电力系统的重要组成部分,其安全洼、可靠性指标与国际先进水平相比却还有很大的差距。

据统计,大约有80%的用户停电原因为配电网故障,因此提高配电网可靠性水平是确保供电可靠性水平的主要及重要手段之一。

对电力生产部门来说,保证供电的可靠性是要解决的头等大事。

如何保障现代社会所需求的不间断电力供应,已成为供配电网所面临的严峻挑战。

关键词:10kv配电网;馈线自动化;自愈系统一、馈线自动化自愈的内涵在配电网中,有着大量的中低压馈线路,一旦这些线路出现故障,会导致部分区域出现停电。

线路如果出线故障,能够迅速对故障进行定位,并对故障区域进行自动隔离,并做到自动恢复供电系统,此类系统就叫做配电网自愈系统,也是实现馈线自动化的关键点所在。

利用配电网中自愈系统能对故障进行及时检测或不安全状态的预警,将断电产生的影响降到最低。

发生故障后通过自愈系统实现自主隔离并恢复供电,对不安全状态进行修正调节从而回归正常状态。

二、10kV配网馈线自动化现状当前我国大多数城市采用的10kV配电网自动化水平还比较低,通常配电网采用的馈线自动化的主要方法有两种。

一种是本地模式借助配电主站或电子站进行控制。

另一种是采用配电终端与配电网络主站或子站之间的集中协作模式。

从实际操作实践来看,这两种模式有着不同程度的缺陷。

2.1就地模式配网馈线自动化通常来说,就地模式的配网馈线自动化一旦线路出现故障时,会使得上级变电站出线断路器发生跳闸,解决故障或隔离故障,需要多次将出线断路器合闸并多次结合本开关逻辑判断才能实现,这样可能直接导致权限都出现短暂停电或者出现多次短暂停电的情况,而此种短暂停电的情况会对变电站主变产生非常大的危害。

配电网馈线自动化技术及其应用

配电网馈线自动化技术及其应用

配电网馈线自动化技术及其应用配电网馈线自动化技术是一种通过使用信息技术和通信技术实现自动化控制配电网馈线运行和维护的方法。

该技术包括智能终端、通信网络、控制中心等组成部分,通过测量传感器实时采集馈线状态、采用智能算法进行数据处理和控制,实现电力系统的智能自动化。

配电网馈线自动化技术的应用,可以提高配电网的安全性、可靠性、智能化程度和经济性,具有以下几个优点:一、提高供电可靠性配电网馈线自动化技术可以实现全流程自动化,包括故障检测、故障定位、故障隔离、设备告警等功能,从而提高供电可靠性,减少停电时间和停电范围。

二、提高运行效率配电网馈线自动化技术可实现对馈线的在线检测,及时发现故障,隔离故障点,同时也可以进行人工干预,实现馈线运行的高效率,减少人为因素对馈线的影响。

三、提高管理水平配电网馈线自动化技术通过对馈线的远程监测和控制,实现了配电网的智能化管理,包括实时监测、历史记录、统计分析等功能,可以进行数据可视化呈现,方便管理人员进行决策分析。

四、提高服务质量配电网馈线自动化技术能够对电网系统的故障进行快速定位,提高抢修速度,为用户提供快速可靠的服务,保证电量供应稳定,提高电网服务质量。

在馈线自动化技术的应用过程中,需要注意以下几点:一、合理设计控制逻辑在馈线自动化技术应用的过程中,需要根据电网工作原理,合理设计控制逻辑,保证实时运行的稳定性和可靠性。

二、建立稳定的通信网络配电网馈线自动化技术需要建立稳定的通信网络,保证馈线监控数据安全、可靠地传输到控制中心,确保控制中心及时接收到馈线故障信息和控制指令。

三、完善的应急预案在应用馈线自动化技术的过程中,需要建立完善的应急预案,包括故障处理流程、应急响应措施、备用电源配备等方面的计划。

预案的建立可以确保在故障发生时,能够及时、有效地进行应急响应和处置。

综上所述,配电网馈线自动化技术是提高配电网安全、可靠性、智能化和经济性的一种重要手段。

在实际应用过程中,需要注意技术设计、通信网络建设和应急预案等方面的要求,确保实时运行的稳定性和可靠性。

配电网线路故障快速自愈技术

配电网线路故障快速自愈技术
集中控制方式
利用主站判断故障位置、隔离故障,响应时间长,供电恢复时间在分 钟级。
两种方式均无法避免短时停电,且供电恢复时间长,不能满 足对供电质量要求高的特殊行业用户的要求。
比如半导体制造、PLC控制、电力电子控制敏感设备用户,哪怕是短 时的停电都会给敏感用户带来大量的经济损失。
5
解决问题的思路
通过智能终端之间的对等通信,交换信息,采用分 布式智能控制决策,不需要主站参与,实现配电线 路的故障快速自愈。
16
思明供电分局快速故障自愈项目
科汇公司与福建电力公司合作开发的基于分布式智 能的快速故障自愈系统已在厦门电业局思明供电分 局电缆环网工程中获得应用。
厦门电业局思明供电分局于2010年11月,在由4座
环网柜组成的环网线路上运行了分布智能型快速故
障自愈项目。
PZK-360H
系统构成
光纤工业以太网
智能环网柜监控终端: PZK-360H(按6回路配置)
美国佐治亚理工大学
采用无线通信技术,FTU数据通过串行口接入无线对等通信网络, 控制速度慢,10s。
美国 S&C电气公司
根据网络结构,将FTU(分段开关)分成若干个控制分组 (team),由分组的领衔FTU(Coach)收集该小组内FTU信息, 实现故障自愈控制。 整定配置过程复杂。FTU采用RS-232串行口,通过网络通信模块 实现对等通信,控制速度慢。 加拿大阿尔伯特省ENMAX电力公司2004年3月在其19条25kV线 路上投运了该系统,到当年9月份,共为用户减少了862,000 分钟 停电时间,获得了2004年美国输配电杂志的自动化项目奖。
配电线路快速故障自愈技术
1
什么是配电线路故障自愈?
什么是配电线路故障自愈?

配电网馈线自动化技术及其应用

配电网馈线自动化技术及其应用

配电网馈线自动化技术及其应用1. 引言1.1 配电网馈线自动化技术及其应用配电网馈线自动化技术是指利用先进的信息通信技术和智能电力设备,实现对配电网馈线的监测、控制和故障处理的自动化技术。

在传统的配电网中,供电过程主要由人工操作控制,存在着运行效率低、响应速度慢、故障处理困难等问题。

而配电网馈线自动化技术的出现,使得配电网具备了更高的智能化和自动化水平,能够实现实时监测、智能调度和故障快速定位与恢复。

配电网馈线自动化技术的应用范围非常广泛,不仅可以提高供电可靠性和供电质量,还可以实现对电网的远程监控和管理,提高供电效率和运行安全性。

特别是在大规模的城市化进程中,配电网馈线自动化技术更显得尤为重要,可以有效应对城市化所带来的电力需求增长和电网负荷波动的挑战。

通过不断的技术创新和应用实践,配电网馈线自动化技术将为电力行业带来更多的优势和机遇,同时也面临着发展中的挑战和难题。

我们需要不断完善配电网馈线自动化技术,推动其更好地应用于电力系统中,实现电力系统的智能化、高效化和可靠化。

2. 正文2.1 技术原理配电网馈线自动化技术的技术原理主要包括智能感知、数据通信、决策控制和执行操作四个方面。

智能感知是配电网馈线自动化技术的核心之一。

通过安装各种传感器和监测设备,对配电网中的各种参数进行实时监测和数据采集,如电流、电压、功率、功率因数等,从而实现对整个配电网状态的全面感知。

数据通信是技术原理中不可或缺的一环。

配电网馈线自动化系统通过各种通信网络,如无线通信、有线通信等,实现各个装置之间的数据传输和通信,保障系统的实时性和可靠性。

决策控制是技术原理中的关键环节。

根据传感器采集到的数据和系统设定的策略,系统可以自动进行决策和控制,实现对设备的远程操作和控制,保障配电网的安全稳定运行。

执行操作是技术原理的最终落实。

系统根据决策控制的指令,对配电网中的设备进行实际操作,如开关控制、设备投切等,从而实现对配电网馈线的自动化管理和运行。

配电网线路故障快速自愈技术全解

配电网线路故障快速自愈技术全解
配电线路快速故障自愈技术
1
什么是配电线路故障自愈?
什么是配电线路故障自愈?
指不需要或仅需少量的人为干预,利用先进的保护、控 制手段,出现故障后能够快速隔离故障、自我恢复,不 影响非故障用户的正常供电或将对其影响降至最小。
2
目前故障自愈的控制技术
就地控制技术
利用重合器与分段器的配合,进行顺序重合控制,实现故 障隔离与恢复供电。 有电压型、电流型、电压电流型三种型式 不需要通信条件,投资小,易于实施。
电源1 QF1 Relay 控制主站 F QF2 Q42 Relay R M U 4 电源2 Q11 Q12 R M U 1 Q21 Q22 R M U 2 Q31 Q32 R M U 3 Q41
CP PZK-360H PZK-360H PZK-360H PZK-360H
光纤工业以太网
13
快速故障自愈技术
8
关键技术
故障自愈的通用控制方法
研究能够适应不同的配电网络、不同的运行状态(开环、 闭环)的控制算法。 研究智能终端的自适应、自组织与扩展技术,实现协同控 制,提高控制响应速度。
9
基于分布式智能的故障自愈实现模式
模式1
快速故障自愈
模式2
无缝故障自愈
10
基于分布式智能的快速故障自愈技术
11
快速故障自愈技术
工作原理
F点故障,在出口保护(Relay)跳闸后,检测到故障电流的FTU发 起通信,向相邻的FTU请求相邻开关的故障检测信息。 通过交换信息,确认故障点前FTU检测到故障信息,而故障点后的 FTU没有检测到故障信息,从而确定故障点。 FTU控制故障点两侧的开关分闸,在相互确认后发出“故障隔离成 功”的消息;出口保护(Relay)和联络开关FTU在收到“故障隔离 成功” 消息后,分别控制出口开关与联络开关合闸,恢复故障区段 两侧供电。 故障处理完成,通过通信处理机(CP)将故障处理信息上报主站。

配电网中的自愈技术分析

配电网中的自愈技术分析

配电网中的自愈技术分析摘要:随着人们生活水平的提高,加大了对电力工程的要求,为了提高电力的稳定性,电力产业应将配电网络进行持续优化,本文以自愈技术为例,分析配电自动化技术、智能微网技术的应用成效,确保配电网络在故障发生时,可以迅速恢复供电。

本文首先分析配电网络的自愈概念,其次,结合两项自愈技术来讨论配电故障的快速解决办法;最后,分析自愈技术其架构组成,充分展示配电网在智能发展下的自愈技术体系。

关键词:配电网;自愈技术引言在电力系统中,配电网发挥的作用是不容忽视的。

但是,如果配电网存在严重的问题时,会导致故障以后的电路系统响应较为烦琐,配电管理人员无法在较短时间内快速将故障识别以及定位,导致故障抢修不够及时,供电恢复困难较大。

所以,越来越多的电网企业对配电网安全运行、供电可靠、质量稳定给予了高度重视,而采用有效的故障隔离及自愈技术,便可以实现快速且准确的识别、定位、切除故障,为及时抢修、快速恢复供电提供了有利的条件的同时,降低了网损,保证了电能质量。

1配电网的自愈概念为尽早实现较高供电质量目标,投入自愈技术的研究中,由此便可推动电力产业更快速、更完善实现配电网高效运营目标。

智能电网各项技术中,自愈理念是重要的研究方向,为确保电网稳定运行,应不断优化自愈技术的实际应用效果,以此来提升供电质量。

电网自愈技术主要内容是在电网运行状态中瞬时诊断现存问题,进而利用评估、处理等方式,减少或避免人为干预,使配电网络恢复正常运行状态。

因此,监控技术、故障处理技术都是自愈技术的有机组成部分,通过不间断的在线诊断,及时发现当前配电网络中的故障,以此针对性地调整故障隐患,消除停电危害。

2存在的问题2.1基础数据质量低,日常运维管理及功能应用不足基础数据质量欠缺,GIS图实、图模管理不准确,存在GIS图实不一致、GIS 图模导入不及时等情况;配变数据应用滞后,配变量测数据不合理问题突出。

日常运维缺陷管理不到位,终端巡视不规范,未按要求开展终端专业巡视,未及时开展缺陷的处理及流程闭环。

10kV配电网馈线自动化自愈系统

10kV配电网馈线自动化自愈系统

10kV配电网馈线自动化自愈系统摘要:近几年,随着社会对用电的日益增长,高可靠度电力系统已经成为我国的一项重要工程。

随着科学技术的不断发展,电力市场的发展速度越来越快,技术水平不断提升,电力系统的运行机制也越来越健全,提高10 kV配电网络的使用效率,降低其运行中出现的故障,是当前亟待解决的问题。

关键词:10kV配电网馈线;自动化;自愈系统;引言由于10kV配电网馈线自动化模式在具体应用过程中会因外界干扰而出现一些问题,如果自动化问题不能得到改善,势必会影响10kV配电网的馈线的实际作用,相关电力工程的自动化效果也会受到严重影响,自愈系统可以在短时间内改善10kV配电网馈线自动化的缺陷,保证10kV配电网的馈线自动化模式的实际效果和相关系统的运行效果,确保10kV配网馈线在电力工程中发挥最大作用。

一、认识配电自动化系统配电自动化系统的应用是我国电力系统更好发展的必然趋势。

配电自动化系统可以有效节省技术人员的时间和成本,通过对配电网的监控,技术人员可以了解整个配电系统,并及时处理故障,配电自动化系统的主要部件包括主站(可选电子站)、配电终端和通信通道,它们可以通过信息相互通信,实现数据共享和协同处理功能。

(一)馈线自动化功能简单来说,馈线自动化是指在配电网络的运行中,利用光学测量与控制技术对配电网络的运行状况及影响,从而使电力系统的安全、稳定运行起到重要作用。

当在自动化操作中发生技术问题或其它问题时,监测系统能在最短的时间内发现并处理,对于有些系统中的可操作问题,该系统可以自行进行修复处理,从而使系统的安全、稳定、可靠,从而保障电网的供电质量。

二、10kV配电网馈线自动化模式(一)就地型模式对于当地的10kV配电网馈线,该类线路在正常运行过程中极有可能因外部干扰而出现断路、跳闸等问题,从而降低10kV配电网支线在电力工程中的自动化效果,变电站的综合运行模式和质量效果也将受到严重影响,如果当地10kV配电网馈线在正常使用和自动运行中出现的问题不能及时解决,将不可避免地导致线路整体短停电,短停电次数不断增加,这将严重影响10kV配电网馈线的自动化效果和电气工程的实际施工效果,基于此,应要求相关人员按照标准化要求,对当地10kV配电网馈线自动化模式进行优化调整,及时改进电路具体运行过程中的各种问题,确保10kV配电网的馈线自动化效果上升到一定水平,从10kV配电网馈线自动化的特点来看,10kV配电网的馈线难以满足全电缆和混合线路的要求,因此,在确定10kV配电网馈线自动化方式时,必须根据相关线路的具体类型来确定10kV配电网络的馈线自动化类型,以避免相应线路在传输过程中出现问题。

简谈配网自愈控制技术及其应用

简谈配网自愈控制技术及其应用

简谈配网自愈控制技术及其应用摘要:配电网是电力系统的关键组成部分,承担着电力系统中将电能传输至电力用户的责任,同时将电力系统主网和电力用户联系在一起。

当前配电网的运行方式复杂化日益加剧以及自动化率不断提升,进一步发展与应用配网自愈控制技术以保证高要求的供电可靠性迫在眉睫。

本文以广东某地区配电网为研究对象,论述配网自愈控制技术研究及实例分析。

关键词:配电网;运行方式;自愈;供电可靠性1 引言配网自愈是作为智能电网最主要的特征,其利用自动化终端和配电主站监视配电线路的运行状况,及时发现线路故障并诊断故障区域,同时实现故障区域的自我隔离和非故障区域的自我恢复。

配网自愈建设应综合考虑配电线路、通信网路和开关设备等情况,充分考虑实用性、可靠性、经济性、先进性,合理选择相应的自愈类型。

配网线路上在发生故障时利用合理的自愈类型可以快速、准确地实现故障定位、故障隔离及恢复非故障区域供电,继而减少停电区段及停电时间。

随着配网环网率、自动化率的提高,又有配网自愈动作最大化的要求,在提升配网自愈控制技术的同时也要注重于配网自愈功能管理的规范性,这样才能不断提高供电可靠性、改善供电质量、提升电网运营效率。

2 配网自愈控制技术概述配网自愈控制技术类型可分为就地自愈与主站自愈:就地自愈:即通过自动化终端的保护配合、时序配合或相互通信,实现就地隔离故障以及恢复非故障区域供电。

根据现场自动化设备投入的就地逻辑种类可分为级差保护式、电压-时间/电流式、智能分布式。

该自愈类型的优点体现在能够快速地实现故障定位和隔离;但其缺点是在恢复非故障区域供电时,由于其不能掌握对侧线路的负荷情况,在转供电时可能会发生过载甚至导致二次故障发生,扩大停电范围。

主站自愈:对于主站自愈,根据主站与就地的协同程度,又可分为主站集中型和主站就地协同型。

其中,主站自愈判断故障区域上游边界原则为:距离故障最近的一个有保护信号(一般是过流、零序告警等)的开关;判断故障区域下游边界原则为:距离故障最近的一个没有保护信号的开关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配电主站协同式馈线自愈技术实践
摘要:智能配电网的自愈功能至关重要,能有效配电稳定性和可靠性,从而保障为电力用户正常供电。

下面,文章就结合具体案例分析配电主站协同式馈线自愈技术。

关键词:配电主站;协同式;馈线自愈
1配电馈线自愈概述
配电网均有大量的中低压馈线路, 由于故障引发部分区域停电时有发生, 应用故障定位、隔离故障和自动恢复供电系统, 能使受到故障影响而停电的非故障区域自动恢复供电。

这一系统称为故障识别和恢复供电系统或故障处理系统, 是馈线自动化的主要内容。

配电网的自愈能力指配电系统能够及时检测出系统故障、对系统不安全状态进行预警, 并进行相应的操作, 使其不影响对用户的正常供电或将其影响降至最小。

在无人工干预的情况下实现:
(1) 系统故障后, 自动隔离故障并自动恢复供电;
(2) 系统出现不安全状态后, 通过自动调节使系统恢复到正常状态。

2配电主站协同式馈线自愈技术特点
2.1主站自愈技术模式
对于基于主站的自愈技术,根据主站与就地的协同程度,主要分为主站集中型和主站就地协同型,主站就地协同型包含主站与级差保护协同型、主站与电压-时间/电流协同型、主站与智能分布式协同型共3类。

2.2技术原理
(1)主站集中型
主站集中型配网自愈模式具备完整的配电自动化主站、终端及通信通道。

通过配电终端与配电主站的双向通信,根据实时采集的配电网和配电设备运行信息及故障信号,由配电主站自动计算或辅以人工方式远程控制开关设备投切,实现配电网运行方式优化、故障快速隔离与供电恢复。

(2)主站与级差保护协同型
级差保护式主站协同模式由配电终端就地跳闸快速完成故障上游隔离,由主站完成故障下游的故障定位、隔离及非故障区段恢复。

(3)主站与电压-时间/电流协同型
电压-时间/电流式主站协同模式由配电终端就地完成故障定位及隔离,由主站完成非故障区段转供复电。

(4)主站与智能分布式协同型
智能分布式主站协同模式由配电终端就地完成故障定位、隔离及恢复供电,主站验证就地动作正确性,并作为后备保护远程遥控优化故障处理情况。

2.3适用范围
基于主站自愈的四种技术模式的使用范围如表1所示。

表1 配网自愈模式对比表
3配电主站协同式馈线自愈测试方案
3.1测试线路
振江甲线、振江乙线、兴利甲线组成的线路逻辑图如图1所示,官塘乙线和官塘丁线组成的线路逻辑图如图2所示。

图1 振江甲线-振江乙线-兴利甲线逻辑图
图2 官塘乙线-官塘丁线逻辑图
3.2主站系统自愈功能模拟测试
(1)纯就地自愈功能模拟测试
主站系统注入模拟故障信息和配网自动化终端模拟就地自愈信息,主站系统
不执行任何故障操作,只展示故障及自愈信息。

观察主站系统收到故障信息指示、故障定位是否正确。

(2)协同式自愈功能模拟测试
主站系统注入模拟故障信息和模拟故障隔离信息,主站系统执行恢复供电操作,即故障隔离采用就地式,负荷转供采用主站集中式,观察主站系统故障信息
指示、故障定位、故障隔离、恢复供电是否正确。

故障隔离后,分两种情况:第一种情况是全自动模式,主站系统直接执行恢
复供电操作;第二种情况是半自动模式,主站系统提供恢复供电方案,由配调员
确认后执行恢复供电操作。

(3)主站集中式自愈功能模拟测试
主站系统注入模拟故障信息,主站系统执行包括故障隔离、故障定位以及恢
复供电的所有遥控操作。

观察主站系统故障信息指示、故障定位、故障隔离、恢
复供电(E4)是否正确。

故障发生后,分两种情况:第一种情况是全自动模式,主站系统直接执行所
有遥控操作;第二种情况是半自动模式,主站系统提供故障定位信息和恢复供电
方案,由配调员确认后执行各项操作。

主站馈线自动化测试分别针对架空线路模型和电缆线路模型进行测试,架空
线路模型如图1所示,图中S1-S3为变电站出线断路器,A1-A6为干线负荷开关,B1-B4为分支负荷开关,Fi1-Fi3为故障指示器。

A3和A5为联络开关。

图1 架空线路模型
架空线路测试模型中模拟的配电终端FTU、变电站出口断路器和故障指示器(若有必要)设置的IP通道号和点号,IP地址需要局方规划(变电站出口断路器、配电终端、故障指示器在不同网段),点号按照表2进行配置。

表2 架空线路测试模型IP通道和点号配置
电缆线路模型如图2所示,S1-S3为变电站出线断路器,A1-A13为环网柜进线负荷开关,B1-B18为环网柜出线负荷开关。

A5和A9为联络开关。

图2 电缆线路模型
电缆线路测试模型中模拟的配电终端FTU、变电站出口断路器和故障指示器设置的IP通道号和点号,IP地址需要局方规划(变电站出口断路器与配电终端在不同网段)。

测试包括但不限于如下项目:
(1)环网柜母线故障
(2)电缆线路负荷侧故障
(3)电缆线路柜间故障
(4)架空线路首端故障
(5)架空线路馈线故障
(6)架空线路负荷侧故障
(7)架空线路末端故障
(8)多重故障
(9)线路挂牌
3.3配电终端就地式逻辑测试
配电终端投运电压时间型就地化逻辑,测试配电终端故障发生到隔离故障状态序列如下:
单侧有压,设置Uab=100v,测试仪开出分位,开入量触发,测试仪收到终端开入合闸信号,进入第2个状态。

两侧来电,设置Uab=Ubc=100v,测试仪开出合位,时间触发,测试仪等待Y 时间,进入第3个状态(进入第三个状态的同时,主站注入式测试系统HW-DATS1000触发故障)。

两侧有压触发故障,设置Uab=Ubc=100v,触发故障电流,设置Ia=5A(根据
终端定值),测试仪开出合位,时间触发,测试仪设置200ms(根据终端保护时长),进入第4个状态。

两侧失压(变电站分闸)等待分闸,设置Uab=Ubc=0v,测试仪开出合位,开
入量触发,测试仪收到终端的开入分闸信号,进入第5个状态。

两侧无压等待合闸,设置Uab=Ubc=0v,测试仪开出分位,时间触发,测试仪
设置X时间,进入第6个状态。

单侧来电,设置Uab=100v,测试仪开出分位,开入量触发,测试仪收到终端
的开入合闸信号,进入第7个状态。

两侧有压再次触发故障,设置Uab=Ubc=100v,触发故障电流,设置Ia=5A
(根据终端定值),测试仪开出合位,时间触发,时长200ms,进入第8个状态。

两侧失压(变电站分闸)等待分闸,设置Uab=Ubc=0v,测试仪开出合位,开
入量触发,测试仪收到终端的开入分闸信号,进入第9个状态。

测试仪开出分位(同时终端上送合闸闭锁信号),时间触发,输出时长Y时间,进入第10个状态。

(解除闭锁信号,用于恢复终端)设置Uab=100v,开出
合位,时间触发,输出时长>X时间,状态序列结束。

4结语
经过检查测试后,可将测试过的线路投运馈线自愈功能。

试点阶段宜投运半
自动方式,由系统推出处理界面、调度员根据系统提示故障隔离、非故障区域恢
复供电策略逐步点击执行;经一定开环运行时间之后,对于运行情况较好的线路
可由半自动转为全自动方式,由系统全自动处理故障,遇到开关拒动等特殊情况
人工介入处理。

参考文献
[1]史裕,许明,吕晓平,张聪,卢宪斐.城市配电网分布式自愈控制方法与系统[J].山东电力技术,2017,44(01):1-4.
[2]李国武,武宇平,张浩.智能配电网馈线自动化功能优化研究[J].电工技术,2012(09):24-26+28.。

相关文档
最新文档