2018年高三文科数学模拟试卷04

合集下载

2018年普通高等学校招生全国统一考试文科数学模拟试题及答案

2018年普通高等学校招生全国统一考试文科数学模拟试题及答案

2018年普通高等学校招生全国统一考试文科数学模拟注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2340A x x x =∈--≤Z ,{}0ln 2B x x =<<,则A B =()A .{}1,2,3,4B .{}3,4C .{}2,3,4D .{}1,0,1,2,3,4-【答案】C【解析】{}{}{}2340141,0,1,2,3,4A x x x x x =∈--≤=∈-≤≤=-Z Z ,{}{}20ln 21e B x x x x =<<=<<,所以{}2,3,4AB =.2.设复数1z =(i 是虚数单位),则z z+的值为()A.B .2C .1D.【答案】B【解析】2z z +=,2z z +=.3.“p q ∧为假”是“p q ∨为假”的()条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】B【解析】由“p q ∧为假”得出p ,q 中至少一个为假.当p ,q 为一假一真时,p q ∨为真,故不充分;当“p q ∨为假”时,p ,q 同时为假,所以p q ∧为假,所以是必要的,所以选B .4.已知实数x ,y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则3x z y =-+的最大值为()A .143- B .2- C .43 D .4【答案】C【解析】作出的可行域为三角形(包括边界),把3x z y =-+改写为3xy z =+,当且仅当动直线3x y z =+过点()2,2时,z 取得最大值为43. 5.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯()盏. A .2 B .3 C .26 D .27 【答案】C【解析】设顶层有灯1a 盏,底层共有9a 盏,由已知得,则()91991132691262a a a a a =⎧⎪⇒=⎨+=⎪⎩, 所以选C .6.如图是一个算法流程图,若输入n 的值是13,输出S 的值是46,则a 的值可以是() A .8 B .9 C .10 D .11【答案】C 【解析】依次运行流程图,结果如下:13S =,12n =;25S =,11n =;36S =,10n =;46S =,9n =,此时退出循环,所以a 的值可以取10.故选C .7.设双曲线()2222:10,0x y C a b a b-=>>的两条渐近线互相垂直,顶点到一条渐近线的距离为1,则双曲线的一个焦点到一条渐近线的距离为() A .2BC.D .4【答案】B【解析】因为双曲线2222:1x y C a b-=的两条渐近线互相垂直,所以渐近线方程为y x =±,所以a b =.因为顶点到一条渐近线的距离为1,所以12a =,所以a b ==,双曲线C 的方程为22122x y -=,所以双曲线的一个焦点到一条渐近线的距离为b =8.已知数据1x ,2x ,,10x ,2的平均值为2,方差为1,则数据1x ,2x ,,10x 相对于原数据() A .一样稳定 B .变得比较稳定 C .变得比较不稳定 D .稳定性不可以判断 【答案】C【解析】因为数据1x ,2x ,,10x ,2的平均值为2,所以数据1x ,2x ,,10x 的平均值也为2,因为数据1x ,2x ,,10x ,2的方差为1,所以()()102211222111i i x =⎡⎤-+-=⎢⎥⎣⎦∑,所以()10212=11i i x =-∑,所以数据1x ,2x ,,10x 的方差为()102112=1.110i i x =-∑,因为1.11>,所以数据1x ,2x ,,10x 相对于原数据变得比较不稳定.9.设n a 表示正整数n 的所有因数中最大的奇数与最小的奇数的等差中项,数列{}n a 的前n 项和为n S ,那么21n S -=()A .122n n +-- B .11222433n n --+⋅- C .2nn - D .22nn +-【答案】B【解析】由已知得,当n 为偶数时,2n n a a =,当n 为奇数时,12n na +=. 因为12342121n n S a a a a a --=+++++,所以1112342121n n S a a a a a ++--=+++++()()111352462122+n n a a a a a a a a ++--=++++++++()1123211113151212222n n a a a a +-⎛⎫++++-=+++++++++ ⎪⎝⎭()()123211232n n a a a a -=+++++++++()211222n nnS -+=+()211242n nn S -=++, 即()121211242n n n n S S +--=++,所以()()()1112211112121111224242422422233n n n n n n nS S --------=+++++++=+⋅-.10.过抛物线2y mx =()0m >的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,54PQ m =,则m =() A .4B .6C .8D .10【答案】C【解析】因为2y mx =,所以焦点到准线的距离2mp =,设P ,Q 的横坐标分别是1x ,2x ,则1232x x +=,126x x +=,因为54PQ m =,所以125+4x x p m +=,即5624m m +=,解得8m =.11.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,1,12,则此三棱锥外接球的表面积为()A .174π B .214π C .4π D .5π【答案】B【解析】由已知条件及三视图得,此三棱锥的四个顶点位于长方体1111ABCD A BC D -的四个顶点,即为三棱锥11A CB D -,且长方体1111ABCD A BC D -的长、宽、高分别为2,1,12, 所以此三棱锥的外接球即为长方体1111ABCD A BC D -的外接球,半径4R ==,所以三棱锥外接球的表面积为22214444S R ⎛π=π=π= ⎝⎭.12.已知点P 是曲线sin ln y x x =+上任意一点,记直线OP (O 为坐标系原点)的斜率为k ,则下列一定成立的为() A .1k <- B .0k < C .1k < D .1k ≥ 【答案】C【解析】任意取x 为一正实数,一方面sin ln ln 1y x x x =+≤+,另一方面容易证ln 1x x +≤成立,所以sin ln y x x x =+≤,因为sin ln ln 1y x x x =+≤+与ln 1x x +≤中两个等号成立条件不一样,所以sin ln y x x x =+<恒成立,所以1k <,所以排除D ;当2x π≤<π时,sin ln 0y x x =+>,所以0k >,所以排除A ,B .所以选C .第Ⅱ卷本卷包括必考题和选考题两部分。

2018年福建省高考数学模拟试卷(文科)(4月份)

2018年福建省高考数学模拟试卷(文科)(4月份)

2018年福建省高考数学模拟试卷(文科)(4月份)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={x|x2−2x−3<0},B={−2, −1, 1, 2},则A∩B=()A.{−1, 2}B.{−2, 1}C.{1, 2}D.{−1, −2}【答案】C【考点】交集及其运算【解析】求出A的范围,求出A,B的交集即可.【解答】A={x|x2−2x−3<0}={x|−1<x<3},B={−2, −1, 1, 2},则A∩B={1, 2},2. 已知向量AB→=(1,1),AC→=(2,3),则下列向量中与BC→垂直的是()A.a→=(3, 6)B.b→=(8, −6)C.c→=(6, 8)D.d→=(−6, 3)【答案】D【考点】平面向量数量积的性质及其运算【解析】根据题意,求出向量BC→的坐标,由向量垂直与向量数量积的关系,依次分析选项,验证a→⋅BC→是否为0,综合即可得答案.【解答】根据题意,向量AB→=(1,1),AC→=(2,3),则BC→=AC→−AB→=(1, 2),对于A,a→=(3, 6),a→⋅BC→=1×3+2×6=15≠0,即a→与BC→不垂直,A不符合题意;对于B,a→=(8, −6),a→⋅BC→=1×8+2×(−6)=−4≠0,即a→与BC→不垂直,B不符合题意;对于C,a→=(6, 8),a→⋅BC→=1×6+2×8=22≠0,即a→与BC→不垂直,C不符合题意;对于D,a→=(−6, 3),a→⋅BC→=1×(−6)+2×3=0,即a→与BC→垂直,D符合题意;3. 设等比数列{a n}的前n项和为S n,若S n=2n+1+λ,则λ=()A.−2B.−1C.1D.2【答案】A【考点】等比数列的前n项和【解析】根据题意,由数列的前n项和公式写出数列的前3项,由等比数列的定义分析可得(4+λ)×8=42,解可得λ的值,即可得答案.【解答】根据题意,等比数列{a n}中,有S n=2n+1+λ,则a1=S1=4+λ,a2=S2−S1=(23+λ)−(22+λ)=4,a3=S3−S2=(24+λ)−(23+λ)=8,{a n}为等比数列,则有(4+λ)×8=42,解可得:λ=−2;4. 如图,曲线y=sinπx2+3把边长为4的正方形OABC分成黑色部分和白色部分.在正方形内随机取一点,则此点取自黑色部分的概率是()A.1 4B.13C.38D.34【答案】A【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】本题主要考查几何概型、三角函数的图象与性质等.【解答】解:设曲线y=sinπx2+3(0≤x≤4)与线段OC,AB,BC的公共点分别为D,E,F,连接DE,设DE中点为G,则D(0, 3 ),E(4, 3 ),F(1, 4 ),G(2, 3).因为曲线y=sinπx2+3关于点G(2, 3)中心对称,所以曲线y=sinπx2+3与线段DE围成的左(白)、右(黑)两部分面积相等,所以黑色部分的面积等于矩形DEBC的面积,所以所求概率为S矩形DEBCS正方形OABC =416=14.故选A.5. 若α是第二象限角,且sinα=35,则1−2sinπ+α2sinπ−α2=()A.−65B.−45C.45D.65【答案】C【考点】三角函数的恒等变换及化简求值【解析】由已知求出cosα,再由诱导公式化简1−2sinπ+α2sinπ−α2,结合二倍角的余弦求解.【解答】∵α是第二象限角,且sinα=35,∴cosα=−√1−sin2α=−45,∴1−2sinπ+α2sinπ−α2=1−2cosα2∗cosα2=1−2cos2α2=−(2cos2α2−1)=−cosα=45.6. 已知a=0.40.3,b=0.30.4,c=0.3−0.2,则()A.b<a<cB.b<c<aC.c<b<aD.a<b<c【答案】A【考点】指数函数的图像与性质【解析】根据指数函数以及幂函数的单调性判断即可.【解答】∵1>a=0.40.3>0.30.3>b=0.30.4,c=0.3−0.2>1,∴b<a<c,7. 程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为()A.28B.56C.84D.120【答案】C【考点】程序框图【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】模拟程序的运行,可得i=0,n=0,S=0执行循环体,i=1,n=1,S=1不满足条件i≥7,执行循环体,i=2,n=3,S=4不满足条件i≥7,执行循环体,i=3,n=6,S=10不满足条件i≥7,执行循环体,i=4,n=10,S=20不满足条件i≥7,执行循环体,i=5,n=15,S=35不满足条件i≥7,执行循环体,i=6,n=21,S=56不满足条件i≥7,执行循环体,i=7,n=28,S=84满足条件i≥7,退出循环,输出S的值为84.8. 某校有A,B,C,D四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况进行预测,甲说:“A,B同时获奖”,乙说:“B,D不可能同时获奖”,丙说:“C获奖,”,丁说:“A,C至少一件获奖”.如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是()A.作品A与作品BB.作品B与作品CC.作品C与作品DD.作品A与作品D【答案】D【考点】进行简单的合情推理【解析】本题主要考查推理知识.【解答】解:若甲预测正确,则乙预测正确,丙预测错误,丁预测正确,与题意不符,故甲预测错误;若乙预测错误,则依题意丙、丁均预测正确,但若丙、丁预测正确,则获奖作品可能是“A,C"、“B,C”、“C,D”,这几种情况都与乙预测错误相矛盾,故乙预测正确,所以丙、丁中恰有一人预测正确,若丙预测正确,丁预测错误,两者互相矛盾,排除;若丙预测错误,丁预测正确,则获奖作品只能是“A,D”,经验证符合题意.故选D.9. 某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为()A.24+(√2−1)πB.24+(2√2−2)πC.24+(√5−1)πD.24+(2√3−2)π【答案】 B【考点】由三视图求表面积(切割型) 【解析】由三视图还原原几何体,可知该几何体为棱长为2的正方体挖去两个圆锥得到,圆锥的底面半径为1,高为1.再由正方体表面积及圆锥表面积列式求解. 【解答】解:由三视图还原原几何体如图,该几何体为棱长为2的正方体挖去两个圆锥得到. 圆锥的底面半径为1,高为1. 则该几何体的表面积为6×2×2−2π×12+2×π×1×√2 =24+(2√2−2)π, 故选B .10. 已知f(x)是定义在R 上的偶函数,且x ∈R 时,均有f(3+x)=f(2−x),2≤f(x)≤8,则满足条件的f(x)可以是( ) A.f(x)=6+3cos 2πx 5B.f(x)=5+3sinπx 5C.f(x)={2,x ∈Q,8,x ∈∁R QD.f(x)={2,x ≤0,8,x >0【答案】 C函数奇偶性的性质【解析】本题主要考查函数的奇偶性、周期性及函数图象的对称性等.【解答】解:因为f(x)是定义在R上的偶函数,所以排除选项B,D;因为2≤f(x)≤8,所以排除选项A.故选C.11. 已知F1,F2为双曲线C:x216−y29=1的左、右焦点,P为C上异于顶点的点.直线l分别与PF1,PF2为直径的圆相切于A,B两点,则|AB|=()A.√7B.3C.4D.5【答案】B【考点】双曲线的离心率【解析】设PF1,PF2的中点分别为M,N,则NM=c,AM−NB=12(PF1−PF2)=a,可得AB=√MN2−(MA−NB)2=√c2−a2=b=3【解答】如图,设PF1,PF2的中点分别为M,N,则NM=c,AM−NB=12(PF1−PF2)=a,∴AB=√MN2−(MA−NB)2=√c2−a2=b=312. 已知数列{a n}的前n项和为S n,2S n=a n+12−a n+1,且a2=a9,则所有满足条件的数列中,a1的最大值为()A.3B.6C.9D.12【答案】B【考点】数列的函数特性【解析】此题暂无解析解:当n =1时,2S 1=a 22−a 2,即a 1=12(a 22−a 2)=12(a 2−12)2−18,所以当且仅当|a 2−12|最大时,a 1取得最大值.当n ≥2时,由{2S n =a n+12−a n+1,2S n−1=a n 2−a n得2a n =a n+12−a n 2−a n+1+a n . 所以(a n+1+a n )(a n+1−a n −1)=0, 所以a n+1=−a n 或a n+1−a n =1, 即数列{a n }从第三项开始,每一项是由前一项加1或乘−1得到. 又a 2=a 9,a 2经过7项变换得到a 9,所以a 9=−a 2+k(−6≤k ≤6,且k 为偶数),即−a 2+k =a 2,可得a 2=12k . 当k =6时,a 2取得最大值3; 当k =−6时,a 2取得最小值−3. 所以当a 2=−3时,|a 2−12|取得最大值,对应a 1取得最大值为6. 故选B .二、填空题:本题共4小题,每小题5分,共20分.已知复数z 满足z(3+4i)=4+3i ,则|z|=________. 【答案】 1【考点】 复数的模 【解析】把已知等式变形,利用|z|=|z|及商的模等于模的商求解. 【解答】由z(3+4i)=4+3i ,得z =4+3i 3+4i ,∴ |z|=|z|=|4+3i 3+4i|=|4+3i||3+4i|=55=1.若x ,y 满足约束条件{2x +y −3≥0,x −y ≤0,x +2y −6≤0,则z =x +y 的取值范围为________.【答案】 [2, 4] 【考点】 简单线性规划 【解析】本题主要考查线性规划. 【解答】 解:通解作出不等式组所表示的平面区域如图中阴影部分所示,作出直线x +y =0,并平移,当直线过点A(1,1)时,z 取得最小值2; 当直线过点B(2,2)时,z 取得最大值4,所以z =x +y 的取值范围为[2,4]. 故答案为:[2,4]. 优解 由题意,求出不等式组所表示的平面区域的三个顶点分别为(0,3),(1,1),(2,2), 并把它们代入目标函数z =x +y 可求得z 的值分别为3,2,4, 所以z =x +y 的取值范围为[2,4]. 故答案为:[2,4].已知A ,B 分别为椭圆C 的长轴端点和短轴端点,F 是C 的焦点.若△ABF 为等腰三角形,则C 的离心率等于________. 【答案】 √3−12【考点】椭圆的离心率 椭圆的定义 【解析】设椭圆方程,根据椭圆可知,|AB =|AF|,列方程,根据椭圆的离心率的取值范围,即可求得答案. 【解答】设椭圆的标准方程:x 2a 2+y 2b 2=1(a >b >0), 由题意可知:设A ,B 分别为椭圆的左顶点及上顶点,则|AB|=√a 2+b 2,|BF|=a , |AF|=a +c ,则|AB =|AF|,则√a 2+b 2=a +c , 由b 2=a 2−c 2,整理得2c 2+2ac −a 2=0, 由e =ca ,则2e 2+2e −1=0, 解得:e =−1+√32或e =−1−√32,由0<e <1,则e =−1+√32.已知底面边长为4√2,侧棱长为2√5的正四棱锥S −ABCD 内接于球O 1,若球O 2在球O 1内且与平面ABCD 相切,则球O 2的直径的最大值为________.8【考点】球的体积和表面积【解析】本题主要考查四棱锥、球等知识.【解答】解:设正方形ABCD的中心为O,连接AO,DO,SO,易知SO⊥平面ABCD,O1在直线SO上,且线段SO为正四棱锥S−ABCD的高,因为正方形ABCD的边长为4√2,所以OD=4,SO=√SD2−OD2=2.连接O1D,设O1D=R,则O1O=|R−2|,又OD2+O1O2=O1D2,所以16+(R−2)2=R2,解得R=5,所以球O2的直径的最大值为2R−2=8.故答案为:8.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.△ABC的内角A,B,C的对边分别为a,b,c.已知√3bcosC−csinB=√3a.(1)求B;(2)若a=3,b=7,D为AC边上一点,且sin∠BDC=√33,求BD.【答案】△ABC的内角A,B,C的对边分别为a,b,c.∵√3bcosC−csinB=√3a,利用正弦定理:√3sinBcosC−sinCsinB=√3sinA=√3sin(B+C),则:sinCsinB=−√3cosBsinC,所以:tanB=−√3,由于:0<B<π,所以:B=2π3.在△ABC中,由正弦定理可得asinA =bsinB⇒3sinA=√32⇒sinA=3√314.sinC=sin(A+∠ABC)=sinAcos∠ABC+cosAsin∠ABC=3√314×(−12)+1314×√32=5√314,在△CDB中,由正弦定理得DBsinC =CBsin∠BDC⇒BD=sinC×CBsin∠BDC=5√314×3√33=4514.【考点】三角形求面积【解析】(1)由√3bcosC−csinB=√3a,可得√3sinBcosC−sinCsinB=√3sinA=√3sin(B+ C),tanB=−√3,即可得B.(2)在△ABC中,由正弦定理⇒sinA=3√314.再求得sinC,在△CDB中,可得BD=sinC×CBsin∠BDC.△ABC的内角A,B,C的对边分别为a,b,c.∵√3bcosC−csinB=√3a,利用正弦定理:√3sinBcosC−sinCsinB=√3sinA=√3sin(B+C),则:sinCsinB=−√3cosBsinC,所以:tanB=−√3,由于:0<B<π,所以:B=2π3.在△ABC中,由正弦定理可得asinA =bsinB⇒3sinA=√32⇒sinA=3√314.sinC=sin(A+∠ABC)=sinAcos∠ABC+cosAsin∠ABC=3√314×(−12)+1314×√32=5√314,在△CDB中,由正弦定理得DBsinC =CBsin∠BDC⇒BD=sinC×CBsin∠BDC=5√314×3√33=4514.如图,在直三棱柱ABC−A1B1C1中,AC⊥BC,CC1=3√3,BC=3,AC=2√3.(1)试在线段B1C上找一个异于B1,C的点P,使得AP⊥PC1,并证明你的结论;(2)在(1)的条件下,求多面体A1B1C1PA的体积.【答案】过C1作C1P⊥B1C,垂足为P,则AP⊥PC1.证明:∵AC⊥BC,AC⊥CC1,BC∩CC1=C,∴AC⊥平面BCC1B1,又PC1⊂平面BCC1B1,∴AC⊥PC1,又PC1⊥B1C,AC∩B1C=C,∴PC1⊥平面ACB1,又AP⊂平面ACB1,∴AP⊥PC1.在Rt△BB1C1中,∵B1C1=3,CC1=3√3,∴B1C=6,∴PC1=3×3√36=3√32,B1P=32,∴VA−B1C1P =13S△B1C1P∗AC=13×12×32×3√32×2√3=94.又V A−A1B1C1=13S△A1B1C1∗AA1=13×12×3×2√3×3√3=9.∴多面体A1B1C1PA的体积为:V A−B1C1P +V A−A1B1C1=454.【考点】柱体、锥体、台体的体积计算【解析】(1)先由直三棱柱的性质及AC⊥BC得到AC⊥平面BCC1B1,从而有C1P⊥AC,所以要使PC1⊥AP,只需C1P⊥B1C即可,然后以此为条件进行证明即可;(2)把多面体A1B1C1PA分割为三棱锥A−A1B1C1和三棱锥A−B1PC1,分别计算体积并求和.【解答】过C1作C1P⊥B1C,垂足为P,则AP⊥PC1.证明:∵AC⊥BC,AC⊥CC1,BC∩CC1=C,∴AC⊥平面BCC1B1,又PC1⊂平面BCC1B1,∴AC⊥PC1,又PC1⊥B1C,AC∩B1C=C,∴PC1⊥平面ACB1,又AP⊂平面ACB1,∴AP⊥PC1.在Rt△BB1C1中,∵B1C1=3,CC1=3√3,∴B1C=6,∴PC1=3×3√36=3√32,B1P=32,∴VA−B1C1P =13S△B1C1P∗AC=13×12×32×3√32×2√3=94.又V A−A1B1C1=13S△A1B1C1∗AA1=13×12×3×2√3×3√3=9.∴多面体A1B1C1PA的体积为:V A−B1C1P +V A−A1B1C1=454.某种常见疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与地域、初次患该疾病的年龄(以下简称初次患病年龄)的关系,在甲、乙两个地区随机抽取100名患者调查其疾病类型及初次患病年龄,得到如下数据:(1)从Ⅰ型疾病患者中随机抽取1人,估计其初次患病年龄小于40岁的概率;(2)记“初次患病年龄在[10, 40)的患者”为“低龄患者”,“初次患病年龄在[40, 70)的患者”为“高龄患者”.根据表中数据,解决以下问题:(i)将以下两个列联表补充完整,并判断“地域”“初次患病年龄”这两个变量中哪个变量与该疾病的类型有关联的可能性更大.(直接写出结论,不必说明理由)表一:表二:(ii)记(i)中与该疾病的类型有关联的可能性更大的变量为X.问:是否有99.9%的把握认为“该疾病的类型与X有关?”附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),Ⅰ型疾病患者中共有23+17=40人,初次患病年龄小于40岁的人数为15+10=25;从这40名患者中随机抽取1人,计算其初次患病年龄小于40岁的概率为P=2540=58;(i)将以下两个列联表补充完整如下,表一:表二:表二中的|ad−bc|=|25×45−15×15|=900,由此判断“地域”“初次患病年龄”这两个变量中,初次患病年龄与该疾病的类型有关联的可能性更大;(ii)(i)中与该疾病的类型有关联的可能性更大的是初次患病年龄,计算X2=100×(25×45−15×15)240×60×40×60=14.065>10.828,所以有99.9%的把握认为“该疾病的类型与初次患病年龄有关”.【考点】独立性检验【解析】(1)从频数分布表统计出样本中Ⅰ型患者的人数和Ⅰ型患者中初次患病年龄小于40岁的人数,根据概率的意义,即可估计所求事件的概率;(2)(i)从频数分布表分别统计出甲地、乙地Ⅰ型患者的频数,甲地、乙地Ⅱ型患者的频数,Ⅰ型患者中低龄患者、高龄患者的频数,Ⅱ型患者中低龄患者、高龄患者的频数,正确填入对应的列联表即可;根据表中数据比较两者相应的|ad−bc|或|ac −bd|的大小,便可直接判断哪个变量与该疾病类型有关联的可能性更大;(ii)正确理解K2公式中a,b,c,d,n的含义,代入公式计算,再将计算结果对照临界值表,即可判断.【解答】Ⅰ型疾病患者中共有23+17=40人,初次患病年龄小于40岁的人数为15+10=25;从这40名患者中随机抽取1人,计算其初次患病年龄小于40岁的概率为P=2540=58;(i)将以下两个列联表补充完整如下,表一:表二:表一中的|ad−bc|=|23×23−17×37|=100,表二中的|ad−bc|=|25×45−15×15|=900,由此判断“地域”“初次患病年龄”这两个变量中,初次患病年龄与该疾病的类型有关联的可能性更大;(ii)(i)中与该疾病的类型有关联的可能性更大的是初次患病年龄,计算X2=100×(25×45−15×15)240×60×40×60=14.065>10.828,所以有99.9%的把握认为“该疾病的类型与初次患病年龄有关”.(1)求点M 的轨迹E 的方程;(2)设T 是E 上横坐标为2的点,OT 的平行线l 交E 于A ,B 两点,交E 在T 处的切线于点N .求证:|NT|2=52|NA|⋅|NB|. 【答案】(1)解:设点M(x,y),因为F (0,12),所以MF 的中点坐标为(x 2,2y+14).因为以MF 为直径的圆与x 轴相切,所以|MF|2=|2y+1|4,即|MF|=|2y+1|2,故√x 2+(y −12)2=|2y+1|2,化简得x 2=2y ,所以点M 的轨迹E 的方程为x 2=2y .(2)证明:如图,因为T 是E 上横坐标为2的点, 由(1)得T(2,2),所以直线OT 的斜率为1,因为l//OT ,所以可设直线l 的方程为y =x +m,m ≠0. 由y =12x 2,得y ′=x ,所以|NT|2=[(m +2)−2]2+[(2m +2)−2]2=5m 2. 由{y =x +m,x 2=2y 消去y 得x 2−2x −2m =0, 由Δ=4+8m >0,解得m >−12.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=2,x 1x 2=−2m . 因为N,A,B 在l 上,所以|NA|=√2|x 1−(m +2)|,|NB|=√2|x 2−(m +2)|,所以|NA|⋅|NB|=2|x 1−(m +2)|⋅|x 2−(m +2)| =2|x 1x 2−(m +2)(x 1+x 2)+(m +2)2| =2|−2m −2(m +2)+(m +2)2|=2m 2. 所以|NT|2=52|NA|⋅|NB|.【考点】 轨迹方程 【解析】 【解答】(1)解:设点M(x,y),因为F (0,12),所以MF 的中点坐标为(x 2,2y+14).因为以MF 为直径的圆与x 轴相切,所以|MF|2=|2y+1|4,即|MF|=|2y+1|2,故√x 2+(y −12)2=|2y+1|2,化简得x 2=2y ,所以点M 的轨迹E 的方程为x 2=2y .(2)证明:如图,因为T 是E 上横坐标为2的点, 由(1)得T(2,2),所以直线OT 的斜率为1,因为l//OT ,所以可设直线l 的方程为y =x +m,m ≠0. 由y =12x 2,得y ′=x ,所以|NT|2=[(m +2)−2]2+[(2m +2)−2]2=5m 2. 由{y =x +m,x 2=2y 消去y 得x 2−2x −2m =0, 由Δ=4+8m >0,解得m >−12.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=2,x 1x 2=−2m . 因为N,A,B 在l 上,所以|NA|=√2|x 1−(m +2)|,|NB|=√2|x 2−(m +2)|,所以|NA|⋅|NB|=2|x 1−(m +2)|⋅|x 2−(m +2)| =2|x 1x 2−(m +2)(x 1+x 2)+(m +2)2| =2|−2m −2(m +2)+(m +2)2|=2m 2. 所以|NT|2=52|NA|⋅|NB|.已知函数f(x)=a(x −1x )−2lnx . (1)讨论f(x)的单调区间;(2)若a =12,证明:f(x)恰有三个零点. 【答案】f(x)的定义域为(0, +∞), f′(x)=a(1+1x 2)−2x=ax 2−2x+ax 2,若a ≤0,则f′(x)<0恒成立,故f(x)在(0, +∞)上单调递减; 若a >0,令f′(x)=0可得ax 2−2x +a =0,①若△=4−4a 2≤0,即a ≥1时,则f′(x)≥0恒成立,故f(x)在(0, +∞)上单调递增; ②若△=4−4a 2>0,即0<a <1时,方程ax 2−2x +a =0的解为x 1=1−√1−a 2a,x 2=1+√1−a 2a.∴ 当0<x <1−√1−a 2a时,f′(x)>0,当1−√1−a 2a<x <1+√1−a 2a时,f′(x)<0,当x >1+√1−a 2a时,f′(x)>0,∴ f(x)在(0, 1−√1−a 2a )上单调递增,在(1−√1−a 2a , 1+√1−a 2a )上单调递减,在(1+√1−a 2a, +∞)上单调递增.当0<a<1时,f(x)的增区间为(0, 1−√1−a2a ),(1+√1−a2a, +∞),减区间为(1−√1−a2a , 1+√1−a2a);当a≥1时,f(x)的增区间为(0, +∞).当a=12时,f(x)=12(x−1x)−2lnx,由(1)可知f(x)在(0, 2−√3)上单调递增,在(2−√3, 2+√3)上单调递减,在(2+√3, +∞)上单调递增,∵f(2−√3)=12(2−√32−√3)−2ln(2−√3)=2ln(2+√3)−√3=ln(2+√3)2−lne√3,f(2+√3)=12(2+√3−2+√3)−2ln(2+√3)=√3−2ln(2+√3)=lne√3−ln(2+√3)2,∵(2+√3)2>e2>e√3,∴ln(2+√3)2−lne√3>0,即f(2−√3)>0,f(2+√3)<0,又f(1e3)=12(1e3−e3)+6=6+12e3−e32<0,f(e3)=12(e3−1e3)−6=e32−12e3−6>0,∴f(x)在(0, 2−√3),(2−√3, 2+√3),(2+√3, +∞)上各存在唯一一个零点,∴f(x)恰有三个零点.【考点】利用导数研究函数的单调性利用导数研究函数的极值【解析】(1)讨论a的范围,判断f′(x)的符号,从而得出f(x)的单调区间;(2)根据f(x)的单调性和零点的存在性定理进行判断.【解答】f(x)的定义域为(0, +∞),f′(x)=a(1+1x2)−2x=ax2−2x+ax2,若a≤0,则f′(x)<0恒成立,故f(x)在(0, +∞)上单调递减;若a>0,令f′(x)=0可得ax2−2x+a=0,①若△=4−4a2≤0,即a≥1时,则f′(x)≥0恒成立,故f(x)在(0, +∞)上单调递增;②若△=4−4a2>0,即0<a<1时,方程ax2−2x+a=0的解为x1=1−√1−a2a,x2=1+√1−a2a.∴当0<x<1−√1−a2a 时,f′(x)>0,当1−√1−a2a<x<1+√1−a2a时,f′(x)<0,当x>1+√1−a2a时,f′(x)>0,∴f(x)在(0, 1−√1−a2a )上单调递增,在(1−√1−a2a, 1+√1−a2a)上单调递减,在1+√1−a2综上,当a ≤0时,f(x)的减区间为(0, +∞);当0<a <1时,f(x)的增区间为(0, 1−√1−a 2a),(1+√1−a 2a, +∞),减区间为(1−√1−a 2a, 1+√1−a 2a);当a ≥1时,f(x)的增区间为(0, +∞). 当a =12时,f(x)=12(x −1x )−2lnx ,由(1)可知f(x)在(0, 2−√3)上单调递增,在(2−√3, 2+√3)上单调递减,在(2+√3, +∞)上单调递增,∵ f(2−√3)=12(2−√32−√3)−2ln(2−√3)=2ln(2+√3)−√3=ln(2+√3)2−lne√3,f(2+√3)=12(2+√3−2+√3)−2ln(2+√3)=√3−2ln(2+√3)=lne√3−ln(2+√3)2,∵ (2+√3)2>e 2>e √3,∴ln(2+√3)2−lne√3>0,即f(2−√3)>0,f(2+√3)<0, 又f(1e 3)=12(1e3−e 3)+6=6+12e3−e 32<0,f(e 3)=12(e 3−1e3)−6=e 32−12e 3−6>0,∴ f(x)在(0, 2−√3),(2−√3, 2+√3),(2+√3, +∞)上各存在唯一一个零点, ∴ f(x)恰有三个零点.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线M 的参数方程为{x =1+cosφy =1+sinφ (φ为参数),l 1,l 2为过点O 的两条直线,l 1交M 于A ,B 两点.l 2交M 于C ,D 两点,且l 1的倾斜角为α,∠AOC =π6. (I)求l 1和M 的极坐标方程;当α∈(0, π6]时,求点O 到A ,B ,C ,D 四点的距离之和的最大值.【答案】(1)l 1的极坐标方程为θ=α,曲线M 化为普通方程为(x −1)2+(y −1)2=1,即x 2+y 2−2x −2y +1=0, 则曲线M 的极坐标方程为:ρ2−2ρcosθ−2ρsinθ+1=0. (2)由题可知l 2的极坐标方程为θ=α+π6,联立{θ=αρ2−2ρcosθ−2ρsinθ+1=0 ,得ρA +ρB =2cosα+2sinα, 同理联立{θ=α+π6ρ2−2ρcosθ−2ρsinθ+1=0,得ρC +ρD =2cos(α+π6)+2sin(α+π6),因为α∈(0, π6],所以√32≤sin(α+π6)≤1,所以所求距离和的最大值为√16+8√3,即2+2√3.【考点】圆的极坐标方程 【解析】把曲线M 和直线l 1,l 2都化为极坐标方程,把点O 到A ,B ,C ,D 四点的距离之和用四点的极径表示,从而把距离之和表示成α的函数,求函数的最大值即可. 【解答】(1)l 1的极坐标方程为θ=α,曲线M 化为普通方程为(x −1)2+(y −1)2=1,即x 2+y 2−2x −2y +1=0, 则曲线M 的极坐标方程为:ρ2−2ρcosθ−2ρsinθ+1=0. (2)由题可知l 2的极坐标方程为θ=α+π6,联立{θ=αρ2−2ρcosθ−2ρsinθ+1=0 ,得ρA +ρB =2cosα+2sinα, 同理联立{θ=α+π6ρ2−2ρcosθ−2ρsinθ+1=0,得ρC +ρD =2cos(α+π6)+2sin(α+π6),所以|OA|+|OB|+|OC|+|OD|=ρA +ρB +ρC +ρD =√16+8√3sin(α+π3)因为α∈(0, π6],所以√32≤sin(α+π6)≤1,所以所求距离和的最大值为√16+8√3,即2+2√3. [选修4-5:不等式选讲]已知函数f(x)=|x −2|,g(x)=a|x|−1.(1)若不等式g(x −3)≥−3的解集为[2, 4],求a 的值;(2)若当x ∈R 时,f(x)≥g(x),求a 的取值范围. 【答案】不等式g(x −3)≥−3转化为a|x −3|≥−2,∵ 不等式g(x −3)≥−3的解集为[2, 4]得出a <0, 从而得到g(x −3)≥−3的解集为[3+2a ,3−2a ],进而由{3+2a =23−2a =4,得a =−2.当x =0时,易得f(x)≥g(x)对任意实数a 成立; 当x ≠0时,将f(x)≥g(x)转化为a ≤|x−2|+1|x|,|x−2|+1|x|={1−1x ,x ≥23x −1,0<x <21−3x ,x <0, x ≥2时,1−1x ∈[12,1),0<x <2时,3x −1>12,x <0时,1−3x >1 ∴ ℎ(x)=|x−2|+1|x|(x ≠0)的最小值为12,从而得到a 的取值范围为(−∞,12].【考点】绝对值不等式的解法与证明 绝对值三角不等式 【解析】(1)根据解集特征判断a 的符号,并结合含绝对值不等式的解法,求得g(x −3)≥−3的解集,根据集合相等即可求出a 的值.(2)当x =0时,易得f(x)≥g(x)对任意实数a 成立; 当x ≠0时,将f(x)≥g(x)转化为a ≤|x−2|+1|x|,再利用绝对值三角不等式得到ℎ(x)=|x−2|+1|x|(x ≠0)的最小值,从而得到a 的取值范围.【解答】不等式g(x −3)≥−3转化为a|x −3|≥−2,∵ 不等式g(x −3)≥−3的解集为[2, 4]得出a <0, 从而得到g(x −3)≥−3的解集为[3+2a ,3−2a ],进而由{3+2a=23−2a =4,得a =−2.当x =0时,易得f(x)≥g(x)对任意实数a 成立; 当x ≠0时,将f(x)≥g(x)转化为a ≤|x−2|+1|x|,|x−2|+1|x|={1−1x ,x ≥23x −1,0<x <21−3x ,x <0, x ≥2时,1−1x ∈[12,1),0<x <2时,3x −1>12,x <0时,1−3x >1 ∴ ℎ(x)=|x−2|+1|x|(x ≠0)的最小值为12,从而得到a 的取值范围为(−∞,12].。

2018届高三招生全国统一考试模拟数学(文)试题(四)含答案

2018届高三招生全国统一考试模拟数学(文)试题(四)含答案

18. ( 本小题满分 12 分 )
如图所示,四棱锥 P— ABCD的底面 ABCD为菱形, BAD 60 ,平面 PBA 平面 PAD, E,F
分别为 PA, PD的中点, PB=AB. (1) 证明: PD 平面 BEF;
(2) 若 PD PB, AB 1,VE BDF
2
,求 PD的长.
48
19. ( 本小题满分 12 分 )
6
B. 5 6
C. 或 5 66
D. 或 2 33
7.若 , 是两个不同的平面, m, n 是两条不同的直线,则下列命题中正确的是
① 若m ,m/ / ,则

② 若m / / n, m / / ,则 n / / ;
③ 若m , n , m / / , n / / ,则 / / ;
④若
,
m,n , n m,则n .
2018 年普通高等学校招生全国统一考试模拟试题
文数 ( 四 )
本试卷共 6 页, 23 题( 含选考题 ) 。全卷满分 150 分。考试用时 120 分钟。
注意事项:
1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码
粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用
x2 a2
y2 b2
1a
b
0 的左,右焦点分别为
F1
c,0 , F2 c,0 ,过点 F1 且斜率
为 1 的直线 l 交椭圆于点 A, B,若 AF2 F1F 2 ,则椭圆的离心率为
A. 2 1 2
B. 2 1
5.下列不等式中,恒成立的是
C. 2 2
D. 1 2
① 若a b,c d, 则a c b d ;

2018年高考文科数学模拟卷(word版含答案)

2018年高考文科数学模拟卷(word版含答案)

[ ]x | x 2 - 3x ≥ 02018 年高考模拟检测数学(文科)本试题卷共 6 页,23 题(含选考题)。

全卷满分 150 分。

考试用时 120 分钟。

一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 A = {x |1 < x ≤ 3}, B = {}则如图所示表示阴影部分表示的集合为A. [0,1)B.(0,3]C. (1,3)D. 1,32.设复数 z 满足 (1 + i ) z = 1 - 2i 3(i 为虚数单位),则复数 z 对应的点位于复平面内()A .第一象限B .第二象限C .第三象限D .第四象限3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5 步和12 步,问其内切圆的直径为多少步?” 现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是A . 2π 3π 2π 3πB .C .1 -D .1 -15 20 15 204. 在如图所示的框图中,若输出 S = 360 ,那么判断框中应填入的关于 k 的判断条件是A . k > 2?B . k < 2?C . k > 3?D . k < 3?开始k = 6, S = 15.若函数 f ( x ) = sin( x + α -π12) 为偶函数,否是则 cos 2α 的值为 1 1 3 3 A. -B.C. -D.2222S = S ⨯ kk = k - 1输出 S结束1 / 117.若 x , y 满足约束条件 ⎨ x - y ≤ 0 ,则 z = x + 3 y 的取值范围是 ⎪ x + y - 1 ≥ 0 再将所得图像向左平移个单位得到函数 g (x ) 的图像,在 g ( x ) 图像的所有对称轴中,24B . x =4C . x = ⎪⎪ 2⎩6.已知函数 f ( x ) 是偶函数,当 x > 0 时, f ( x ) = (2 x - 1)ln x ,则曲线 y = f ( x ) 在点(-1, f (-1)) 处的切线斜率为A. -2B. -1C. 1D. 2⎧ x ≥ 0 ⎪⎩A. (-∞, 2]B. [2,3]C. [3, +∞)D. [2, +∞)8.将函数 f ( x )=2sin(2 x +π3) 图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,π12离原点最近的对称轴方程为A . x = -π9.某几何体的三视图如图所示,则该几何体的体积为A . 4B . 2π2正视图5π π D . x =24 1211侧视图C .4 2 D .3 321俯视图10.已知直线 x - 2 y + a = 0 与圆 O : x 2 + y 2 = 2 相交于 A , B 两点( O 为坐标原点),则“ a = 5 ”是“ OA ⋅ O B = 0 ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件⎧3 - log (7 - 2 x ),0 < x ≤ 2 11.已知定义域为 R 的奇函数 f ( x ) ,当 x > 0 时,满足 f ( x ) = ⎨, ⎪ f ( x - 3), x > 3 ⎪ 2则 f (1)+ f (2) + f (3) +⋅⋅⋅+ f (2020) =2 / 11TA . log 5B . -log 5C . -2D . 02212.已知函数 f ( x ) = ( x - m )2 + (ln x - 2m )2 ,当 f ( x ) 取最小值时,则 m =A . 1 1 1 2B . - - ln 2C . - ln 2D . -2ln 22 2 10 5二、填空题:本大题共 4 个小题,每小题 5 分.13.已知点 a = (2, m ), b = (1,1) ,若 a ⋅ b =| a - b | ,则实数 m 等于14.在 ∆ABC 中, a 、b 、c 分别为内角 A 、B 、C 的对边,若 2sin B = sin A + sin C ,cos B = 3且 S 5∆ABC= 4 ,则 b的值为 ;15.已知三棱锥 A - BCD 中, BC ⊥ 面 ABD , AB = 3, AD = 1, BD = 2 2, BC = 4 ,则三棱锥 A - BCD 外接球的体积为;16.已知过抛物线 y 2 = 2 px ( p > 0) 的焦点 F 的直线与抛物线交于 A , B 两点,且AF = 3FB ,抛物线的准线 l 与 x 轴交于点 C , AA ⊥ l 于点 A ,若四边形 AACF111的面积为12 3 ,则 p 的值为.三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第17 题 ~ 21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求解答. (一)必考题:共 60 分.17.(12 分)已知各项均为正数的等比数列{a } 的前 n 项和为 S ,若 S = 120 ,且 3a 是n n 4 4a , -a 的等差中项.65(1)求数列{a } 的通项公式;n(2)若数列{b } 满足 b = log ann32n +1,且{b } 的前 n 项和为 T ,求1n n11 1 + + + . T T2 n3 / 11(1)请利用所给数据求违章人数y与月份x之间的回归直线方程yˆ=bx+aˆ;2212参考公式:b=∑x y-nx y∑(x-x)(y-y)∑x∑(x-x)-nx2,aˆ=y-bx.18.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:月份12345违章驾驶员人数1201051009085ˆ(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2⨯2列联表:不礼让斑马线礼让斑马线合计驾龄不超过1年830驾龄1年以上820合计302050能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?ˆn ni i i ii=1=i=1n n22i ii=1i=1ˆK2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d)P(K2≥k)0.1500.1000.0500.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828 19.(12分)如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB//DC,AB⊥AD,AB=3,C D=2,PD=AD=5.E是PD上一点.(1)若PB//平面ACE,求PEED的值;4/11((2)若 E 是 PD 中点,过点 E 作平面 α / / 平面 PBC ,平面 α 与棱 PA 交于 F ,求三棱锥 P - CEF的体积20. 12 分)在平面直角坐标系中,点 F 、F 分别为双曲线 C : 1 2 x 2 y 2 - a 2 b 2= 1(a > 0, b > 0) 的3左、右焦点,双曲线 C 的离心率为 2 ,点 (1, ) 在双曲线 C 上.不在 x 轴上的动点 P 与2动点 Q 关于原点 O 对称,且四边形 PFQF 的周长为 4 2 .12(1)求动点 P 的轨迹方程;(2)已知动直线 l : y = kx + m 与轨迹 P 交于不同的两点 M 、N , 且与圆W : x 2+ y 2= 3 | MN |交于不同的两点 G 、 H ,当 m 变化时, 恒为定值,2 | GH |求常数 k 的值.21.(12 分)已知函数 f ( x ) = ae x - x - a , e = 2.71828 ⋅⋅⋅ 是 对数的底数.(1)讨论函数 f ( x ) 的单调性;(2)若 f ( x ) 恰有 2 个零点,求实数 a 的取值范围.自然5 / 11⎩y=2sinϕ⎪x=+t (2)已知点P(,0),直线l的参数方程为⎨⎪y=2t 相交于M,N两点,求1(2)在(1)的结论下,若正实数a,b满足1(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程(10分)以直角坐标系的原点O为极点,x轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线C的极坐标方程为ρsin2θ-4cosθ=0,曲线C的参数方程是12⎧x=-1+2cosϕ⎨(ϕ为参数).(1)求曲线C的直角坐标方程及C的普通方程;12⎧121⎪222⎪⎩21+的值.|PM||PN|23.选修4-5:不等式选讲(10分)已知函数f(x)=|x+1|+|x-2|.(1)求函数f(x)的最小值k;(t为参数),设直线l与曲线C1112+=k,求证:+a b a2b2≥2.2018年高考模拟检测数学(文科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分.C A CD C B D A D A B C二、填空题:本大题共4小题,每小题5分,共20分.6/11∴ S = = 40a = 120 ,∴ a = 31 - q + + +⋅⋅⋅+ = [( - ) + ( - ) + ( - ) ⋅⋅⋅ + ( 1 1 1 1 1 - 1 ) + ( - 1 )]n 2 1 3 ∴ 1 + + + ⋅⋅⋅+ = ( - -) ………………………………………12 分 ∑ x y - nx y∑ x- nx 2a ˆ = y - bx = 125.5 , ˆ13. -134 614. 15.3125 6 π 16. 2 2三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17 题~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求解答. (一)必考题:共 60 分.17. (本小题满分 12 分)解:(1) 3a 是 a , -a 的等差中项,∴ 6a = a - a ,465465设数列{a } 的公比为 q ,则 6a q 3 = a q 5 - a q 4n111∴ q 2 - q - 6 = 0 ,解得 q = 3 或 q = -2 (舍);…………………………………………3 分a (1- q 4 )1 4 1 1所以 a = 3n …………………………………………………………………………………6 分n(2)由已知得 b = log 32n +1 = 2n + 1 ;n 3所以 T = 3 + 5 +⋅⋅⋅⋅⋅⋅+ 2n + 1 = n (n + 2) ,………………………………………………8 分n11 1 1 1= = ( - ) T n (n + 2) 2 n n + 2 n1 1 1 1 1 1 1 1 T T T T2 43 5 n - 1 n + 1 n n + 2 1 2 3 1 1 1 1 3 1 1 T T T T 2 2 n + 1 n + 21 23n18.(本小题满分 12 分)解:(1)由表中数据知, x = 3, y = 100 ,…………………………………………………1 分∴ b= ni =1n i i2 i= 1415 - 1500 = -8.5 ,……………………………………………4 分55 - 45i =1∴所求回归直线方程为 y= -8.5 x + 125.5 ………………………………………………6 分7 / 1150 ⨯ (22 ⨯12 - 8 ⨯ 8)2 50 ≈ 5.556 > 5.024∴ PB // OE , ==∴ PE ∴ ∴ ∴ NB = CM = 1,∴ PE ∴ F 到平面PCE 的距离h = AD =(2)由(1)知,令 x = 7 ,则 y = -8.5 ⨯ 7 + 125.5 = 66 人. …………………………8 分(3)由表中数据得 K 2 = , 30 ⨯ 20 ⨯ 30 ⨯ 20 9根据统计有 97.5% 的把握认为“礼让斑马线”行为与驾龄有关.………………12 分19. 【解析】(1)连接 BD 交 AC 于 O ,连接 OE ,PB // 平面ACE , PB ⊂ 平面PBD , 平面ACE 平面PBD = OEPE OB ED OD又∆AOB ~ ∆COD ,∴ OB AB 3= =OD CD 23 =ED 2(2)过 E 作 EM//PC 交 CD 于 M ,过 M 作 MN//BC 交 AB 于 N ,过 N 作 NF//PB 交 PA 于 F ,连接EF则平面 EFNM 为平面 αE 为PD 的中点, M 为CD 的中点, CM = 1 2CD = 1BN 3= = ’PA AB 2PD ⊥ 平面ABCD , AD ⊂ 平面ABCD ,∴ PD ⊥ AD , 又AD ⊥ CD , PD ⊂ 平面PCD , C D ⊂ 平面PCD , PD CD = D∴ AD ⊥ 平面PCD ,PD = AD = 5, PD ⊥ AD ,∴ P A = 5 21 53 3 ∴V P -CEF= V F -PCE 1 25= S ∆PCE ⋅ h =3 18【考查方向】本题主要考查了线面平行的性质,棱锥的体积计算。

最新-湖南省2018届高考数学文科模拟试卷(四)含答案解

最新-湖南省2018届高考数学文科模拟试卷(四)含答案解

2018年湖南省高考数学模拟试卷(文科)(四)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z=(1﹣z)i,则|z|=()A.B.1 C.D.22.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1) C.(﹣3,﹣1]D.(﹣3,3)3.已知,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.c>b>a4.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10 B.6 C.14 D.185.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,86.已知等差数列{a n}前四项中第二项为606,前四项和S n为3834,则该数列第4项为()A.2004 B.3005 C.2424 D.20187.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.88.已知向量满足,,,则与的夹角为()A.B.C.D.9.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A.B.C.D.10.将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,再将图象上所有点向左平移个单位,则所得函数图象的一条对称轴为()A.B.C.D.11.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.12.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.曲线y=e﹣x+1在点(0,2)处的切线与直线y=0和x=0围成三角形的面积为.14.已知等比数列{a n}中,a3+a5=8,a1a5=4,则=.15.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为.16.已知函数,若|f(x)|≥ax,则a的取值范围是.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.18.某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240)[240,260),[260,280),[280,300]分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则越平均用电量在[220,240)的用户中应抽取多少户?19.在边长为5的菱形ABCD中,AC=8,现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为.(1)求证:平面ABD⊥平面CBD;(2)若M是AB的中点,求三棱锥A﹣MCD的体积.20.已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.21.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x﹣1).四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲] 22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B 作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.[选修4-4坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A 的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|.(Ⅰ)当a=1时,求不等式f(x)<4的解集;(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.2018年湖南省高考数学模拟试卷(文科)(四)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z=(1﹣z)i,则|z|=()A.B.1 C.D.2【考点】复数求模.【专题】转化思想;综合法;数系的扩充和复数.【分析】由1+z=(1﹣z)i,可得z=,再利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵1+z=(1﹣z)i,∴z====i,则|z|=1.故选:B.【点评】本题考查了复数的运算法则、共轭复数的定义、模的计算公式,考查了推理能力与技能数列,属于基础题.2.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1) C.(﹣3,﹣1]D.(﹣3,3)【考点】交、并、补集的混合运算.【专题】集合.【分析】根据补集的定义求得∁R B,再根据两个集合的交集的定义,求得A∩(∁R B).【解答】解:∵集合A={x|x2﹣9<0}={x|﹣3<x<3},B={x|﹣1<x≤5},∴∁R B={x|x≤﹣1,或x>5},则A∩(∁R B)={x|﹣3<x≤﹣1},故选:C.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.3.已知,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【考点】对数值大小的比较.【专题】转化思想;综合法;函数的性质及应用.【分析】根据指数的运算求出a的范围,根据对数的运算性质得到b,c的范围,比较即可.【解答】解:==>2,<0,0<<1,即a>2,b<0,0<c<1,即a>c>b,故选:A.【点评】本题考查了指数以及对数的运算性质,是一道基础题.4.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10 B.6 C.14 D.18【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=8时满足条件i>5,退出循环,输出S的值为6.【解答】解:模拟执行程序框图,可得S=20,i=1i=2,S=18不满足条件i>5,i=4,S=14不满足条件i>5,i=8,S=6满足条件i>5,退出循环,输出S的值为6.故选:B.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S的值是解题的关键,属于基础题.5.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【考点】茎叶图.【专题】概率与统计.【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.已知等差数列{a n}前四项中第二项为606,前四项和S n为3834,则该数列第4项为()A.2004 B.3005 C.2424 D.2018【考点】等差数列的前n项和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】根据等差数列前n项和公式和通项公式之间的关系进行推导即可.【解答】解:已知a2=606,S4=3834,则S3=a1+a2+a3=3a2=1818即a4=S4﹣S3=3834﹣1818=2018,故选:D【点评】本题主要考查等差数列的前n项和公式和通项公式的应用,比较基础.7.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【考点】由三视图求面积、体积.【专题】立体几何.【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.8.已知向量满足,,,则与的夹角为()A.B.C.D.【考点】数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】设与的夹角为θ,由数量积的定义代入已知可得cosθ,进而可得θ【解答】解:设与的夹角为θ,∵,,,∴=||||cosθ=1×2×cosθ=,∴cosθ=﹣,∴θ=故选:D【点评】本题考查数量积与向量的夹角,属基础题.9.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A.B.C.D.【考点】直线与圆的位置关系.【专题】综合题;直线与圆.【分析】根据条件令x=0,求出AB的长度,结合三角形的勾股定理求出三角形ACB是直角三角形即可得到结论.【解答】解:当y=0时,得x2﹣4x=0,解得x=0或x=4,则AB=4﹣0=4,半径R=2,∵CA2+CB2=(2)2+(2)2=8+8=16=(AB)2,∴△ACB是直角三角形,∴∠ACB=90°,即弦AB所对的圆心角的大小为90°,故选:C.【点评】本题主要考查圆心角的求解,根据条件求出先AB的长度是解决本题的关键.10.将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,再将图象上所有点向左平移个单位,则所得函数图象的一条对称轴为()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式,再根据正弦函数的图象的对称性,求得所得函数图象的一条对称轴.【解答】解:将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,可得函数y=sin(2x+)的图象;再把所得图象象左平移个单位,则所得函数图象对应的解析式为y=sin[2(x+)+]=sin(2x+),令2x+=kπ+,求得x=﹣,k∈z,故所得函数的图象的对称轴方程为x=﹣,k∈z.结合所给的选项,故选:A.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.11.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,∴AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,==,∴V P﹣ABC即R3=9,R3=3,=×πR3=×π×3=4π.所以:球的体积V球故选D.【点评】本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.12.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程.【解答】解:由题意,=,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a2+b2=c2=7,∴a=2,b=,∴双曲线的方程为.故选:D.【点评】本题主要考查双曲线和抛物线的标准方程与几何性质,考查学生的计算能力,属于基础题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.曲线y=e﹣x+1在点(0,2)处的切线与直线y=0和x=0围成三角形的面积为2.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;转化法;导数的概念及应用.【分析】求函数的导数,利用导数求出函数的切线方程,结合三角形的面积公式进行求解即可.【解答】解:函数的导数f′(x)=﹣e﹣x,则f′(0)=﹣1,则切线方程为y﹣2=﹣x,即y=﹣x+2,切线与x轴的交点为(2,0),与y轴的交点为(0,2),∴切线与直线y=0和x=0围成三角形的面积S=,故答案为:2【点评】本题主要考查三角形面积的计算,求函数的导数,利用导数的几何意义求出切线方程是解决本题的关键.14.已知等比数列{a n}中,a3+a5=8,a1a5=4,则=9.【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】由等比数列的性质可得a1a5=a32=4,解出a3,分别可得q2,而=q4,代入可得答案.【解答】解:由等比数列的性质可得a1a5=a32=4,解得a3=2,或a3=﹣2,当a3=2时,可得a5=8﹣a3=6,q2==3当a3=﹣2,可得a5=8﹣a3=10,q2==﹣5,(舍去)∴=q4=32=9故答案为:9【点评】本题考查等比数列的性质,涉及分类讨论的思想,属基础题.15.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为1.【考点】二元一次不等式(组)与平面区域.【专题】数形结合;综合法;不等式的解法及应用.【分析】作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即A(2,0),则A(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则A(2,0),D(﹣2m,0),由,解得,即B(1﹣m,1+m),由,解得,即C(,).则三角形ABC的面积S△ABC=S△ADB﹣S△ADC=|AD||y B﹣y C|=(2+2m)(1+m﹣)=(1+m)(1+m﹣)=,即(1+m)×=,即(1+m)2=4解得m=1或m=﹣3(舍).【点评】本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.16.已知函数,若|f(x)|≥ax,则a的取值范围是[﹣2,0].【考点】绝对值不等式的解法;指、对数不等式的解法.【专题】不等式的解法及应用.【分析】由题意可得,当x>0时,log2(x+1)>0恒成立,则此时应有a≤0.当x≤0时,|f(x)|=x2﹣2x≥ax,再分x=0、x<0两种情况,分别求得a的范围,综合可得结论.【解答】解:由于函数,且|f(x)|≥ax,①当x>0时,log2(x+1)>0恒成立,不等式即log2(x+1)≥ax,则此时应有a≤0.②当x≤0时,由于﹣x2+2x 的取值为(﹣∞,0],故不等式即|f(x)|=x2﹣2x≥ax.若x=0时,|f(x)|=ax,a取任意值.若x<0时,有a≥x﹣2,即a≥﹣2.综上,a的取值为[﹣2,0],故答案为[﹣2,0].【点评】本题主要考查绝对值不等式的解法,对数不等式的解法,体现了分类讨论的数学思想,属于中档题.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【考点】正弦定理.【专题】解三角形.【分析】(Ⅰ)由正弦定理及已知可得=,由sinA≠0,即可证明sinB=cosA.(Ⅱ)由两角和的正弦函数公式化简已知可得sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,可得sin2B=,结合范围可求B,由sinB=cosA及A的范围可求A,由三角形内角和定理可求C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.【点评】本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式的应用,属于基础题.18.某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240)[240,260),[260,280),[280,300]分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则越平均用电量在[220,240)的用户中应抽取多少户?【考点】用样本的数字特征估计总体的数字特征.【专题】计算题;数形结合;整体思想;定义法;概率与统计.【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.19.在边长为5的菱形ABCD中,AC=8,现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为.(1)求证:平面ABD⊥平面CBD;(2)若M是AB的中点,求三棱锥A﹣MCD的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(Ⅰ)由已知条件推导出AO⊥平面BCD,由此能证明平面ABD⊥平面CBD.(Ⅱ)分别以OA,OC,OD所在直线为坐标轴建系,利用向量法能求出三棱锥A﹣MCD的体积.【解答】(Ⅰ)证明:菱形ABCD中,记AC,BD交点为O,AD=5,∴OA=4,OD=3,翻折后变成三棱椎A﹣BCD,在△ACD中,AC2=AD2+CD2﹣2AD•CD•cos∠ADC=25+25﹣2×,在△AOC中,OA2+OC2=32=AC2,∴∠AOC=90°,即AO⊥OC,又AO⊥BD,OC∩BD=O,∴AO⊥平面BCD,又AO⊂平面ABD,∴平面ABD⊥平面CBD.(Ⅱ)解:由(Ⅰ)知OA,OC,OD两两互相垂直,分别以OA,OC,OD所在直线为坐标轴建系,则A (0,0,4),B(0,﹣3,0),C(4,0,0),D(0,3,0),M(0,﹣,2),=(4,,﹣2),=(4,0,﹣4),=(4,﹣3,0),设平面ACD的一个法向量=(x,y,z),则由,得,令y=4,得=(3,4,3),∵=(),∴A到平面ACD的距离d===.∵在边长为5的菱形ABCD中,AC=8,∴S△ACD==12,∴三棱锥A﹣MCD的体积V===.【点评】本题考查平面与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意向量法的合理运用.20.已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】开放型;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过C1方程可知a2﹣b2=1,通过C1与C2的公共弦的长为2且C1与C2的图象都关于y轴对称可得,计算即得结论;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),通过=可得(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l方程为y=kx+1,分别联立直线与抛物线、直线与椭圆方程,利用韦达定理计算即可.【解答】解:(Ⅰ)由C1方程可知F(0,1),∵F也是椭圆C2的一个焦点,∴a2﹣b2=1,又∵C1与C2的公共弦的长为2,C1与C2的图象都关于y轴对称,∴易得C1与C2的公共点的坐标为(±,),∴,又∵a2﹣b2=1,∴a2=9,b2=8,∴C2的方程为+=1;(Ⅱ)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),∵与同向,且|AC|=|BD|,∴=,∴x1﹣x2=x3﹣x4,∴(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的斜率为k,则l方程:y=kx+1,由,可得x2﹣4kx﹣4=0,由韦达定理可得x1+x2=4k,x1x2=﹣4,由,得(9+8k2)x2+16kx﹣64=0,由韦达定理可得x3+x4=﹣,x3x4=﹣,又∵(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,∴16(k2+1)=+,化简得16(k2+1)=,∴(9+8k2)2=16×9,解得k=±,即直线l的斜率为±.【点评】本题是一道直线与圆锥曲线的综合题,考查求椭圆方程以及直线的斜率,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.21.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x﹣1).【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【专题】综合题;开放型;导数的综合应用.【分析】(Ⅰ)求导数,利用导数大于0,可求函数f(x)的单调增区间;(Ⅱ)令F(x)=f(x)﹣(x﹣1),证明F(x)在[1,+∞)上单调递减,可得结论;(Ⅲ)分类讨论,令G(x)=f(x)﹣k(x﹣1)(x>0),利用函数的单调性,可得实数k的所有可能取值.【解答】解:(Ⅰ)∵f(x)=lnx﹣,∴f′(x)=>0(x>0),∴0<x<,∴函数f(x)的单调增区间是(0,);(Ⅱ)令F(x)=f(x)﹣(x﹣1),则F′(x)=当x>1时,F′(x)<0,∴F(x)在[1,+∞)上单调递减,∴x>1时,F(x)<F(1)=0,即当x>1时,f(x)<x﹣1;(Ⅲ)由(Ⅱ)知,k=1时,不存在x0>1满足题意;当k>1时,对于x>1,有f(x)<x﹣1<k(x﹣1),则f(x)<k(x﹣1),从而不存在x0>1满足题意;当k<1时,令G(x)=f(x)﹣k(x﹣1)(x>0),则G′(x)==0,可得x1=<0,x2=>1,当x∈(1,x2)时,G′(x)>0,故G(x)在(1,x2)上单调递增,从而x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x﹣1),综上,k的取值范围为(﹣∞,1).【点评】本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,正确构造函数是关键.四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲]22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B 作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.【考点】圆的切线的性质定理的证明;直线与圆相交的性质;直线与圆的位置关系;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;(II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可.【解答】解:(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB•PD,∴62=PB•(PB+9)∴PB=3,在⊙O2中由相交弦定理,得PA•PC=BP•PE,∴PE=4,∵AD是⊙O2的切线,DE是⊙O2的割线,∴AD2=DB•DE=9×16,∴AD=12【点评】此题是一道综合题,要求学生灵活运用直线与圆相切和相交时的性质解决实际问题.本题的突破点是辅助线的连接.[选修4-4坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A 的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.【考点】参数方程化成普通方程.【专题】计算题;规律型;转化思想;直线与圆.【分析】(1)利用点在直线上,代入方程求出a,利用极坐标与直角坐标的互化,求出直线的直角坐标方程.(2)化简圆的参数方程与直角坐标方程,求出圆心与半径,利用圆心到直线的距离与半径比较即可得到直线与圆的位置关系.【解答】解:(1)点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.可得:cos(﹣)=a,解得a=.直线l的极坐标方程为ρcos(θ﹣)=,即:ρcosθ+ρsinθ=2,直线l的直角坐标方程为:x+y﹣2=0.(2)圆C的参数方程为(α为参数),可得圆的直角坐标方程为:(x﹣1)2+y2=1.圆心(1,0),半径为:1.因为圆心到直线的距离d==<1,所以直线与圆相交.【点评】本题考查参数方程与极坐标方程与直角坐标方程的互化,直线与圆的位置关系的应用,考查计算能力.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|.(Ⅰ)当a=1时,求不等式f(x)<4的解集;(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.【考点】绝对值不等式的解法;分段函数的应用.【专题】函数的性质及应用.【分析】(1)化简函数f(x)的解析式,画出函数的f(x)的图象,数形结合求得不等式f(x)<4的解集.(2)由条件利用绝对值的意义求得g(a)的最小值.【解答】解:(1)当a=1时,f(x)=2|x﹣1|+|x﹣3|=,由图可得,不等式f(x)<4的解集为(,3).(2)函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|表示数轴上的x对应点到a、1、3对应点的距离之和,可得f(x)的最小值为g(a)=,故g(a)的最小值为2.【点评】本题主要考查绝对值的意义,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2018年普通高等学校招生全国统一考试仿真卷 文科数学(四)解析版9

2018年普通高等学校招生全国统一考试仿真卷 文科数学(四)解析版9

绝密 ★ 启用前普通高等学校招生全国统一考试仿真卷文科数学(四)本试题卷共22页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·丹东期末]设集合{}2|M x x x =∈=R ,{}1,0,1N =-,则M N =( )A .{}0B .{}1C .{}0,1D .{}1,0,1-2.[2018·南阳一中]设i 1i 1z +=-,()21f x x x =-+,则()f z =( ) A .iB .i -C .1i -+D .1i --3.[2018·郴州一中]已知()()22log 111sin13x x f x x x ⎧--<<⎪=⎨π⎪⎩≥,则312f f ⎛⎫+= ⎪⎝⎭( ) A .52 B .52- C .32- D .12-4.[2018·衡水金卷]已知等差数列{}n a 的前n 项和为n S ,且96=πS ,则5tan a =( )ABC. D.5.[2018·承德期末]执行如图所示的程序框图,如果输入的100t =,则输出的n =( )开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+A .5B .6C .7D .86.[2018·漳州调研]已知函数()sin(2)(02)ϕϕπ=+≤<f x x 的图象向右平移3π个单位长度后,得到函数()cos2=g x x 的图象,则下列是函数()=y f x 的图象的对称轴方程的为( ) A .6π=x B .12π=x C .3π=x D .0=x7.[2018·云南联考]图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的个数与面积的和分别为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+8.[2018·防城港模拟]已知点P 在圆C :224240x y x y +--+=上运动,则点P 到直线l :250x y --=的距离的最小值是( ) A .4B C 1D .1-9.[2018·唐山期末]已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足班级 姓名 准考证号考场号 座位号此卷只装订不密封()10xf x ->的x 的取值范围是( ) A .()(),10,3-∞- B .()()1,03,-+∞ C .()(),11,3-∞-D .()()1,01,3-10.[2018·重庆期末]已知点()4,0A ,()0,4B ,点(),P x y 的坐标x ,y 满足0034120+⎧⎪⎪-⎨⎩≥≥≤x y x y ,则AP BP ⋅的最小值为( ) A .254B .0C .19625-D .-811.[2018·海南期末]某几何体的直观图如图所示,AB 是O 的直径,BC 垂直O 所在的平面,且10AB BC ==,Q 为O 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ 的长为x ,CQ 的长度为关于x 的函数()f x ,则()y f x =的图像大致为( )A.B .C.D.12.[2018·石家庄毕业]双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为60︒的直线与y 轴和双曲线的右支分别交于A ,B 两点,若点A 平分线段1F B ,则该双曲线的离心率是( ) AB.2+C .2 D.1+第Ⅱ卷本卷包括必考题和选考题两部分。

2018四模(文数)答案

2018四模(文数)答案

2018届高三质量监测(四)长春市普通高中 数学(文科)试题参考答案一、选择题(本大题共 12小题,每小题 1. C7. C 2. D 8. A 3. B 9. D 5分,共60分) 4. B 10. C 5.B 11. A 6. B 12. D简答与提示: 1. 2. 【命题意图】 【试题解析】 【命题意图】 【试题解析】本题考查集合的运算. C B ={1, —3}, A n (e R B) ={ —1,3}.故选 C. 本题考查复数的分类. D z (1—i )(帕)+1+ i 3)…卄 D Z= ----------------------- = -------------------- ,3 = —1.故选 D.3. 4. 5. 【命题意图】 【试题解析】 【命题意图】【试题解析】 【命题意图】 【试题解析】 2 2 本题考查等高条形图问题. B 由等高条形图知,药物 A 的预防效果优于药物B 的预防效果.故选B. 本题主要考查平面向量数量积的几何意义 .B 3在b 方向上投影为I 3| cos <a,b >=-J 10.故选B. 本题主要考查三角函数图像及性质的相关知识.B 根据图像可知f (x )=s in (x + Z ),故f&) = 3 3 —.故选B. 26. 【命题意图】 【试题解析】 本题考查等差数列的相关知识.B 由题意知3, +印4 =0,故04= 0 ,由等差数列公差小于 0,从而 S n 取最大值时n 7. =7.故选B.【命题意图】 【试题解析】 8.【命题意图】 【试题解析】当直线过点 9. 【命题意图】 【试题解析】 本题主要考查空间中线线与线面之间的位置关系问题.C 由题意可知 AE 丄BC,BC / /B 1C 1,故选C.本题主要考查线性规划的相关知识 .A 根据不等式组得到可行域是一个封闭的四边形区域,目标函数化为 (4,6 )时,有最大值,将点代入得到 Z =43中6 =18= 3=3,故选A. 本题考查框图的应用. D 由题意知i = 0时X = x 0,i =1时X =1 -丄,i = 2时X =1 -X 0y = -ax + z ,10. 11. b 212. 以此类推可知 【命题意图】 【试题解析】 【命题意图】 【试题解析】X ox 2018=1 -------- 0— = —1, X 0 = 2 .故选 D.X 0 -1本题主要考查三视图的相关问题 .C 将该几何体直观图画出后,可确定其体积为 本题考查双曲线的相关知识 .A 由题意可知 I PA 1 |2=|F 1F 2 I A 1F 2 I ,从而=a 2,故离心率 【命题意图】【试题解析】 故选D. 、填空题(本大题共 e = 72 .故选 A. 本题考查函数的性质. D 由题意可知f (X )的周期为 4小题, 每小题5分,共 l^.故选C. 3x 。

2018年高考文科数学模拟卷(word版含答案)

2018年高考文科数学模拟卷(word版含答案)

1 / 112018年高考模拟检测数学(文科)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|13,|30A x x B x x x =<≤=-≥则如图所示表示阴影部分表示的集合为A.[)1,0B.(]3,0C.)3,1(D.[]3,12.设复数z 满足()3112(i z i i +=-为虚数单位),则复数z 对应的点位于复平面内( )A .第一象限B .第二象限C .第三象限D .第四象限3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是A .215πB .320πC .2115π-D .3120π- 4. 在如图所示的框图中,若输出360S =,那么判断框中应填入的关于k 的判断条件是A .2?k >B .2?k <C .3?k >D .3?k <5.若函数()sin()12f x x πα=+-为偶函数,则cos2α的值为 A. 12-B. 12C. 32-D. 32否开始6,1k S ==S S k=⨯1k k =-输出S结束是2 / 116.已知函数是偶函数,当时,,则曲线在点处的切线斜率为A. -2B. -1C. 1D. 27.若,x y 满足约束条件0010x x y x y ≥⎧⎪-≤⎨⎪+-≥⎩,则3z x y =+的取值范围是A. (,2]-∞B. [2,3]C. [3,)+∞D. [2,)+∞ 8.将函数()=2sin(2+)3f x x π图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 图像的所有对称轴中,离原点最近的对称轴方程为 A .24x π=-B .4x π=C .524x π=D .12x π= 9.某几何体的三视图如图所示, 则该几何体的体积为A .4B .2C .43 D .2310.已知直线20x y a -+=与圆O :222x y +=相交于A ,B 两点(O 为坐标原点),则“a =”是“0OA OB ⋅=”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.已知定义域为R 的奇函数()f x ,当0x >时,则(1)(2)(3)(2020)f f f f +++⋅⋅⋅+=()f x 0x >()(21)ln f x x x =-()y f x =(1,(1))f --正视图 侧视图3 / 11A .B .C .D .012.已知函数22()()(ln 2)f x x m x m =-+-,当()f x 取最小值时,则m = A .12 B .1ln 22-- C .12ln 2105- D .2ln2-二、填空题:本大题共4个小题,每小题5分.13.已知点,若,则实数等于 14.在ABC ∆中,a b c 、、分别为内角A B C 、、的对边,若2sin sin sin ,B A C =+3cos 5B =且4ABC S ∆=,则b 的值为 ; 15.已知三棱锥A BCD -中,BC ⊥面ABD,3,1,4AB AD BD BC ====,则三棱锥A BCD -外接球的体积为 ;16.已知过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,抛物线的准线l 与x 轴交于点C ,1AA l ⊥于点1A ,若四边形1AA CF的面积为p 的值为 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17.(12分)已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若4120S =,且43a 是6a ,5a -的等差中项.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足321log n n b a +=,且{}n b 的前n 项和为n T ,求12111nT T T +++.2log 52log 5-2-(2,),(1,1)a m b ==||a b a b ⋅=-m4 / 1118.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程ˆˆybx a =+; (2)预测该路口 7月份的不“礼让斑马线”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让参考公式:1122211()()ˆˆˆ,()n ni iiii i nniii i x y nx y x x y y bay bx xnxx x ====---===---∑∑∑∑. 22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)19. (12分)如图,在四棱锥中,底面,底面是直角梯形,,.是PD 上一点.(1)若平面,求的值; P ABCD -PD ⊥ABCD ABCD //,AB DC AB AD ⊥3,2,5AB CD PD AD ====E //PB ACE PEED5 / 11(2)若E 是PD 中点,过点E 作平面平面PBC ,平面与棱PA 交于F ,求三棱锥的体积20.(12分)在平面直角坐标系中,点1F 、2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,双曲线C 的离心率为2,点3(1,)2在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形12PFQF 的周长为2(1)求动点P 的轨迹方程;(2)已知动直线:l y kx m =+与轨迹P 交于不同的两点M N 、, 且与圆223:2W x y +=交于不同的两点G 、H ,当m 变化时,||||MN GH 恒为定值,求常数k 的值.21.(12分)已知函数,)(a x ae x f x--= 2.71828e =⋅⋅⋅是自然对数的底数.(1)讨论函数)(x f 的单调性;(2)若)(x f 恰有2个零点,求实数a 的取值范围.//ααP CEF -6 / 11(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修44-:坐标系与参数方程(10分)以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线1C 的极坐标方程为2sin 4cos 0ρθθ-=,曲线2C 的参数方程是12cos 2sin x y ϕϕ=-+⎧⎨=⎩(ϕ为参数). (1)求曲线1C 的直角坐标方程及2C 的普通方程;(2)已知点1(,0)2P ,直线l的参数方程为1222x t y t⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),设直线l 与曲线1C相交于,M N 两点,求11||||PM PN +的值.23.选修45-:不等式选讲(10分) 已知函数()|1||2|f x x x =++-. (1)求函数()f x 的最小值k ;(2)在(1)的结论下,若正实数,a b满足11a b +=,求证:22122a b+≥.2018年高考模拟检测数学(文科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. C A C D C B D A D A B C二、填空题:本大题共4小题,每小题5分,共20分.7 / 1113. 1415.1256π 16.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17. (本小题满分12分) 解:(1)43a 是6a ,5a -的等差中项,4656a a a ∴=-,设数列{}n a 的公比为q ,则3541116a q a q a q =-260q q ∴--=,解得3q =或2q =-(舍);…………………………………………3分4141(1)401201a q S a q -∴===-,13a ∴=所以3nn a =…………………………………………………………………………………6分(2)由已知得213log 321n n b n +==+; 所以3521(2)n T n n n =++⋅⋅⋅⋅⋅⋅++=+,………………………………………………8分11111()(2)22n T n n n n ==-++ 1231111n T T T T +++⋅⋅⋅+1111111[()()()2132435=-+-+-1111()()]112n n n n ⋅⋅⋅+-+--++ 1231111n T T T T ∴+++⋅⋅⋅+1311()2212n n =--++………………………………………12分 18.(本小题满分12分)解:(1)由表中数据知,3,100x y ==,…………………………………………………1分∴1221ni ii ni i x y nx yb x nx==-=-∑∑141515008.55545-==--,……………………………………………4分ˆ125.5ay bx =-=, ∴所求回归直线方程为ˆ8.5125.5yx =-+ ………………………………………………6分 13-8 / 11(2)由(1)知,令7x =,则ˆ8.57125.566y=-⨯+=人. …………………………8分 (3)由表中数据得2250(221288)50302030209K ⨯⨯-⨯==⨯⨯⨯,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.………………12分19. 【解析】(1)连接BD 交AC 于O ,连接OE ,OD OBED PE OE PB OEPBD ACE PBD PB ACE PB =∴=⊂,平面平面平面平面//,,// 23,~==∴∆∆CD AB OD OB COD AOB 又 23=∴ED PE (2)过E 作EM//PC 交CD 于M ,过M 作MN//BC 交AB 于N ,过N 作NF//PB 交PA 于F ,连接EF则平面EFNM 为平面α121==∴∴CD CM CD M PD E 的中点,为的中点,为23,1==∴==∴AB BN PA PE CM NB ’DCD PD PCD CD PCD PD CD AD AD PD ABCD AD ABCD PD =⊂⊂⊥⊥∴⊂⊥ ,,,,,,平面平面又平面平面1825h 31353125,,5,=⋅∆==∴==∴=∴⊥==⊥∴--PCE S V V AD h PCE F PA AD PD AD PD PCD AD PCE F CEF P 的距离到平面平面【考查方向】本题主要考查了线面平行的性质,棱锥的体积计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高三文科数学模拟试卷04
2016年高考模拟试卷04
文科数学
本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至2页。

第II卷3至4页。

考试结束后,将本草纲目试卷和答题卡一并交回。

注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米
黑色墨水签字笔将自己的姓名、准考证号填写
清楚,并贴好条形码。

请认真核准条形码上的
准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对
应题目的答案标号涂黑,如需改动,用橡皮擦
干净后,再选涂其他答案标号,在试题卷上作
......
答无交通工效
......。

3.第I卷共12小题,第小题5分,共60分。


每小题给出的四个选项中,只有一项是符合题
目要求的。

第I卷
一、选择题:(本大题共12小题,每小题5分,满
分60分.在每小题给出的四个选项中,只有
一项是符合题目要求的.)
1. 已知变量x ,
y 满足约束条件20,
2,0,x y y x y +-≥⎧⎪
≤⎨⎪-≤⎩
则2z x y =+的最
大值为( )
A .2
B .3
C .4
D .6
7. 如图所示的程序框图,若输入n 的值为6,则输出s 的值为( )
A. 105
B. 16
C. 15
D. 1
8. 设函数()3x
f x e
x
=-,则( )
A .
3x e
=为
()
f x 的极大值点 B .3x e
=为()f x 的
极小值点
C .ln 3x =为()f x 的极大值点
D .ln 3x =为()f x 的极小值点
9. 已知直线0Ax y C ++=,其中,,4A C 成等比数列,且直线经过抛物线2
8y
x
=的焦点,则A C +=( )
A .1-
B .0
C .1
D .4 10. 如图所示,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等腰梯形,等腰直角三角形和长方形,则该几何体体积为( ) A .53
B .
23
C .7
3 D .103
11. 对于任意两个复数1
z a bi =+,2
z
c di
=+(,,,a b c d ∈R ),
定义运算“⊗”为:1
2
z z
ac bd
⊗=+.则下列结论错误的是
( )
A .()()1i i -⊗-=
B .()1i i i ⊗⊗=
C .()122i i ⊗+=
D .()()112i i -⊗+=
12.已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )
A .(2,+∞)
B .(1,+∞)
C .(-∞,-2)
D .(-∞,-1)
第II 卷
2 1
正俯

图3
二、填空题:(本大题共5小题,考生作答4小题,
每小题5分,满分20分)。

13..函数
()lg(1)1
f x x x =
+-+的定义域是________.
14.某公司为了了解员工们的
健康状况,随机抽取了部分员工作为样本,测量他们的体重(单位:公斤),体重的分组区间为[50,55),[55,60),[60,65),[65,70),[70,75],由此得到样本的频率分布直方图,如图4所示.根据频率分布直方图,估计该公司员工体重的众数是_________;从这部分员工中随机抽取1位员工,则该员工的体重在[65,75]的概率是_________.
15.已知ABC ∆中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,若1a =,3b =,2B A =,则A =_________.
16.已知数列{a n }
,
41
,32,23,14,31,22,13,21,12,11…,依它的10项的
规律,则a 99+a 100 的值为______

频率组距
0.06 0.
05
0.
04
0.
03 50556065
三、解答题:(本大题共6小题,满分70分.解答
须写出文字说明、证明过程和演算步骤)。

17.(本小题满分12分)
设等差数列{}n
a 的前n 项和为n S ,且1
2
a
=,3
6
a
=.
(1)求数列{}n
a 的通项公式;
(2)若110
k
S
=,求k 的值;
(3)设数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和为n
T ,求2013
T 的值.
18.(本小题12分)
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量1

4

5

8

9至
12

13

16

17件
及以

顾客数
(人)
x30 25 y10
结算时
间(分
钟/人)
1 1.5
2 2.5 3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过
...2分钟的概率.(将频率视为概率)
19.(本小题满分12分)
将棱长为a 正方体截去一半(如图7所示)得到
如图8所示的几何体,点E ,F 分别是BC ,DC
的中点.
A
B C D D A
(1)证明:1
⊥;
AF ED
(2)求三棱锥1
E AFD
-的体积.
20.(本小题满分12分)
在直角坐标系xOy中,已知中心在原点,离心的椭圆E的一个焦点为圆C:x2+y2-4x+2=0率为1
2
的圆心.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之的直线l1,l2.当直线l1,l2都与圆C相切时,积为1
2
求P的坐标.
21.(本小题12分)
已知a b,是实数,1和1-是函数32
f x x ax bx
=++的两
()
个极值点.
(1)求a和b的值;
(2)设函数()g x的导函数()()2
'=+,求()g x的单调
g x f x
区间;
(3)设()(())
y h x
=的
=-,其中[22]
c∈-,,求函数()
h x f f x c
零点个数.
23. (本小题满分10分)选修4—4:坐标系与参数方程选讲.
在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧==x y a x sin cos 3(a 为参数),以原点O 为极点,以x 轴正半轴
为极轴,建立极坐标系,曲线C 2的极坐标方程为
24)4
sin(=+πθρ (1) 求曲线C 1的普通方程与曲线C 2的直角坐标方程.
(2) 设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 坐标.。

相关文档
最新文档