铁磁材料居里点的测量论文样板 辽宁科技大学
《居里温度的测量》报告参考模板

钙钛锰氧化物居里温度的测量摘要本文通过对电感的测量得到了某钙钛锰氧化物的居里温度,并就影响实验结果的相关因素进行了讨论。
关键词居里温度钙钛矿锰氧化物测量补偿引言铁磁性物质的磁性随温度的变化而改变。
当温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质。
铁磁性转变为顺磁性的温度称为居里温度或居里点,以Tc表示。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
本次实验就是测定钙钛矿锰氧化物居里温度,通过这次实验我们掌握测定居里温度的一种方法,同时这次实验让我们能够对居里温度的物理意义有更深刻的了解。
实验原理1. 钙钛矿锰氧化物简介钙钛矿锰氧化物指的是一大类具有AB O3型钙钛矿结构的锰氧化物。
理想的AB O3型(A为稀土或碱土金属离子,B为Mn离子)钙钛矿具有空间群为Pm3m的立方结构,如以稀土离子A作为立方晶格的顶点,则Mn离子和O离子分别处在体心和面心的位置,同时,Mn离子又位于六个氧离子组成的MnO6八面体的重心,如图1(a)所示。
图1(b)则是以Mn离子为立方晶格顶点的结构图。
一般,把稀土离子和碱土金属离子占据的晶体称为A值,而Mn离子占据的晶位称为B 位。
图1钙钛矿锰氧化物晶体结构这些钙钛矿锰氧化物的母本氧化物是La MnO3,Mn离子为正二价,这是一种显示反铁磁性的绝缘体,呈理想的钙钛矿结构。
早在20世纪50—60年代,人们已经发现,如果用二价碱土金属离子(Sr、Ca、Pb等)部分取代三价稀土离子,Mn离子将处于/混合价状态,于是,通过和离子之间的双交换作用,在一定温度(Tp)以下、将同时出现绝缘体—金属转变和顺磁性—铁磁性转变。
2. 铁磁物质的磁化规律由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性。
物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质。
铁磁性材料居里温度的测定

本装置可通过两种途径来判断样品的铁磁性消失
1.通过观察样品的磁滞回线是否消失来判断. 铁磁物质磁滞回线如 测出对应于磁滞回线消失时的温度,就测得了居里点温度.
B
图2
H
2.通过测定磁感应强度随温度变化的曲线来推断 在测量精度要求不高的情况下,可以通过测定B(T)曲线来推断居里温度.既测出感 应电动势的积分电压U随温度T变化的曲线,并在其斜率最大处作切线,切线与横坐 标轴的交点既为样品的居里温度.
思考题1.通过测感应电动势随温度变化的曲线来推断居里温度时,为什么
要由曲线上斜率最大处的切线与温度轴的交点来确定 Tc ,而不是由曲线 与温度轴的交点来确定Tc ?
铁磁性材料居里温度的测定
基本原理
被磁化的铁磁物质具有很强的磁性,这种强磁性是与温度有 关的.随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁 畴磁矩的有序排列.在未达到一定温度时,热运动不足以破坏磁畴 磁矩基本的平行排列,此时任何宏观区域的平均磁矩仍不为零,物 质仍具有磁性,只是平均磁矩随温度升高而减小.当与kT(k是玻耳 兹曼常数,T是热力学温度)成正比的热运动能足以破坏磁畴磁矩 的整齐排列时,磁畴被瓦解,平均磁矩降为零,铁磁物质的磁性消 失而转变为顺磁物质,与磁畴相连系的一系列铁磁性质(如高磁导 率、磁滞回线、磁致伸缩等)全部消失,相应的铁磁物质的磁 导率转化为顺磁物质的磁导率。与铁磁性消失时所对应的温度 即为居里点温度.
测量装置及内容 本实验仪器为JLD-II居里点温度测试仪如图1所示待测样品为一环形铁磁材料,其
上绕有两个线圈 L1 和 L2 , L1 为励磁线圈,给其通一交变电流,提供使环形样品
磁化的磁场.将环形样品置于温度可控的加热炉中以改变样品的温度.通过样品旁 边的集成温度传感器测定样品的温度
铁磁材料居里温度测试

铁磁材料居里温度的测试1.实验数据表格表9-1磁滞回线消失时所对应的温度值:表9-2感应电动势积分值ε'及其对应的温度T值:样品编号1(室温)初始(输出)感应电压328mV,磁滞回线消失时所对应的温度值63.2℃样品编号2 (室温)初始(输出)感应电压425mV,磁滞回线消失时所对应的温度值91.7℃2.各样品的U~T曲线图1 样品1的U—T曲线I n d u c e d v o l t a g e (m v )示波器法测得Tc=图2 样品2的U —T I n d u c e d v o l t a g e (m V )示波器法测得Tc=91.7℃(室温25℃);U~T 曲线用切线法测得Tc=92.8℃3.实验结果分析:从数据处理的结果可以看出,用示波器观察样品磁滞回线消失温度来确定的居里点Tc 和通过感应电动势随温度变化的曲线来推断居里点温度略有出入,但基本上相等。
4.思考题:(1)、样品的磁化强度在温度达到居里点时发生的微观机理是什么?答:由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的“交换耦合”作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。
在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。
当铁磁体受到强烈的震动,或在高温下由于剧烈运动的影响,磁畴便会瓦解,这时与磁畴联系的一系列铁磁性质(如高磁导率、磁滞等)全部消失。
对于任何铁磁物质都有这样一个临界温度,高过这个温度铁磁性就消失,变为顺磁性,这个临界温度叫做铁磁质的居里点。
(2)、通过测定感应电动势随温度变化的曲线来推断居里点温度时,为什么要由曲线上斜率最大处的切线与温度轴的交点来确定T C,而不是由曲线与温度轴的交点来确定T C?答:因为温度升高到居里点时,铁磁性材料的磁性才发生突变,所以要在斜率最大处作切线;又因为在居里点附近时,铁磁性已基本转化为顺磁性,故曲线不可能与横坐标相交。
铁磁材料居里点的测量大物论

铁磁材料居里点的测量辽宁科技大学 机械工程与自动化学院 机械设计11-A1 毕帅[摘要]:本文利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,通过对测量结果的对比发现,采用定性测量和定量测量得到的居里点温度存在一定的差异,并对产生差异的原因进行了简要的分析。
[关键词]:铁磁材料;居里点;测量方法引言;铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,以T c 表示。
居里温度是磁性材料的本征参数之一,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。
测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。
本项研究利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,并对测量结果产生差异的原因进行了简要的分析。
一、实验原理1.1基本理论在铁磁物质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域,这个区域的体积约为10-8m 3,称之为磁畴。
在没有外磁场作用时,不同磁畴的取向各不相同,如图1所示。
因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。
当有外磁场作用时,不同磁畴的取向趋于外磁场的方向,任何宏观区域的平均磁矩不再为零,且随着外磁场的增大而增大。
当外磁场增大到一定值时,所有磁畴沿外磁场方向整齐排列,如图2所示,任何宏观区域的平均磁矩达到最大值,铁磁物质显示出很强的磁性,我们说铁磁物质被磁化了。
铁磁物质的磁导率μ远远大于顺磁物质的磁导率。
铁磁物质被磁化后具有很强的磁性,但这种强磁性是与温度有关的,随着铁磁物质温度的升高,金属点阵热运动的加剧会影响磁畴磁矩的有序排列,但在未达到一定温度时,热运动不足以破坏磁畴磁矩基本平行排列,此时任何宏观区域的平均磁矩仍不为零,物质仍具有磁性,只是平均磁矩随温度升高而减小。
铁磁材料居里点测量

顺磁性物质的磁化率χ为正( χ P > 0 ),其磁化强度 M 与磁化场 H 同向;χ P 的数值很 小,仅显示微弱磁性,在室温下, χ P 为 10-3~10-6 数量级。顺磁物质有一个固有原子磁矩, 磁矩受热骚动,在没有外磁场时,这些磁矩是杂乱分布的,当外加磁场时,这些磁矩就获
得或趋向于获得与外磁场相同方向的排列。具有顺磁性的物质很多,典型的有稀土金属和
和-Br(≈-Bm)两种不同的剩磁,矩磁材料常用作记忆元件,如电子计算机中存储器的芯片。
软磁材料和硬磁材料的根本区别在矫顽磁力 Hc 的差别。对于高磁导率的软磁材料,Hc 很小,只有 1~10A/m(10-2~10-1 奥);对于高矫顽磁力硬磁材料,Hc 在 105A/m(1000 奥) 以上;矩磁材料的矫顽磁力 Hc 一般在 102A/m(1 奥)以下。可见,铁磁材料的磁化曲线和
ε2 ≈ I2 R2
(5)
但 R2 比 1/(2πf C)不能过大,过大了使 U2 值过小,显示也就困难了。 (2) 在满足上述条件下,U2 的振幅很小,如将它直接加在 Y 偏转板上,则不能绘出大小适 当需要的磁滞回线,为此,需将 U2 经过 Y 轴放大器增幅后输出至 Y 偏转板。这就要求在实 验磁场的频率范围内,示波器的放大器的放大系数必须稳定,不然会带来放大的相位畸变和
I1 成正比,即:
I1
=
HL N
,
U1
=
LR1 N
H
(2)
它表明,在交变磁场下,在任一瞬间 t,如果将电压 U1 接到示波器 X 轴输入端,则电子束
在水平方向偏转正比于励磁场强度 H。( H ∝ U1 )
为了获得跟样品中磁感应强度瞬时值 B 成正比的电压 U2,采用电阻 R2 和电容 C 组成的 积分电路,并将电容 C 两端的电压 U2 接到示波器 Y 轴输入端。因交变的磁场 H 在样品中
铁磁性材料居里点的测定

2.实验原理
在磁环上分别绕线圈A,B,并在A线圈上通激励电流,则B线圈上感应电动势的有效值为:
=4.44fNφm(1)
f为频率,N为线圈的匝数,φm为最大磁通。
四、实验装置
1.耐高温绝缘玻璃管2.加热电炉丝3.集成温度传感器4.铁氧铁(被测样品)5.固定架6.印刷板7.提供加热电流的电源部分8.测温显示部分9.激励电源10、感应电流测量部分
实验仪分测量部分和实验部分。
(1)实验部分:如上图所示,包括①被测样品和加热电炉丝;②集成温度传感器;③激励线圈和感应线圈,以上各部分都要装在一个底座上。
(3)集成温度传感器的手枪插头接到面板温度测量的接线柱上。
五、实验内容
对样品逐点测出 —T曲线,并从中求出居里温度TC。
六、实验步骤
1、参照仪器安装步骤,连好实验部分和测量部分。(加温电流暂不接)
2、 —T曲线的测量:
(1)合上测量部分的电源开关,“温度显示”显示出室温温度。“电压显示”显示激励电压或感应电压值。
铁磁性物质的磁化与温度有关,存在一临界温度TC称为居里温度(也称居里点)(如图3)。当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度TC时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低。如果温度继续升高达居里点时,物质的磁性发生突变,磁化强度M(实为自发磁化强度)剧烈下降!因为这时分子热运动足以使相邻原子(或分子)之间的交换耦合作用突然消失,从而瓦解了磁畴内磁矩有规律的排列。此时磁畴消失,铁磁性变为顺磁性。
铁磁材料居里点的测定

实验5-8 铁磁材料居里点的测定铁磁材料的居里温度特性在工程技术、家用电器上的应用比较广泛。
测量铁磁材料居里温度的方法很多,例如磁称法、感应法、电桥法和差值补偿法等。
它们都是利用铁磁物质磁矩随温度变化的特性,测量自发磁化消失时的温度。
本实验采用感应法,来测量感应电动势值随温度变化的规律,从而得到居里点T C 。
【实验目的】l .通过对磁性材料感应电动势随温度升高而下降的现象的观察,初步熟悉铁磁性材料在居里点时由铁磁性变为顺磁性的过程,从而了解磁性材料参数变化的微观机理。
2.用感应法测定磁性材料的εeff(B)~T 曲线,并求出其居里点。
【实验原理】l .基本物理原理根据磁化的效果,磁介质可划分为三类(1)顺磁质,这类磁介质磁化后,在介质内的磁场稍有增强,表明磁化后具有微弱的附加磁场,并与外磁场同方向。
(2)抗磁质,这类磁介质磁化后,在介质内磁场稍有削弱,表明磁化后具有微弱的附加磁场但与外磁场方向相反。
(3)铁磁质,这类磁介质磁化后,在介质内的磁场显著增强,即磁化后具有很强的与外磁场同方向的附加磁场。
铁、镍、钴、钆、镝及其合金和一些非金属的铁氧体都属于这一类。
铁磁质有广泛的用途,所以它是最重要的一类磁介质。
本实验将对铁磁质的磁化规律及其微观机制进行研究。
在弱磁化场及室温的条件下,顺磁质显示弱磁性。
然而,铁磁质在相同条件下却表现强磁性。
铁磁质的特性不能用一般顺磁质的磁化理论来解释。
因为铁磁性元素的单个原子并不具有任何特殊的磁性。
例如铁原子与铬原子的结构大致相同,但铁是典型的铁磁质,而铬是普通的顺磁质,甚至还可用非铁磁性物质来制成铁磁性的合金。
另一方面,还应注意到铁磁质总是固相的。
这些事实说明了铁磁性与固体的结构状态有关。
铁磁质特殊磁性的现代理论是:在铁磁质中,相邻原子间存在着非常强的交换耦合作用,这个相互作用促使相邻原子的磁矩平行排列起来,形成一个自发磁化达到饱和状态的区域。
自发磁化只发生在微小的区域(体积约为10 -8 m 3,其中含有1017~1021个原子)内,这些区域叫做磁畴。
铁磁材料居里点的测定

铁磁材料居里点的测定铁磁材料是一类在外加磁场作用下会产生明显磁化的材料,居里点是描述铁磁材料磁性的重要参数。
居里点是指在一定温度下,铁磁材料由铁磁态向顺磁态转变的临界温度。
测定铁磁材料的居里点对于材料的研究和应用具有重要意义。
本文将介绍几种测定铁磁材料居里点的方法。
首先,最常见的测定方法是使用磁化率-温度曲线来确定居里点。
在外加磁场下,铁磁材料的磁化率随着温度的变化呈现出特定的曲线。
当温度达到一定数值时,磁化率会突然发生变化,这个临界温度就是居里点。
通过在不同温度下测量磁化率,可以得到磁化率-温度曲线,从而确定居里点的数值。
其次,还可以利用磁滞回线来确定居里点。
磁滞回线是描述铁磁材料在外磁场作用下磁化过程的曲线。
在测定居里点时,可以通过在一定温度下改变外磁场的大小,然后测量材料的磁滞回线,当温度达到居里点时,磁滞回线的形状会发生明显变化,通过分析这种变化可以确定居里点的数值。
另外,还可以利用磁化强度随温度变化的方法来确定居里点。
在外加磁场下,铁磁材料的磁化强度随着温度的变化呈现出特定的规律。
当温度达到居里点时,磁化强度会突然发生变化,通过测量磁化强度随温度的变化曲线,可以确定居里点的数值。
最后,还可以利用磁导率随温度变化的方法来确定居里点。
磁导率是描述铁磁材料在外磁场下磁化程度的参数,随着温度的变化,磁导率也会发生变化。
在测定居里点时,可以通过测量磁导率随温度的变化曲线,来确定居里点的数值。
综上所述,测定铁磁材料的居里点是一项重要的工作,可以通过多种方法来实现。
不同的方法各有优劣,需要根据具体情况选择合适的方法进行测定。
对于铁磁材料的研究和应用来说,准确测定居里点是非常重要的,可以为相关领域的发展提供重要参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁磁材料居里点的测量
作者(学生)名
(辽宁科技大学某某学院自动化10-2 千门公子昊)嘻嘻好东西要分享
摘要:本文利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,通过对测量结果的对比发现,采用定性测量和定量测量得到的居里点温度存在一定的差异,并对产生差异的原因进行了简要的分析。
关键词:铁磁材料;居里点;测量方法(3-5个,用分号隔开)
0引言
什么是铁磁材料。
铁磁材料的重要应用。
(先叙述铁磁材料的重要应用,不重要还研究什么意思)。
本项研究利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,并对测量结果产生差异的原因进行了简要的分析。
(再叙述本文你做什么了)
1实验原理
1.1磁滞回线
当H增加到一定值时,B的增加十分缓慢,磁化接近饱和。
以H m和B m 表示饱和值,H从H m减小时,B随之减小,但不沿原曲线返回,而沿ab变化。
当H减小为零时,铁磁材料中仍有一定剩磁B r,使磁场反向增加到-H c时,B 下降为零。
继续增加反向磁场到-H m,B达到负向最大值-B m,使磁场从-H m减小到零,铁磁质中有负向剩磁-B r,再正向增大磁场到饱和值H m,则得到闭合曲线abcdefa,称为磁滞回线。
铁磁质磁化状态的变化总是落后于外加磁场变化的性质称为磁滞。
图1 磁滞回线曲线图
1.2 铁磁质磁化过程的微观解释
铁磁质内相邻原子中的电子自旋磁矩自发地平行排列,形成一个个小的自发磁化区,无外磁场时各磁畴磁化方向杂乱无章,因而对外不显示磁性。
若外加磁场较弱则自发磁化方向与外磁场方向相同或相近的磁畴的体积逐渐增大,反之则逐渐缩小(畴壁运动);若磁场较强,缩小着的磁畴消失,其它磁畴的磁化方向转向外场方向,外场越强,转向越充分,当所有磁畴都沿外磁场方向排列时则达到饱和磁化状态,铁磁质表现出较强的磁性。
去除外磁场时分裂成许多磁畴,由于掺杂和内应力等原因,磁畴之间存在摩擦阻力,使磁畴不能恢复到磁化前的杂乱排列状态,因而表现出磁滞现象。
温度升高时,分子热运动加剧,T>T c时,磁畴全部被破坏,铁磁质转变为顺磁质。
磁化性质
一切可被磁化的物质叫作磁介质。
磁介质的磁化规律可用磁感应强度B、磁化强度M、磁场强度H来描述,它们满足一定的关系
(1)
式中:x m是磁化率,M为磁化强度,H为磁场强度,B为磁感应强度,μ为磁导率,μ0为真空中磁导率。
磁介质大体可以分为顺磁质、抗磁质和铁磁质三类。
但对于不同类型的磁介质,x m和μ的情况很不一样。
对于顺磁质,x m>0,μ>μ0;对于抗磁质,x m<0,μ<μ0。
这两类磁介质的磁性都很弱,它们的|x m|<<1,μ μ0,而且都是与H无关的常数。
而铁磁质的情况要复杂一些,一般说来M与H不成比例,甚至没有单值关系,即M的值不能由H的值唯一确定,它还与磁化的历史有关,所以x m和μ不再为常数。
而是H的函数,即x m=x m(H),μ=μ(H)。
铁磁质的x m和μ一般都很大,所以铁磁质属于强磁性介质。
1.4 用示波器测量动态磁化曲线和磁滞回线
图2 测量磁化曲线和磁滞回线电路图
本实验研究的是闭合状的铁磁圆环样品,平均周长为L,励磁线圈的匝数为N1,若励磁电流为i1时,在样品内满足安培环路定律
HL=N
1i 1
在示波器横轴的偏转板的输入电压为
这表明横轴输入的u R1大小与磁场强度H成正比。
设样品的截面积为S,匝数为N2的次级线圈中根据电磁感应定律,同样可分析得到电容两端的电压与磁感应强度的关系。
上式表明Y轴输入的大小u C与磁感应强度B成正比。
3实验仪器
JLD-Ⅱ居里点测试仪,加热炉和铁磁材料样品。
图3 实验装置图
(这个不是本实验的装置图,你最好是在网上找个本实验的装置图,当然也可
以不写。
但是不能写这个图3)
JLD-II型居里点测试仪
它供给了比较多的电压。
大致说来有供给示波管里阳极高压及栅极中压,还有放大器的比较低的工作电压及电路里其它部分的所需电压。
还有供给加热炉功率较大的电压以及风扇电压。
加热炉
加热炉的作用是给铁磁样品加热,它们结构外形是一个长圆柱形,外壳是不锈钢做的。
在炉子上方中间位置开有一个较大的圆形孔,孔的下方(炉子内)有温度传感器把样品环套在传感器上的炉内。
(4)铁磁材料样品
这些样品叫温敏磁环。
一共有五种,我们只作三种,每种的居里点不同。
它们都做成一个个圆环。
圆环上绕有初、次级线圈。
圆环尺寸为φ18×8×4(mm)。
3 实验结果分析
经定性测量,当示波器显示屏上磁滞回线变成一条直线时,得到的居里点温度为:。
当定量测量,得到的次级线圈的感应电动势ε与温度T之间的函数关系曲线图
图4感应电动势ε与温度T之间的函数关系曲线图
(换成你自己的实验数据图,否则及格)
4 小结
本项研究利用居里点测量仪对温敏铁磁样品的居里点温度进行定性测量和定量测量,经过对实验测量结果的对比和实验装置结果的研究发现,定性测量与定量测量得到的居里点温度略有差异。
其主要原因是:首先,。
其次,。
再次,。
参考文献:
[1]李学慧.大学物理实验[M].北京.高等教育出版社,2005:317-321
[2]郭悦韶.Excel在物理实验数据处理中的应用[J].实验室科
学.2006-4,67-68
(换成自己的参考文献,否则中)
(这种小论文的参考文献一般也5-8个。
书用[M]。
小论文用[J]。
学位论文用[D]。
以上这2个是我举例的样,不是本论文的参考文献)
Paper name
Name
(School of Science(换成你自己的学院), University of Science and technology
liaoning, Anshan 114051, China)
Abstract:(一般过去时)
(可在google中输入:免费在线翻译,注意:将汉语短句换成英语长句,汉语主动句换成英语的被动句,物理专业词语可参照已经发表的其它人的该方面的论文,看人家是怎么翻译的)
Key words: (关键词中间用逗号分开)。