ANSYS弹簧谐响应分析
谐响应分析理论求解与ANSYS求解

虽然在ANSYS中进行谐响应分析是一个很简单的过程,只需要几行代码就可以实现。
很多朋友根据书上或者网上已有的分析代码稍作修改就可以进行分析了。
但是其中很多概念是否理解了呢,得到的结果有什么实际意义呢。
下面通过介绍一个单自由度的弹簧振子的谐响应分析理论求解,然后在ANSYS中求解。
通过两种结果的对比,以解释一些概念。
这个例子是Help手册中的VM86,很多振动学的教材中都会有这样的例子。
1.问题描述如上图是一个典型的单自由度弹簧振子系统。
假设此系统承受谐激励载荷。
其中为激励载荷的幅值,为载荷的周期。
2.理论基础此系统的动力方程为:(1)这个方程的求解方法很多,下面介绍一种最常用的求解方式:方程两边同除以,得到(2)如果令,则上式可以写成:(3)这个方程的解分为两部分,一部分为齐次方程的解,就是阻尼系统的自由振动响应,自由振动响应随时间衰减,最后消失,所以自由振动响应也叫瞬态响应。
另一部分是特解,也就是强迫振动响应。
不会随时间衰减,所以称为稳态响应。
由于系统是线性系统,瞬态响应和稳态响应可分别求解,然后合成为系统的总响应。
下面介绍如何求解系统的稳态响应,即方程(3)的特解。
由于激振力为简谐力,可以证明系统的稳态响应也是简谐的,并且与激振力有同样的频率。
设系统的稳态响应有如下形式:(4)其中,和分别是系统响应的幅值和相位。
将式(4)代入方程式(3),可得(5)利用三角函数关系故有,(6)求解上式可得到(7)这样就得到了系统稳态响应的幅值和相位角对于方程(3)的齐次方程的解,也就是瞬态解这里只是给出求解结果,以后有机会再写详细的求解过程。
有阻尼系统的自由振动方程为:(8)工程中阻尼一般比较小,此方程的解可以表示为:于是振动微分方程的(1)的解为:画出此响应曲线如下图:从图中可以看到,正如前面所说的,由于阻尼的存在,瞬态响应部分随时间的增加很快就消失了。
所以通常进行谐强迫振动分析时,我们只需关注系统的稳态解,也就是求解幅值和相位角。
ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。
谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。
比如,在ANSYS谐响应分析中要给出这样的语句FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角)HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载NSUBST,100, !指定频率从0到2.5之间分100步进行计算这样,结构所受的这个点荷载的表达式实际上是F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。
个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。
如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。
但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。
因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。
另外,谐响应分析应该是频域分析方法的一个部分。
对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。
而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。
质量-弹簧系统的谐响应分析

实验六质量-弹簧系统的谐响应分析(感受共振)一、实验目的1、学会分析实际工程问题的方法2、掌握谐响应分析分析方法3、学会对问题的抽象处理二、实验器材能够安装ANSYS软件,CPU2.0GHz以上,内存1G以上,硬盘5G空间的计算机三、实验说明(一)谐响应分析任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。
谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功克服共振、疲劳及其他受迫振动引起的有害结果。
谐响应分析的目的是计算出结构在几种频率下的响应,并得到一些响应值(通常是位移)对频率的曲线。
从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。
(二)实验问题的描述确定如图4所示的系统中的质量块m1上施加简谐力(F1)时两个质量块(m1和m2)的振幅响应和相位角响应。
该问题的材料属性如下:m1=m2==0.5 lb-sec2/in; k1=k2=kc=200lb/in。
载荷大小如下:F1=200 lb。
弹簧的长度是任意的,只是用来定义弹簧的方向,两个质量块的自由度都是沿着弹簧方向。
如图6-1.图6-1四、实验内容和步骤(一)前处理1.定义工作名:Utility Menu > File > Change Title,在弹出Change Title的对话框,输入Harmonic Response of the Structure,然后单击OK按钮。
2.定义单元类型:Main Menu > Preprocessor > Element Type>Add/Edit/Delete,弹出“Element Types”对话框,单击Add按钮,弹出“Library of ElementTypes ”对话框,在左边的滚动条中选择Structural及其下的 Combination,在右边的滚动条中选择 Spring-damper14 ,单击Apply按钮。
ansys-谐响应分析

实部
F1max
•
可以使用APDL语言计算,但要确保角度单位 为度(缺省为弧度)。
M3-21
谐响应分析-步骤
施加谐波载荷并求解命令(接上页)
*AFUN,DEG FK,… F,… SFA,… SFL,… SFE,… SF,…
M3-22
谐响应分析-步骤
施加谐波载荷并求解(接上页)
M3-23
谐响应分析-步骤
• •
M3-10
谐响应分析-术语和概念
求解方法
求解简谐运动方程的三种方法: • 完整法
– 为缺省方法,是最容易的方法; – 使用完整的结构矩阵,且允许非对称矩阵(例如:声学矩阵)。
•
缩减法*
– 使用缩减矩阵,比完整法更快; – 需要选择主自由度,据主自由度得到近似的 [M]矩阵和[C]矩阵。
•
模态叠加法**
施加谐波载荷并求解 • 所有施加的载荷以规定的频率(或频率 范围)简谐地变化 • “载荷”包括: – 位移约束-零或非零的 – 作用力 – 压强 • 注意: 如果要施加重力和热载荷,它 们也被当作简谐变化的载荷来考虑!
典型命令:
DK,… ! 或 D或DSYM
DA,... DL,…
M3-19
谐响应分析-步骤
M3-27
谐响应分析-步骤
观看结果 - POST26
位移-频率关系曲线 • 首先定义 POST26 变量 – 节点和单元数据表 – 用大于等于二的数据识别 – 变量1包含各频率,并是预先定义了的
M3-28
谐响应分析-步骤
观看结果 - POST26(接上页)
• 定义变量(接上页) – 挑选可能发生最大变形的节点,然后选择自由度的方向; – 定义变量的列表被更新。
ansys谐响应分析

注意:最大振幅=3.7出现在48Hz,-85.7º时
• 下一步就是观看整个模型在该频率和相位角下的位移和应力(使用POST1)
3-32
谐响应分析-步骤
观看结果 - POST1
观看整个结构的结果 • 进入POST1,且列出结果汇总表,确定临界频率的载荷步和子步序号
3-33
谐响应分析-步骤
Haropt, Msup Hrout, on •共振频率是激起结构激烈响应的载荷频率,也就是结构的固有频率。 •施加谐载荷时并不需要输入载荷的频率,只需在分析过程中指定感兴趣的频 率范围。结构上可能作用的激励的频率范围就是用户感兴趣的频率范围。
3-9
谐响应分析-术语和概念
复位移
• 在下列情况下计算出的位移将是复数
• 可以使用APDL语言计算,但要确保角度单位为度(缺省 为弧度)
I虚部
F2max
实部
F1max
3-22
谐响应分析-步骤
…施加简谐载荷并求解
3-23
谐响应分析-步骤
…施加简谐载荷并求解
简谐载荷的频率:
• 通过频率范围和在频率范围内的子步数量来规定振动频率(赫兹) • 例如,在0-50频率范围内有10个子步时将给出在5,10,15...45和50Hz等频率
包含的主题: • 运动方程 • 谐载荷 • 频率 • 复位移 • 求解方法
3-6
谐响应分析-术语和概念
运动方程
• 通用运动方程: :
M u C u K u F
• [F]矩阵和 {u}矩阵是简谐的,频率为 w :
F F me ai xeiw t(F 1iF 2)eiw t u ume ai xeiw t(u 1iu2)eiw t
2016年度精品--ANSYS谐响应分析步骤

ANSYS模态分析步骤第1步:载入模型Plot>V olumes,输入/units,SI(即统一单位M/Kg/S)。
若为组件,则进行布尔运算:Main Menu>Preprocessor>Modeling>Operate>Booleans>Glue(或Add)>V olumes第2步:指定分析标题/工作名/工作路径,并设置分析范畴1 设置标题等Utility Menu>File>Change Title/ Change Jobname/ Change Directory2 设置分析范畴Main Menu>Preference,单击Structure,OK第3步:定义单元类型Main Menu>Preprocessor>Element Type>Add/Edit/Delete,→Element Types对话框,单击Add→Library of Element Types对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。
第4步:指定材料性能Main Menu>Preprocessor>Material Props>Material Models→Define Material Model Behavior,右侧Structural>Linear>Elastic>Isotropic,指定弹性模量EX、泊松系数PRXY;Structural>Density指定密度。
第5步:划分网格Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小,保留其他选项,单击Mesh出现Mesh V olumes对话框,其他保持不变单击Pick All,完成网格划分。
ansys谐响应分析演示文稿

谐响应分析
…定义和目的
谐响应分析用于设计:
• 旋转设备(如压缩机、发动机、泵、涡轮机械等)的支座、固定装置和 部件
• 受涡流(流体的漩涡运动)影响的结构,例如涡轮叶片、飞机机翼、桥 和塔等
谐响应分析
…定义和目的
• 谐响应分析只能计算结构的稳态响应,不考虑发生在激励开始时的瞬态振动。
• 谐响应分析是一种线性分析,任何非线性环节即使定义也会被忽略。
• 输入:
– 已知大小和频率的谐载荷(力、压力和强迫位移) – 同一频率的多种载荷,力和位移可以是同相或不同相的。表面载荷和体载荷的相位角度
可以指定为零。
• 输出:
ansys谐响应分析演示文稿
ansys谐响应分析
谐响应分析
A、谐响应分析的定义和目的 B、关于谐响应分析的基本术语和概念 C、谐响应分析在ANSYS中的应用 D、谐响应分析的实例练习
谐响应分析
定义和目的
什么是谐响应分析?
• 确定一个线性结构在持续的周期性(随时间成正弦或余弦变化)荷载作用下的持 续的周期性响应(稳态响应)。
虚部
谐响应分析-术语和概念
谐载荷
• 随时间成正弦或余弦变化的载荷
• 同时作用的谐载荷必须是相同频率
的载荷 实部
• 相位角ψ允许不同相位的多个载荷 同时作用,ψ缺省值为零
• 施加的全部载荷都假设是简谐的, 包括温度和重力。
谐响应分析-术语和概念
频率
频率
•频率反映载荷随时间变化的快慢 •谐响应分析输出的是响应量随频率的变化关系图 •在谐分析中,所有节点振动的频率都相同,但振动的相位可能不同 •在谐分析中,必须指定频率范围及其分割数(nsubst)。 •Ansys谐分析中的自动频率分割法能自动大致估计并选择共振频率,有效避 免无关频率分析过细,重要频带(共振频率附近的频率)分析较少的现象。
ansys谐响应分析

ANSYS谐响应分析谐响应分析是用于确定线性结构在受正弦载荷作用时的稳态响应,目的是计算出结构在几种频率下的响应,并得到响应随频率变化的曲线。
其输入为已知大小和频率的谐波载荷(力、压力和强迫位移);同一频率的多种载荷,可以是相同或不相同的。
其输出为每一个自由度上的谐位移,通常和施加的载荷不同;或其它多种导出量,例如应力和应变等。
谐响应分析能预测结构的持续动力特性,从而验证设计能否成功地克服共振、疲劳,以及其他受迫振动引起的不良影响。
同时,通过谐响应分析可以用来探测共振响应;可以确定一个给定的结构能否能经受住不同频率的各种正弦载荷(例如:以不同速度运行的发动机)。
谐响应分析有三种求解方法:完整法、缩减法及模态叠加法。
三种方法都有其相应的适用条件。
这里主要介绍模态叠加法。
模态叠加法是通过对模态分析得到的振型乘上因子并求和计算出结构的响应,是所有求解方法中最快的。
使用何种模态提取方法主要取决于模型大小和具体的应用场合。
模态叠加法可以使解按结构的固有频率聚集,可产生更平滑且更精确的响应曲线图,同时可以包含预应力效果。
(对于机械结构来看,预应力含义为预先使其产生应力,其好处是可以提高构造本身刚性,减少振动和弹性变形,改善受拉模块的弹性强度,提高结构的抗性。
)有预应力的谐响应分析可用缩减法和模态叠加法进行。
对于有预应力的谐响应分析,为了在模态叠加法谐响应分析中包含预应力效果,必须首先进行有预应力的模态分析。
在完成了有预应力模态分析后,就可以像一般的模态叠加法那样进行分析了。
而对于对于有预应力的模态分析,由于结构预应力会改变结构的刚性,因此预应力结构模态分析是结构设计中必须考虑的因素。
预应力模态分析步奏与常规模态分析大致相同,其差别在于:(1)先对造成预应力的外力进行静力分析;(2)在静力分析和模态求解中打开PSTRES,on命令,表示考虑了预应力效应。
模态叠加法进行谐响应分析的步骤如下:一、建模1)只能用线性的单元和材料,忽略各种非线性的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质量-弹簧系统的谐响应分析一、实验目的1、学会分析实际工程问题的方法2、掌握谐响应分析分析方法3、学会对问题的抽象处理二、实验器材能够安装ANSYS软件,CPU2.0GHz以上,内存1G以上,硬盘5G空间的计算机三、实验说明任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。
谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功克服共振、疲劳及其他受迫振动引起的有害结果。
谐响应分析的目的是计算出结构在几种频率下的响应,并得到一些响应值(通常是位移)对频率的曲线。
从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。
四、实验内容和步骤(一)前处理1.定义工作名:Utility Menu > File > Change Title,在弹出Change Title的对话框,输入07060241x18,然后单击OK按钮。
2.定义单元类型:Main Menu > Preprocessor > Element Type>Add/Edit/Delete,弹出“Element Types”对话框,单击Add按钮,弹出“Library of ElementTypes ”对话框,在左边的滚动条中选择Structural及其下的 Combination,在右边的滚动条中选择 Spring-damper14 ,单击Apply按钮。
3.在左面滚动栏中选择“Structural”及其下的“Mass”,在右面的滚动栏中选中“ 3D mass 21”,单击Ok按钮。
4.单击“Element Types”对话框的Close按钮,关闭对话框。
5.定义实常数:Main Menu > Preprocessor > Real Constants >Add/Edit/Delete,弹出Real Constant对话框,单击 Add 按钮,弹出Element Type for Real Constants对话框.6.在“Element Types for Real Constants”对话框中单击选取“Type 1 COMBIN14”,单击OK按钮。
7.又在Types”对话框中单“Element击Add按钮,弹出“Element Types for RealConstants”对话框,在该对话框中选取“Type 2 MASS 21”, 单击OK按钮。
8.单击“Real Constants”对话框中的Close按钮,关闭该对话框9.创建节点:Main Menu > Preprocessor > Modeling > Create > Nodes>In ActiveCS,弹出对话框。
在输入栏中分别输入0、0、0,Apply按钮。
10.继续在“Create Nodes in Actives Coordinate System”对话框中,在“NODE Nodenumber”后面的输入栏中输入4,在“X,Y,Z Location in active CS”后面的输入栏中分别1,0,0,单击OK按钮。
11.打开节点编号显示控制12.插入新节点:Main Menu > Preprocessor > Modeling > Create >Nodes >Fillbetween Nds,弹出一个拾取框,单击OK按钮,弹出对话框,单击OK 按钮。
13.选择菜单路径:Utility Menu > PlotCtrls > Window Controls > Window Options,。
14.创建梁单元:Main Menu > Preprocessor > Modeling > Create > Elements > AutoNumbered > Thru Nodes,弹出Elements from Nodes的拾取框。
15.用鼠标在屏幕上拾取编号为1和2的节点,单击Apply按钮,屏幕上在节点1和节点2 之间出现一条直线16.用鼠标在屏幕上拾取编号为2和3的节点,单击Apply按钮,屏幕上在节点2和节点3 之间出现一条直线17.用鼠标在屏幕上拾取编号为3和4的节点,屏幕上在节点3和节点4 之间出现一条直线,单击OK按钮关闭拾取菜单。
18.设置单元属性:Main Menu > Preprocessor > Modeling > Create > Elements >Elem Attributes,弹出Element Attributes对话框。
19.创建质量单元:Main Menu > Preprocessor > Modeling > Create > Elements>Auto Numbered > Thru Nodes,弹出Elements from Nodes的拾取框。
20.用鼠标在屏幕上拾取节点2,单击Apply按钮21.用鼠标在屏幕上拾取节点3,单击OK按钮。
(二)加载和求解22.定义求解类型:Main Menu > Solution > Analysis Type > New Analysis.出现一个对话框,选中Harmonic,单击OK按钮。
23.设置求解选项:Main Menu > Solution > Analysis Type > Analysis Options,出现Harmonic Analysis对话框。
24.接着弹出Full Harmonic Analysis对话框,单击OK按钮接受默认选项。
25.设置输出选项:Main Menu > Solution > Load Step Opts > Output Ctrls > SoluPrintout,弹出Solution Printout Controls对话框,在FREQ Print frequency后面单击选中Last substep,单击OK按钮。
26.设置时间子步选项:Main Menu > Solution > Load Step Opts > Time/Frequenc >Freq and Substeps,弹出Harmonic Frequency and Substep Options对话框,填写harmoric freq range:0 7.5 number of substeps:3027.施加边界条件:Main Menu > Solution > Define Loads > Apply > Structural >Displacement > On Nodes,出现Apply U,ROT on Nodes拾取菜单。
28.单击Pick All,弹出Apply U,ROT on Nodes对话框,在Lab2 DOFs to beconstrained后面的列表中单击选中UY,单击OK按钮。
29.施加边界条件:Main Menu > Solution > Define Loads > Apply > Structural >Displacement > On Nodes ,出现Apply U,ROT on Nodes拾取菜单。
30.用鼠标在屏幕里拾取编号为1和4的节点,单击OK按钮,弹出Apply U,ROT onNodes对话框,在Lab2 DOFs to be constrained后面的列表中单击一次UX选中它,同时单击一次UY消除下一步对它的选择,单击OK按钮。
31.施加载荷:Main Menu > Solution > Define Loads > Apply > Structural >Force/Moment > On Nodes,出现Apply F/M on Nodes 拾取菜单。
32.用鼠标在屏幕里拾取编号为2的节点,单击OK按钮,弹出Apply F/M on Nodes对话框,在Lab Direction of force/mom后面的下拉列表中选择FX,在VALUE Realpart of force/mo m后面输入200,单击OK按钮。
33.谐响应分析求解:Main Menu > Solution > Solve > Current LS.34.当求解结束时,会出现Solution is done的黄色提示框,单击Close关闭它。
(三)观测结果(后处理)35.定义时域变量:Main Menu > TimeHist Postpro > Define Variables.DefineTime-History Variables对话框出现。
36.单击Add按钮,弹出Add Time-History Variable对话框,。
37.用鼠标在屏幕内拾取编号为2的节点,单击OK 按钮,弹出Define Nodal Data对话框。
38.在Defined Time-History Variables对话框中单击Add按钮,再次弹出AddTime-History Variable对话框。
39.接收缺省选项Nodal DOF Result,单击OK 按钮,弹出Define Nodal Data对话框。
40.此时的Defined Time-History Variables,单击Close关闭它41.设置坐标:Utility Menu > PlotCtrls > Style > Graphs > Modify Grid。
42.绘制变量图:Main Menu > TimeHist PostPro > Graph Variables,弹出GraphTime-History Variables对话框。