svpwm过调制电压增益

合集下载

三电平逆变器SVPWM过调制控制策略综述

三电平逆变器SVPWM过调制控制策略综述

Ⅵ慈警
淤一
巡哕
图5典型双模式过调制
typical dual—mode overmodulation
E183在傅立叶谐波分析的基础上,提出了一种基 于角度控制的分段SVPWM过调制算法,但只是
这种方法有较低的谐波畸变率(THD),但是 有相对复杂的控制算法,并且查表需要较大的内 存空间[2¨,因此适合于对谐波指标要求较高的 应用。 3.4典型单模式过调制策略 这种方法借鉴了S.Bolognani的思想[I],通 过离线计算得到修改后的参考电压矢量的幅值与 m的非线性关系,同时修改参考电压矢量的幅值 和相位,用一种控制模式即可实现从线性区到最 大调制的平滑过渡。修正后的电压矢量运行轨迹 如图6中黑粗线所示。
应用在两电平SVPWM算法中,在三电平中的应
用有待研究。文献Ez03提出了磁场定向控制中的 SVPWM过调制策略,其思想和3.3节中的方法类 似。文献[-243介绍了过调制策略在电流型逆变器 中的应用。文献Ez53介绍了过调制策略在双级矩 阵变换器中的应用。 4
现有过调制策略存在的问题
过调制控制策略是在人们对电机输出转矩及
矿=,r/3,用H。代替y。r。如果}V。f I足够大,随着 y。r的旋转,y。r的端点在六边形的一个顶点停留 一段时间以后,直接跳到另一个端点,轨迹就是六 边形的6个顶点。
3过调制控制策略
针对过调制运行时出现的问题,国内外很多 学者进行了研究,至今已取得了多项成果[13 ̄3 下面介绍几种典型的过调制策略。 3.1最小相角误差过调制策略 其基本原理是:对V。t的端点轨迹超出六边 形的部分,保持y。r的相位角不变,将y。r的端点 强制固定在六边形上形成新的矢量y7,同时未超 出六边形的部分仍保留为圆形。因此,最后y甜 的端点轨迹为口6段圆弧、6f段直线、cd段圆弧, 如图3所示。因为y7与y。t有相同的相角,故这 种方法具有最小相角误差的优点。 这种方法较3.1节中的方法复杂,计算量大, 电压、电流波形失真程度也比最小相角误差过调 制大。然而,它可以达到最大调制度为1,此时输 出电压基波幅值为2L厂。。/兀,充分利用了直流母线 电压[221。 3.3典型双模式过调制策略 这种方法借鉴了Joachim Holtz的思想‘引,将

svpwm的调制原理及其应用

svpwm的调制原理及其应用

SVPWM的调制原理及其应用1. 什么是SVPWM(Space Vector Pulse Width Modulation)调制法?SVPWM是一种常用于交流电力电子变换器中的调制技术。

它通过控制电压的矢量和宽度,以实现对电机的精确控制。

SVPWM调制法具有高效、精确以及低谐波的优点,被广泛应用于电机驱动和变频器控制系统中。

2. SVPWM的原理SVPWM的原理基于空间矢量图。

在三相交流电系统中,通过控制三个相电压,可以产生一个旋转的磁场。

SVPWM将矢量分解为两个相邻矢量和一个零矢量来表示,通过适当的矢量合成和特定的PWM技术,可以实现电机的精确控制。

SVPWM的基本原理如下:1.将输入的三相电压转换为旋转矢量。

2.计算出所需的电机磁通矢量。

3.将磁通矢量分解为相邻矢量和零矢量。

4.通过调整相邻矢量的宽度,控制电流大小。

5.通过控制PWM波形的频率和占空比,控制电机输出的转速。

3. SVPWM的应用SVPWM调制技术在电机驱动和变频器控制系统中得到了广泛应用。

以下是SVPWM调制法的几个常见应用:3.1 电机驱动SVPWM技术可以精确控制三相电机的转速和转矩。

通过调整矢量合成和PWM 波形,可以实现电机的平稳运行,并且降低失去步的风险。

此外,SVPWM调制法还能够减小电机运行时的噪音和振动。

3.2 变频器控制系统SVPWM调制技术被广泛应用于变频器控制系统中。

变频器可以将输入电源的频率和电压转换为所需的输出,以满足不同的负载需求。

SVPWM调制法能够提供高效、可靠的控制方式,使得变频器能够有效地控制负载。

3.3 电网接口SVPWM技术还可以应用于电网接口中。

电网接口是将分布式能源(如太阳能、风能)与电网进行连接的装置。

SVPWM调制技术可以控制电能的输入和输出,实现电网与分布式能源的平衡,并确保电网的稳定运行。

3.4 可再生能源系统在可再生能源系统中,如风力发电、太阳能发电等,SVPWM调制技术可以有效管理电能的转换和输送。

SVPWM控制算法详解

SVPWM控制算法详解

SVPWM控制算法详解SVPWM(Space Vector Pulse Width Modulation)是一种基于空间矢量的脉宽调制技术,适用于三相交流电机的控制。

通过调节电机的电压矢量,SVPWM可以实现精确的电机控制。

下面将详细介绍SVPWM控制算法的原理与实现。

SVPWM算法的原理是通过合理的控制电机的电压矢量,使得电机的转矩和速度可以按照设定值精确控制。

SVPWM根据当前电机的运行状态,选择合适的电压矢量进行控制,并且在控制周期内根据设定值不断调整电压矢量的大小和方向。

在空间矢量分解中,SVPWM将三相交流电源的电流分解为两个矢量:直流分量和交流分量。

直流分量表示电流的平均值,而交流分量表示电流的波动部分。

通过对直流分量和交流分量进行分解,SVPWM可以确定电流矢量的大小和方向。

在电压矢量计算中,SVPWM根据电机的状态和设定值,选择合适的电压矢量。

电压矢量有6种组合方式,分别表示正向和反向的60度和120度的电压矢量。

通过选择合适的电压矢量,SVPWM可以确定电机的电压大小和方向。

在脉宽调制中,SVPWM根据电压矢量的大小和方向,通过调节脉冲宽度比例控制电机的输出电压。

脉冲宽度比例是控制电机输出电压关键的参数,通过合理的调整脉冲宽度比例,SVPWM可以实现精确的电机控制。

以三相交流电机为例,SVPWM控制算法可以实现精确的电机转矩和速度控制。

通过选择合适的电压矢量,SVPWM可以实现电机的正反转和转速调节。

同时,SVPWM算法还可以提高电机的效率和性能。

总结起来,SVPWM控制算法是一种基于空间矢量的脉宽调制技术,通过控制电机的电压矢量,实现精确的电机控制。

SVPWM算法通过空间矢量分解、电压矢量计算和脉宽调制等步骤,确定电机的电压大小和方向。

通过合理的控制策略和数学运算,SVPWM可以实现精确的电机转矩和速度控制。

SVPWM算法原理及详解

SVPWM算法原理及详解

SVPWM算法原理及详解SVPWM(Space Vector Pulse Width Modulation)是一种用于交流电机驱动的高级PWM调制技术。

该技术可以有效地提高三相交流电机的转速控制精度,并降低谐波含量,从而实现高效能的电机驱动控制。

SVPWM基于矢量控制的思想,在空间矢量和时域之间建立起一个映射关系,从而决定三相电压的高低电平。

在SVPWM中,将输入电压看做一个旋转矢量,通过改变矢量的方向和幅值,来实现对电机的控制。

具体来说,SVPWM将电压空间矢量分解为两个分量:直流分量和交流分量,并通过控制这两个分量的比例和相位差来实现对电机的控制。

SVPWM的核心思想是将输入电压矢量按照一个特定的频率进行旋转,并根据电机当前的电角度来确定矢量的方向和幅值。

在SVPWM中,输入电压矢量可以分解为六个基本矢量,分别为0度、60度、120度、180度、240度和300度。

这六个基本矢量可以通过变换和组合得到任意方向和幅值的矢量,从而实现对电机的控制。

在SVPWM中,通过改变两个交流分量的比例和相位差来实现对电机的控制。

具体来说,将输入电压矢量分解为一个垂直于交流分量的直流分量和一个平行于交流分量的交流分量。

交流分量决定了电机的转速,而直流分量则决定了电机的转矩。

通过控制这两个分量的比例和相位差,可以实现对电机驱动的精确控制。

SVPWM的优点是具有较好的动态响应性能和高调制精度。

通过调整矢量的方向和幅值,SVPWM可以实现对电机的精确控制,并且可以在不同速度下保持较低的谐波含量。

此外,SVPWM还可以提高电机的功率因数,降低电机的损耗和噪音。

然而,SVPWM也存在一些限制。

首先,SVPWM需要较为复杂的运算,因此对控制器的计算能力要求较高。

其次,SVPWM对电机的参数误差和非线性影响较为敏感,需要进行较多的校正和补偿。

总结来说,SVPWM是一种基于矢量控制思想的高级PWM调制技术,通过改变矢量的方向和幅值来实现对电机的控制。

电机控制器调制度与电压利用率

电机控制器调制度与电压利用率

电机控制器调制度与电压利用率电机控制器是一种将直流逆变为交流的驱动装置,其逆变原理基于PWM(Pulse Width Modulation)技术,调制技术的重要指标是对直流电压的利用率。

直流电压利用率的提高可以提高系统效率,扩展交流电机的调速范围,同时提高电机的输出功率。

目前广泛采用的SVPWM(Space Vector Pulse Width Modulation)技术相比较SPWM(Sinusoidal Pulse Width Modulation)已经很大程度上提高了电压利用率。

本文以SVPWM 为基础,利用SVPWM技术和基于SVPWM的过调制技术,研发出一种新颖的矩形波电压控制技术,实现了电机控制器对直流电压的利用率从零连续过渡到最大。

矩形波电压简单来说是指在一个电角度周期内高电平占空比0.5的方波,矩形波电压很难实现良好的控制。

本文在介绍SVPWM的原理和实现方法的基础上,详细阐述了SVPWM的过调制策略和一种简单有效的过调制实现方法,并对矩形波电压进行了深入研究,提出一种电流闭环控制矩形波相位的控制策略,实现了电压利用率的最大化。

本文首先介绍了电机控制器领域比较通用的SVPWM技术,重点阐述了SVPWM 的理论基础及实现方法。

先介绍了电机控制器的基本电气结构,详细说明了SVPWM的实现算法,以及用MATLAB搭建了SVPWM的仿真模型,并对其进行了仿真。

然后,在SVPWM的基础上,介绍了基于SVPWM的过调制方法。

在过调制区域,不同的过调制算法都会对目标空间电压矢量的幅值或者相位做相应处理。

因此在过调制的策略上,根据对目标空间电压矢量的幅值和相位所做的处理,将过调制区域分为两个区。

在过调制一区,不改变目标空间电压矢量的相位,只对幅值做一定的缩减,在过调制二区,对目标电压矢量的相位和幅值都按一定算法处理。

最终实现了调制系数的连续过渡。

过调制二区PWM波形的极限为六步阶梯波形,六步阶梯波形等价于矩形波电压。

svpwm调制算法交直流电压关系

svpwm调制算法交直流电压关系

svpwm调制算法交直流电压关系
SVPWM(Space Vector Pulse Width Modulation)是一种调制技术,用于将三相交流电转换为直流电,然后通过SVPWM控制逆变器将直流电转
换为三相交流电,以控制电机的运行。

在SVPWM调制方式下,电机相电
压的大小取决于逆变器直流母线电压的大小以及调制比(即电机相电压与直流母线电压之比)。

具体来说,电机相电压与逆变器直流母线电压的关系可以表示为:U_a =
U_d / √3 sin(ωt),其中,U_a为电机相电压,U_d为逆变器直流母线电压,ω为角频率(2πf),t为时间。

当逆变器直流母线电压U_d一定时,电机
相电压U_a与角频率ω和时间t成正弦关系。

同时,当角频率ω一定时,电机相电压U_a与逆变器直流母线电压U_d成正比关系。

以上内容仅供参考,建议查阅专业书籍或咨询专业人士以获取更准确的信息。

svpwm过调制法在永磁牵引逆变器中的应用

现代驱动与控制SVPWM过调制法在永磁牵引逆变器中的应用张育超1徐鹏程2中国船舶重工集团公司第七一三研究所(450000)中船重工海为郑州高科技有限公司(450000)Application of SVPWM Overpopulation Algorithm into Permanent Magnet Traction InvertersZHANG Yuchao XU PengchengCSIC No.713InstituteCSIC Haiwei Zhengzhou High-Tech Co.,Ltd.摘要:为了提高地铁牵引逆变器直流母线电压利用率,将基于叠加原理的过调制处理算法,应用在永磁同步电动机控制系统中,以减小电压谐波畸变率和转矩波动。

文章先介绍过调制算法的原理,然后给出永磁同步电动机的运行方式及各个同步区的调制模式,最后在Matlab/Simulink环境下,建立永磁同步电动机控制系统的仿真模型.将基于叠加原理的过调制算法和传统单模式过调制算法进行对比仿真。

结果表明,采用前者输出相电压谐波含量得到明显的抑制,转矩波动较小。

关键词:永磁同步电动机控制系统过调制牵引逆变器叠加原理中图分类号:TM301.2文献标识码:ADOI编码:10.3969/j.issn.l006-2807.2019.05.008 Abstract:In order to increase the utilization ratio of De bus voltage of subway traction inverter,the overpopula­tion algorithm based upon superposition principle is applied into the permanent magnet synchronous motor control sys­tem,to lower voltage harmonics distortion rate and increase torque ripple.First,principle of overpopulation algorithm is introduced in detail,and then,the operation mode of the permanent magnet synchronous motor and modulation mode of each synchronous zone are given,and finally,sim­ulation mode of the synchronous motor control system is established under the Matlab/Simulink ­parison and simulation are done between the overpopulation algorithm based upon superposition principle and tradition­al single-mode overpopulation e the results that the harmonic contents in the output phase voltage is obviously decreased as same as torque ripple,in case of ap・plying former algorithm.Keywords:permanent magnet synchronous motor con­trol system overpopulation algorithm traction inverter superposition principlePWM技术是交流调速系统中一个关键环节,常用的调制方法有SVPWM和SPWM两种。

二电平和三电平逆变器svpwm调制方法-概述说明以及解释

二电平和三电平逆变器svpwm调制方法-概述说明以及解释1.引言1.1 概述概述部分应该对二电平和三电平逆变器svpwm调制方法进行简要介绍,说明其在逆变器领域中的重要性和应用。

可以按照以下方式编写该部分的内容:概述逆变器是一种将直流电能转换为交流电能的装置,广泛应用于电力电子领域。

在逆变器的调制方法中,svpwm是一种常用且有效的调制技术。

根据逆变器的拓扑结构的不同,svpwm调制方法可以分为二电平和三电平两种。

二电平逆变器svpwm调制方法通过对逆变器开关管的控制,使输出波形接近正弦波,并最大化功率输出。

其调制原理是将高频三角波与标准正弦波进行比较,通过控制开关管的导通时间实现输出波形的控制。

二电平逆变器svpwm调制方法具有简单、可靠的特点,在许多应用中得到广泛使用。

相比之下,三电平逆变器svpwm调制方法引入了一个额外的中点电压,可以提供更高的输出电压质量。

其调制原理是将标准正弦波与两个输出电压等级的三角波进行比较,通过控制开关管的导通时间和电平,实现输出波形的更精确控制。

三电平逆变器svpwm调制方法适用于高功率应用和对输出电压质量要求较高的场景。

本文将重点探讨二电平和三电平逆变器svpwm调制方法的调制原理和实现方式,比较其优缺点,并对其应用前景进行展望。

二电平和三电平逆变器svpwm调制方法的研究对提高逆变器效率、降低谐波失真以及满足不同应用需求具有重要意义。

1.2 文章结构文章结构部分的内容应该包括对整篇文章的结构进行概括和简要说明。

可以按照以下方式编写:本文主要围绕着二电平逆变器SVPWM调制方法和三电平逆变器SVPWM调制方法展开讨论。

文章结构如下:第一部分为引言,包括概述、文章结构和目的。

在概述中,将会介绍逆变器的作用和重要性,以及SVPWM调制方法在逆变器中的应用背景。

文章结构将会简要列举本文的章节和主要内容。

目的部分将明确本文旨在比较二电平和三电平逆变器SVPWM调制方法的优劣以及探讨其应用前景。

SVPWM算法详解_已标注重点_

SVPWM算法详解_已标注重点_Space Vector Pulse Width Modulation (SVPWM)是一种高性能的PWM调制技术,它通过合理地改变电压矢量的幅值和相位来控制三相逆变器输出电压的波形,从而实现对电机的精确控制。

以下是对SVPWM算法的详细解析,并标注了重点。

1.SVPWM基本原理SVPWM算法的基本原理是通过合理地选择电压矢量的幅值和相位,使得逆变器输出的电压矢量合成后的波形尽可能贴近所需的电压波形。

SVPWM将电压空间矢量分为了七个扇区,每个扇区由两个最近邻的标准矢量和一个零矢量组成。

2.SVPWM算法步骤a.确定电机的转速和电压矢量的大小,计算出所需的矢量角度θm。

b.将θm转换为电流矢量的角度θα和θβ,这需要对θm进行正弦和余弦变换。

c.计算出电流矢量的幅值iα和iβ,这需要通过电流的大小和电机的特性得出。

d.将iα和iβ分解为三个分量:iα_d、iβ_d和i0,其中iα_d 和iβ_d是两个正交轴上的电流分量,i0是零序分量。

e.根据电流分量iα_d、iβ_d和i0,可以计算出空间矢量的幅值和相位。

f.计算出三个最近邻的标准矢量和一个零矢量,这些矢量分别位于不同的扇区。

g.根据所需的电流分量和空间矢量的幅值,可以计算出各个标准矢量的幅值和相位。

h.通过插值计算出最终的电压矢量。

3.SVPWM算法的优点a.SVPWM算法实现了绝对最优的波形质量,可实现较低的失真和较高的电机效率。

b.由于SVPWM算法能够使得电机电流和电压保持正弦波形,因此可以减小电机的损耗和噪音。

c.SVPWM算法具有较高的控制精度和响应速度,可以实现准确的电机控制。

d.SVPWM算法可用于控制各种类型的电机,包括交流电机、直流电机和步进电机等。

4.SVPWM算法的应用a.SVPWM算法广泛应用于各种类型的电机控制系统,包括工业驱动、电力系统、电动汽车等领域。

b.SVPWM算法可以用于电机的速度闭环控制、位置闭环控制和扭矩闭环控制等。

svpwm过调制原理

svpwm过调制原理SVPWM过调制原理随着电力电子技术的发展,矢量控制成为交流电机控制中的重要方法之一。

在矢量控制中,SVPWM(空间矢量脉宽调制)是一种常用的调制技术。

本文将介绍SVPWM过调制的原理和应用。

一、SVPWM原理SVPWM是一种基于空间矢量理论的调制技术,它通过调节三相电压的幅值和相位来控制电机的输出。

其基本原理是将三相电压分解为两个正弦波电压和一个直流电压,通过改变正弦波电压的幅值和相位,可以实现对电机的精确控制。

SVPWM的过调制原理是在正常的SVPWM控制基础上,通过增大矢量图中的调制幅度,使得电机输出的电压和电流超过额定值,从而提高电机的输出功率。

具体来说,过调制就是在正常SVPWM的基础上,增加额外的矢量,使得电机的输出矢量可以超过正常范围。

这样一来,电机的输出功率可以得到进一步提升。

二、SVPWM过调制的实现SVPWM过调制的实现主要包括以下几个步骤:1. 选择合适的调制比率:调制比率是指过调制时额外矢量和基本矢量的比值。

通过合理选择调制比率,可以确保过调制时电机的输出电压和电流不超过额定值,从而保证系统的稳定运行。

2. 调整正弦波电压的幅值和相位:在正常SVPWM控制中,通过调整正弦波电压的幅值和相位来控制电机的输出。

在过调制中,通过增加矢量图中的额外矢量,调整正弦波电压的幅值和相位,使得电机的输出电压和电流超过额定值。

3. 监测电机的输出功率:在过调制过程中,需要实时监测电机的输出功率,确保电机的输出不会超过额定值。

如果输出功率超过额定值,需要及时调整调制比率或正弦波电压的幅值和相位。

三、SVPWM过调制的应用SVPWM过调制技术在电力电子领域有着广泛的应用。

主要体现在以下几个方面:1. 电机驱动:SVPWM过调制可以提高电机的输出功率,适用于需要提高电机性能的应用场合,如高速电机驱动、重载电机驱动等。

2. 变频器控制:SVPWM过调制可以提高变频器的输出功率,适用于变频器在高负载条件下的控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在SVPWM(Space Vector Pulse Width Modulation,空间矢量脉宽调制)技术中,过调制是指调制指数超过1的情况,此时会采用过调制策略来进一步提高输出电压。

在过调制区域,SVPWM的电压增益会发生变化。

在标准的SVPWM策略中,当调制指数(Modulation Index,MI)在1以下时,系统可以产生理想的正弦波输出,此时电压增益是恒定的。

当调制指数超过1,进入过调制区域时,电压增益将随着调制指数的增加而增加,但同时输出波形的失真也会增加。

过调制电压增益的计算相对复杂,通常涉及到空间矢量的数学处理。

简单来说,当调制指数超过1时,通过调整SVPWM算法中的开关状态分配和时间安排,可以使得逆变器的输出电压在一定范围内超过直流母线电压,从而达到更高的电压输出。

实际应用中,过调制策略需要平衡输出电压的提高和波形失真的增加之间的关系。

此外,过调制操作可能会增加逆变器的开关损耗和电磁干扰,因此在设计和应用时需要综合考虑这些因素。

相关文档
最新文档