ANSYS谐响应分析
ANSYS Workbench 17·0有限元分析:第7章-谐响应分析

第7章 谐响应分析
谐响应分析主要用来确定线性结构在承受持续的周期载荷时的周期性响应(谐响应)谐响应分析能够预测结构的持续动力学特性,从而验证其设计能否成功地克服共振、疲劳及其他受迫振动引起的有害效果。
通过本章的学习,即可掌握在★ 了解谐响应分析。
7.1 谐响应分析概述
谐响应分析(Harmonic Response Analysis )是用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。
分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对应频率的曲线。
从这些曲线上可以找到“峰值”响应,并进一步考察频率对应的应力。
谐响应分析技术只计算结构的稳态受迫振动。
发生在激励开始时的瞬态振动不在谐响应分析中考虑。
谐响应分析是一种线性分析。
任何非线性特性,如塑性和接触(间隙)单元,即使被定义了也将被忽略,但在分析中可以包含非对称系统矩阵,如分析流体——结构相互作用问题。
谐响应分析同样也可以分析有预应力的结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。
对于谐响应分析,其运动方程为:
[][][](){}{}(){}{}()21212
M i C K i F i F ωωφφ−+++=+ 这里假设刚度矩阵[]K 、质量矩阵[]M 是定值,要求材料是线性的、使用小位移理论(不包括非线性)、阻尼为[]C 、简谐载荷为[]F 。
谐响应分析的输入条件包括:
已知幅值和频率的简谐载荷(力、压力和强迫位移)。
简谐载荷可以是具有相同频率的多种载荷,力和位移可以相同或者不相同,但是压力分布
载荷和体载荷只能指定零相位角。
ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析ANS YSH勺模态分析与谐响应分析作者:未知时间:2010-4-15 8:59:49 模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。
谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。
比如,在ANSYS皆响应分析中要给出这样的语句FK,3,FX,7071,7071!指定点荷载的实部和虚部(或者幅值和相位角)HARFRQ,0,2.5,!指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载NSUBST,100,!指定频率从0到2.5之间分100步进行计算这样,结构所受的这个点荷载的表达式实际上是F=(7071+i*7071)*exp(i*omiga*t) !式中omiga 从0 到2.5*2*3.1415926 变化分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST吉点值看出来。
个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看吉构的物理量随频率变化曲线时也会看到在吉构的自振频率处响应会放大(共振)。
如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。
但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。
因此,只能说在谐响应分析前进行一下模态分析可以对吉构的自振特性有个了解,以便验证谐响应分析吉果是否合理。
另外,谐响应分析应该是频域分析方法的一个部分。
对于相地震那样的时间过程线,直接进行时域分析(ANS YS!用暂态分析)可得到结构随时间的响应。
而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。
ANSYSWorkbench正弦响应分析之详细版

ANSYSWorkbench正弦响应分析之详细版这是 ANSYS 工程实战第 42 篇文章问题描述:正弦分析选用的项目模块为谐响应分析(Harmonic Response),这里对谐响应分析的关键知识点和正弦分析具体分析步骤和方法进行了详细介绍。
1. 谐响应分析理论介绍1.1 谐响应分析的定义谐响应分析是用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。
1.2 谐响应分析的目的谐响应分析的目的是计算出结构在几种频率下的响应并得到一些响应值对频率的曲线(如位移对频率曲线),从这些曲线上可以找到“峰值”响应,并进一步考察频率对应的应力。
1.3 谐响应分析的输入条件谐响应分析的输入条件:相同频率的多种载荷。
1.4 谐响应分析的运算求解方法谐响应分析的运算求解方法包括完全法(Full)和模态叠加法(Mode Superposition)。
完全法是一种最简单的方法,不需要先进行模态分析,但求解更耗时,对于复杂结构,8核并行运算,一般计算时间在3h以上。
模态叠加法是 Workbench 谐响应计算的默认求解方法,从模态分析中叠加模态振型。
采用模态叠加法进行谐响应分析时,首先需要自动进行一次模态分析,虽然首先进行的是模态分析,但谐响应部分的求解仍然比完全法快的多。
一般对于复杂结构,8核并行运算,谐响应部分的计算时间小于0.5h。
2. 用完全法进行正弦分析的分析步骤及设置2.1 插入响应模块完全法进行正弦分析时直接将 Analysis Systems 下的 Harmonic Response 谐响应模块拉到项目管理区中或者直接引用项目管理区中模态分析的模型(Model),如图 1 所示。
图 1 插入响应模块2.2 三维模型导入及处理在 Inventor 软件中对行波管进行建模,经过模型干涉检查合格后,将建立好的模型生成stp 格式,导入到有限元软件ANSYS Workbench 中,行波管模型如图 2 所示,包括底板、包装件、电子枪、收集极和高频等组件。
使用Ansys Workbench进行谐响应分析的基本流程 坐倚北风

使用Ansys Workbench进行谐响应分析的基本流程坐倚北风谐响应分析(Harmonic Response Analysis)是用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。
分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对应频率的曲线。
从这些曲线上可以找到“峰值”响应,并进一步考察频率对应的应力。
如下图所示则为本文示例中最终求解出的轴承支撑座座的von-Mises米歇尔应力图。
图1 轴承支撑座von-Mises米歇尔应力图谐响应分析技术只计算结构的稳态受迫振动。
发生在激励开始时的瞬态振动不在谐响应分析中考虑。
谐响应分析是一种线性分析,任何非线性特性,如塑性和接触(间隙)单元,即使被定义了也将被忽略,但在分析中可以包含非对称系统矩阵,如分析流体―结构相互作用问题,谐响应分析同样也可以分析有预应力的结构,如小提琴的弦(假定简谱应力比预加的拉伸应力小得多)。
谐响应分析通常用于如下结构的设计与分析:(1)旋转设备(如压缩机.发动机、泵、涡轮机械等)的支座固定装置和部件等;(2)受涡流影响的结构,包括涡轮叶片、飞机机翼、桥和塔等。
进行谐响应分析的目的是确保一个给定的结构能经受住不同频率的各种正弦载荷(例如以不同速度运行的发动机);探测共振响应,必要时可避免其发生(例如借助于阻尼器来避免共振等)。
下面以一个轴承支座的谐响应分析为例,介绍在Ansys Workbench中进行谐响应分析的基本步骤。
(在Ansys Mechanical APDL中进行谐响应分析的方法可参考本站文章《Ansys谐响应分析的步骤及单自由度系统求解实例》)进入Workbench后,首先新建一个Harmonic Response谐响应分析工程,如下图所示。
图2 Harmonic Response 谐响应分析工程1、前处理前处理和其它有限元分析一样,进行模型处理、材料设置、网格划分,这里不再赘述。
Ansys模态叠加法谐响应分析

Ansys模态叠加法谐响应分析模态叠加法谐响应分析hypermesh中ettypes:对于solid185单元,需设置单元选项k2=2,即采用增强应变公式方法。
这种方法可消除剪切锁定和体积锁定,虽然计算量较大,但可提高计算精度。
对于solid186单元,设置单元选项k2=1,即采用完全积分方法。
这种方法可消除沙漏模式,但应谨慎用于不可压缩材料(泊松比约为0.5)的模拟,否则可能导致体积锁定。
hypermesh中materials:一般单位采用mm,n,mpa,ton,s。
materialtype:mp;numberoftemp:1;在materialprop:ex杨氏模量,nuxy泊松比,dens密度,在c0栏中输入数值。
三维单元每个节点具备三个自由度,即为三个对应状态自由度。
因此约束的时候只需约束dof1,dof2和dof3.ansys:向ansys中导入.cdb文件以后,在菜单栏中plot――elements即可显示三维模型的单元。
谐积极响应分析师确认一个结构在未知频率的正弦(四极)载荷促进作用下的积极响应特性的技术。
输出:未知大小和频率的谐载荷(力、压力和胁迫加速度)或同一频率的多种载荷、力和加速度可以就是同相或相同相的。
表面载荷和体载荷的增益角度可以选定为零。
输出:每一个自由度上的谐位移,通常和施加的载荷不同相,也可以是其他多种导出量例如应力和应变等。
模态共振法(modalsuperpos’n):从前面的模态分析中获得各模态,再对除以系数的各模态议和,就是三种方法中最快的,但是首先必须展开模态分析。
模态分析:1.mainmenu>preference>structural,在disciplineoptions中点选h-method。
2.mainmenu>solution>analysistype>newanalysis点选modal3.mainmenu>solution>analysistype>analysisoptions通常采用blocklanczos方法。
ansys-谐响应分析

实部
F1max
•
可以使用APDL语言计算,但要确保角度单位 为度(缺省为弧度)。
M3-21
谐响应分析-步骤
施加谐波载荷并求解命令(接上页)
*AFUN,DEG FK,… F,… SFA,… SFL,… SFE,… SF,…
M3-22
谐响应分析-步骤
施加谐波载荷并求解(接上页)
M3-23
谐响应分析-步骤
• •
M3-10
谐响应分析-术语和概念
求解方法
求解简谐运动方程的三种方法: • 完整法
– 为缺省方法,是最容易的方法; – 使用完整的结构矩阵,且允许非对称矩阵(例如:声学矩阵)。
•
缩减法*
– 使用缩减矩阵,比完整法更快; – 需要选择主自由度,据主自由度得到近似的 [M]矩阵和[C]矩阵。
•
模态叠加法**
施加谐波载荷并求解 • 所有施加的载荷以规定的频率(或频率 范围)简谐地变化 • “载荷”包括: – 位移约束-零或非零的 – 作用力 – 压强 • 注意: 如果要施加重力和热载荷,它 们也被当作简谐变化的载荷来考虑!
典型命令:
DK,… ! 或 D或DSYM
DA,... DL,…
M3-19
谐响应分析-步骤
M3-27
谐响应分析-步骤
观看结果 - POST26
位移-频率关系曲线 • 首先定义 POST26 变量 – 节点和单元数据表 – 用大于等于二的数据识别 – 变量1包含各频率,并是预先定义了的
M3-28
谐响应分析-步骤
观看结果 - POST26(接上页)
• 定义变量(接上页) – 挑选可能发生最大变形的节点,然后选择自由度的方向; – 定义变量的列表被更新。
ANSYS培训教程:谐响应分析

ANSYS培训教程:谐响应分析任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。
谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。
分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。
从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。
该技术只计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动 (见图10.1)。
谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳,及其它受迫振动引起地有害效果。
谐响应分析是一种线性分析。
任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。
分析中可以包含非对称系统矩阵,如分析在流体——结构相互作用中问题。
谐响应分析可以分析有预应力结构,如小提琴的弦谐响应分析的求解方法ANSYS中提供了三种谐响应分析的方法:Full (完全法)、Reduced (缩减法)、Mode Superpos’n (模态叠加法)。
下面将对三种方法的优缺点作一介绍。
1.完全法完全法是三种方法种最易使用的方法。
它采用完整的系统矩阵计算谐响应(没有矩阵缩减)。
矩阵可以是对称的或非对称的。
完全法的优点是:容易使用,因为不必关心如何选取主自由度或振型;使用完整矩阵,因此不涉及质量矩阵的近似;允许有非对称矩阵,这种矩阵在声学或轴承问题中很典型;用单一处理过程计算出所有的位移和应力。
完全法允许定义各种类型的载荷:节点力、外加的(非零)位移、单元载荷(压力和温度)。
允许在实体模型上定义载荷。
完全法的一个缺点是预应力选项不可用。
另一个缺点是当采用Frontal方程求解器时这种方法通常比其它方法都开销大。
但在采用JCG求解器或ICCG求解器时,完全法的效率很高。
2.缩减法缩减法通过采用主自由度和缩减矩阵来压缩问题的规模。
主自由度处的位移被计算出来后,解可以被扩展到初始的完整DOF集上。
Ansys-谐响应分析

Training Manual
ANSYS Workbench - DesignModeler
f max f min DW 2 n
• DS将从 WDW.开始,求解n个频率
In the example above, with a frequency range of 0 – 10,000 Hz at 10 intervals, this means that Design Simulation will solve for 10 excitation frequencies of 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10000 Hz.
谐响应分析基础
• 例如,考虑如右图所示的两力共同作 用在同一结构上的工况
– 两力都有受到同一频率W激励。但 是.,”Force 2”滞后于“Force 1”45度 的相位差,“Force 2”的相位角y度。 – 以上的叙述可通过复数标记的方法表 示。因此,可写成:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS谐响应分析
ANSYS谐响应分析是一种常见的工程分析方法,适用于对结构、机械
和电子系统的动态响应进行预测和优化。
在这种分析中,系统的响应将被
建模为正弦或余弦函数的和,称为谐波。
通过分析系统在不同频率下的响应,可以确定系统的固有频率、振动模态和动态性能。
1.准备模型:首先,需要准备模型并进行几何建模。
这包括选择材料
属性、定义边界条件和加载条件。
在谐响应分析中,通常使用静力加载来
模拟系统振动的激励。
2.确定固有频率:在进行谐响应分析之前,需要确定系统的固有频率。
这可以通过进行模态分析来完成。
模态分析是一种分析方法,用于确定系
统的固有频率和振型。
通过查看模态分析的结果,可以确定系统的响应频
率范围。
3.设置谐振状态:在进行谐响应分析之前,需要明确要分析的振动频
率范围。
这可以通过选择分析频率范围并设置振动荷载的频率来完成。
在ANSYS中,可以选择一个或多个分析频率,并设置载荷的相位和振幅。
4. 进行求解:在所有输入条件都设置好之后,可以开始运行谐响应
分析。
在ANSYS中,可以使用ANSYS Mechanical或ANSYS Workbench等
模块来进行求解。
系统的振动响应将在选择的频率范围内进行计算和分析。
5.结果分析:完成求解后,可以查看并分析计算结果。
ANSYS提供了
丰富的后处理工具,用于可视化和分析分析结果。
可以查看系统的位移、
速度、加速度和应力等响应结果,并通过其他参数来优化系统的设计。
谐响应分析在工程设计中具有重要的应用价值。
通过分析和优化系统
的谐响应性能,可以改善结构的稳定性和可靠性。
例如,在建筑结构设计
中,可以通过谐响应分析来确定楼层的固有频率和响应模态,从而减少振动和噪声的问题。
在机械系统设计中,可以通过谐响应分析来确定机械部件的振动模态,从而优化机械系统的可靠性和工作效率。
总之,ANSYS谐响应分析是一种重要的工程分析方法,可以用来预测和优化结构、机械和电子系统的动态响应。
谐响应分析可以通过ANSYS软件进行,通过明确振动频率范围和谐振状态,进行求解和结果分析,可以得到系统在不同频率下的振动响应和优化方案。
谐响应分析在工程设计中具有广泛的应用,并可以帮助工程师改善系统的性能和可靠性。