非接触式温度传感器工作原理

合集下载

温度传感器工作原理

温度传感器工作原理

温度传感器工作原理温度传感器temperature transducer,利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。

温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。

IC温度传感器又包括模拟输出和数字输出两种类型。

1.热电偶的工作原理当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。

这种由于温度不同而产生电动势的现象称为塞贝克效应。

与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。

两种不同导体或半导体的组合称为热电偶。

热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。

接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。

温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。

无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。

当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。

6大常用传感器工作原理(角速度传感器、距离传感器、气压传感器等)

6大常用传感器工作原理(角速度传感器、距离传感器、气压传感器等)

6大常用传感器工作原理(角速度传感器、距离传感器、气压传感器等) 前言现实世界就是一个模拟信号的世界,人通过视觉、触觉等方式来感知世界。

在物联网时代,传感器肩负起了“五官”的使命感知万物,万物互联赋予人类生活无边的想象。

可以说,当前传感器发展处于多领域全面开花状态。

其细分产品之多,之繁杂,就连全部罗列出来都不是件容易的事。

今天就来说说,在消费领域常用的6款传感器。

1.温度传感器
温度传感器使用范围广,数量多,居各种传感器之首。

温度传感器的发展大致经历了以下三个阶段,分别是传统的分立式、模拟集成及新型的智能温度传感器。

新型温度传感器正向智能化及网络化的方向发展。

温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。

传统温度计原理
接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这时的示值即为被测对象的温度。

这种测温方法精度比较高,并可测量物体内部的温度分布。

但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。

非接触测温的测温元件与被测对象互不接触。

常用的是辐射热交换原理。

此种测温方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测温度场的温度分布,但受环境的影响比较大。

旧苹果加装温度传感器
凡是需要对温度进行持续监控、达到一定要求的地方都需要温度传感器。

在消费领域,温。

温度传感器的工作原理

温度传感器的工作原理

温度传感器的工作原理
温度传感器的工作原理是基于温度对物质的影响。

传感器内部包含一个感应元件,当环境温度发生变化时,该元件会对温度变化做出响应。

传感器通常采用一种叫做热敏电阻的元件作为感应元件。

热敏电阻是一种电阻值随温度变化而变化的元件。

在经过一段时间的校准后,我们可以获得温度与热敏电阻之间的关系。

通过测量传感器的电阻值,我们就可以推算出当前的温度。

传感器中的热敏电阻通常由材料制成,这些材料的电阻值会随温度的升高或降低而发生变化。

热敏电阻的变化原理是基于材料的温度对电子迁移率、晶格振动频率以及能带结构等的影响。

当温度升高时,材料的电子迁移率增加,导致电阻值下降。

相反,当温度降低时,电阻值增加。

这种变化可以通过测量传感器两端的电压或电流,或者直接测量电阻值来检测温度的变化。

为了提高温度传感器的精度,一些器件还可能使用补偿电路来减小其他因素对温度测量的影响,比如环境温度对电路的影响。

补偿电路通常通过传感器内部的电子设备实现。

总之,温度传感器通过测量热敏电阻的变化来检测温度的变化。

通过将电阻值与温度之间的关系进行校准,可以准确地测量温度,并将其转换为电信号供其他设备或系统使用。

非接触式温度传感器原理

非接触式温度传感器原理

非接触式温度传感器原理非接触式温度传感器是一种不接触被测物体而能测量其表面温度的传感器。

其基本原理是利用被测物体产生的红外线辐射量与其温度之间的关系实现温度的测量。

由于温度的单位为热力学温标上的K或C,这里以k作为温度单位。

当物体的温度高于绝对零度(0 K)时,它会发出红外辐射。

这种辐射是一种电磁波,其频率范围为1.5×10^11Hz至3×10^14 Hz。

在这个范围内的电磁波称为红外线,其波长为0.78µm到1000µm。

非接触式温度传感器通常利用被测物体表面发出的红外线辐射量测量其表面温度。

当这些红外线进入传感器时,它们通过一个光学组件(例如透镜或反射镜)被聚焦到一个热电偶上。

热电偶测量到的温度差异随着红外线的变化而变化,这使得传感器能够测量被测物体的表面温度。

非接触式温度传感器的一个重要优点是它与被测物体之间没有物理接触,从而避免了可能出现的干扰或损伤。

此外,其应用涉及出现温度不稳定或变幻的环境时,表现更为优秀。

然而,这些传感器的精度受到如下因素的影响:1. 被测物体的气体或污染物的存在会干扰传感器的测量。

2. 被测物体的表面可能受到反射光的干扰,从而干扰传感器的测量结果。

这是由光学学原理所决定的。

例如,深色物体可能吸收较多的红外光,而浅色物体则可能反射较多的红外光。

3. 温度的变化率可能会影响传感器的测量结果。

如果被测物体的温度变化较快,非接触式温度传感器可能无法快速响应,从而影响测量精度。

4. 传感器的分辨率可能影响其精度,高分辨率的传感器可以提供更高精度的温度测量结果。

在使用非接触式温度传感器进行测量时,需要考虑到如上的因素,以便得到最准确的温度测量结果。

红外温度传感器

红外温度传感器
02
与传统的接触式温度测量方法相 比,红外温度传感器具有快速、 准确、非接触等优点,广泛应用 于工业、医疗、科研等领域。
红外温度传感器的工作原理
红外温度传感器的工作原理基于热辐射定律,即一切温度高 于绝对零度的物体都会发出热辐射,且其发出的热辐射强度 与温度呈一定比例。
红外温度传感器通过接收物体发射的红外辐射,经过光学系 统聚焦到探测器上,探测器将红外辐射转换为电信号,经过 信号处理后得到物体的表面温度。
智能化
多光谱化
未来红外温度传感器将更加 智能化,具备自校准、自诊 断等功能,能够实现更高效、 便捷的使用和维护。
为了满足更多应用场景的需 求,红外温度传感器有望实 现多光谱测量,同时获取温 度和其他相关信息。
谢谢
THANKS
虽然红外温度传感器的性能优良,但它们的成本通常较高,这可能会 限制它们在一些应用中的使用。
对电源和热源的敏感性
红外温度传感器对电源和热源的变化较为敏感,需要稳定的电源和适 宜的工作环境才能保证测量的准确性。
04 红外温度传感器的技术发展与未来展望
CHAPTER
பைடு நூலகம் 技术发展现状
红外温度传感器技术已经取得了显著的进步,其测量精度和可靠性得到了显著提高。
02 红外温度传感器的应用
CHAPTER
工业领域
工业生产过程中,红外温度传感器常 被用于检测各种设备的温度,如熔炼 炉、热力管道、热工仪表等,以确保 设备正常运行和生产安全。
在汽车工业中,红外温度传感器用于 检测发动机、刹车盘、三元催化器等 关键部件的温度,以提高车辆性能和 安全性。
在电力系统中,红外温度传感器用于 检测变压器、断路器、电缆等设备的 温度,预防因过热而引发的故障。

温度传感器

温度传感器

热电式温度传感器的优点是:实现了非接触式测值,不为红外线的 波长所左右,可获得稳定的检测灵敏度。可以实现对高、低温物体以及移 动中的气体、液体、固体状态的检测对象的远程温度测量。另外,这种温 度传感器使用简单、价格便宜。
机电一体化
图3-19 热敏电阻器的各种形状 表3-3示出了常用热敏电阻器的种类和特性,可以看出,随着温 度的升高,有在特定温度下阻抗急剧增加的PTC型,有在特定温度下阻 抗急剧减小的CTR型,以及阻抗随温度按指数规律减的NTC型等。PTC 型不能在宽广的温度范围内作为温度传感器使用,但是与NTC型相比 较,其温度系数高出接近一个数量级,因此常作为定温温度传感器使用。 作为定温温度传感器使用的还有CTR型,只是其阻抗在特定温度下不是 急剧增加,而是急剧减小。由于PTC型热敏电阻器具有特异的阻抗一温 度特性,因此广泛应用于电饭锅、干燥机、干燥器等很多种工业制品中, 作为温度传感器使用。
作为定温温度传感器使用的还有CTR型,只是其阻抗在特定温度下 不是急剧增加,而是急剧减小。由于PTC型热敏电阻器具有特异的阻抗 一温度特性,因此广泛应用于电饭锅、干燥机、干燥器等很多种工业制 品中,作为温度传感器使用。
表3-3 热敏阻器的种类与特性
种类 特性
NT 随着温度升高阻抗值 C 减小的负温度系数
热电偶具有以下优点:比较便宜、容易买到,测量方法简单、测 温精度高,测量时间上的滞后小,可以实现很宽范围内的温度测量( 与热敏电阻等相比)。可以选用与灵敏度和寿命等状况相适应的热电 偶类型。利用热电偶可以进行小型被测物和狭窄场所的测温,可以进 行较长距离(即被测物体与测温仪表之间的距离较远)的温度测量,对 于测量电路到测温仪表中间的电路,即使局部的温度发生变化,也基 本上不会对测定值造成影响。图3-22示出了典型热电偶的热电动势温度特性。

温度传感器简介

温度传感器简介
1、目前工业常用的测温范围为-200℃3000℃,随着工业的发展,对超高温、超低温的 测量要求越来越迫切,如在宇宙火箭技术中常常 需要测量几千度的高温。 2、提高测量精度:随着电子技术的发展,信号 处理仪表的精度有了很大的提高,特别是微型计 算机的使用使得对信号的处理精度更加提高。 3、扩大测温对象:随着工业和人们日常生活要 求的提高,现在已由点测量发展到线、面测量。
NTC温度传感器
规格型号表示方法: ××× - CWF ××× × ×××× × × ×××× × × ① ② ③ ④ ⑤ ⑥⑦ ⑧ ⑨ ⑩ ①公司标示记号; ②NTC热敏电阻负温度传感器标示符号; ③标称电阻值为25度时的数值,单位为欧姆,前两位数字表示电阻值的有效数字,第三位数字 表示其后零的个数; ④电阻值公差符号(%); 记号 电阻值公差 E ±0.5 F ±1.0 G ±2.0 H ±3.0 J ±5.0 K ±10 X 特殊公差
热电阻传感器:金属随着温度变化,其电阻 值也发生变化。对于不同金属来说,温度每变化 一度,电阻值变化是不同的,电阻值可以直接作 为输出信号,从而测量出温度值。 优点:具有准确度高、输出信号大、灵敏度 高、测温范围广、稳定性好、无需参考点。 应用:在流程工业中有大量应用。
热电偶传感器:热电偶由两个不同材料的金属线组 成,两种导体接触在一块,结点处会有一个稳定的电动 势;同一导体,两端温度不同,两端间有一定大小的电 动势,就可以准确知道加热点的温度。其温度测量回路 由热电偶、补偿导线及测量仪表构成。 优点:具有工作可靠、响应较快、易于使用、成本 低、测温范围广、适于远距离测控 。 应用:在电力、化工、石油等工业场合应用较普遍, 广泛用来测量-200℃~1300℃范围内的温度。
常用热电阻 : 使用范围:-260~+850℃;精度:0.001℃。改进后可连续工作 2000h,失效率小于1%,使用期为10年。 精度:A 级 0℃ < ±0.15℃: -100~ 100℃< ±0.35℃(理论电阻值) B 级 0℃ < ±0.3℃: -100~ 100℃< ±0.8℃ (理论电阻值) 电阻随温度变化率:0.003851Ω/℃ 绝缘电阻:>200MΩ 供电电流:<2mA 外壳材料:不锈钢 测量介质:与不锈钢兼容的气体和液体 温度极限:120% 额定温度范围 (持续30秒不损坏)

常用温度传感器比较

常用温度传感器比较

常用温度传感器比较一.接触式温度传感器1. 热电偶:(1)测温原理:两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。

热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。

(2)测温范围:常用的热电偶从-50~+1600C均可连续测量,某些特殊热电偶最低可测到-269 C(如金铁镍铬),最高可达+2800 C(如钨-铼)。

(3)常用热电偶型号:(4)实例:T型热电偶,测温范围-40~350C,详细信息见T型热电偶实例。

2. 热电阻:(1)测温原理:热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。

因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。

目前主要有金属热电阻和半导体热敏电阻两类。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即:R=R o[1+ a (t-t 0)]式中,R为温度t时的阻值;R o为温度t0 (通常t o=0C )时对应电阻值;a为温度系数。

半导体热敏电阻的阻值和温度关系为:R =Ae B/t式中R为温度为t时的阻值;A B取决于半导体材料的结构的常数。

(2)测温范围:金属热电阻一般适用于-200~500C范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。

半导体热敏电阻测温范围只有-50~300C左右,且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。

(3)常用热电阻:目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150C 易被氧化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非接触式温度传感器工作原理
非接触式温度传感器是一种能够测量物体表面温度的装置,它的工作原理是通过接收物体所发射的红外辐射来确定其表面温度。

这种传感器在许多应用中具有重要的作用,比如工业生产、医疗诊断、室内温度监控等。

非接触式温度传感器利用物体表面的红外辐射来测量温度,其原理是基于斯特藩-玻尔兹曼定律。

这个定律指出,物体在绝对温度下会发射出红外辐射,其强度与物体的温度成正比。

因此,通过测量物体发射的红外辐射强度,就可以间接地推算出物体的表面温度。

具体而言,非接触式温度传感器内部包含一个红外辐射接收器和一个红外辐射测量器。

红外辐射接收器是一种敏感于红外辐射的器件,它能够将接收到的红外辐射转换为电信号。

而红外辐射测量器则负责将接收到的电信号转换为温度值。

非接触式温度传感器的工作过程如下:当传感器对准物体时,物体表面会发射出红外辐射,这些辐射会被传感器的红外辐射接收器接收到。

接收器会将接收到的红外辐射转换为电信号,并传送给红外辐射测量器。

红外辐射测量器会根据接收到的电信号强度,计算出物体的表面温度。

非接触式温度传感器具有许多优点。

首先,它能够在测量过程中避免与物体直接接触,因此不会对物体造成损坏或污染。

其次,它具
有快速测量的能力,能够在短时间内获取物体的温度值。

此外,非接触式温度传感器还适用于对温度变化较大或不规则物体的测量,具有较高的测量准确性。

非接触式温度传感器在许多领域得到了广泛的应用。

在工业生产中,它可以用于监测机器设备的温度,以确保其正常运行。

在医疗诊断中,非接触式温度传感器可以用于监测病人的体温,无需与病人接触,减少了传染病的风险。

在室内温度监控中,非接触式温度传感器可以用于测量房间中的温度分布,以便更好地调节空调系统。

非接触式温度传感器通过接收物体发射的红外辐射来测量其表面温度。

它的工作原理基于斯特藩-玻尔兹曼定律,利用红外辐射接收器和红外辐射测量器实现温度的测量。

非接触式温度传感器具有快速、准确、无损伤等优点,在工业、医疗和室内温度监控等领域有着广泛的应用前景。

相关文档
最新文档