高二上学期期末考试数学试题

合集下载

2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题(解析版)

2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题(解析版)

2022-2023学年河南省信阳市信阳高级中学高二上学期期末考试数学试题一、单选题1.双曲线22132x y -=的渐近线方程是( )A .23y x =± B .32y x =±C .y =D .y = 【答案】D【分析】根据焦点在横轴上双曲线的渐近线方程直接求解即可.【详解】由题得双曲线的方程为22132x y -=,所以a b =,所以渐近线方程为b y x a =±=. 故选:D2.若平面α的法向量为μ,直线l 的方向向量为v ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos ||||v v μθμ⋅=B .||cos ||||v v μθμ⋅=C .sin |||vv μθμ⋅=∣D .||sin ||||v v μθμ⋅=【答案】D【分析】由线面角的向量求法判断 【详解】由题意得||sin ||||v v μθμ⋅=, 故选:D3.若抛物线C :22x py =的焦点坐标为()0,1,则抛物线C 的方程为( ) A .22x y =- B .22x y =C .24x y =-D .24x y =【答案】D【分析】由已知条件可得12p=,求出p ,从而可求出抛物线的方程. 【详解】因为抛物线C :22x py =的焦点坐标为()0,1,所以12p=,得2p =, 所以抛物线方程为24x y =, 故选:D4.函数()f x 的定义域为R ,导函数()f x '的图象如图所示,则函数()f x ( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】C【分析】设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x ,根据导函数的图象写出函数的单调区间,再根据极值点的定义即可得出答案.【详解】解:设()f x '的图象与x 轴的4个交点的横坐标从左至右依次为1234,,,x x x x , 当1x x <或23x x x <<或4x x >时,0fx,当12x x x <<或34x x x <<时,()0f x '<,所以函数()f x 在()1,x -∞,()23,x x 和()4,x +∞上递增, 在()12,x x 和()34,x x 上递减,所以函数()f x 的极小值点为24,x x ,极大值点为13,x x , 所以函数()f x 有两个极大值点、两个极小值点. 故选:C .5.已知点1,0A ,直线l :30x y -+=,则点A 到直线l 的距离为( )A .1B .2C D .【答案】D【分析】利用点到直线的距离公式计算即可.【详解】已知点(1,0)A ,直线:30l x y -+=,则点A 到直线l =故选:D .6.已知A ,B ,C ,D ,E 是空间中的五个点,其中点A ,B ,C 不共线,则“存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【分析】利用存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC ,结合充分必要条件的定义即可求解.【详解】若//DE 平面ABC ,则,,DE AB AC 共面,故存在实数x ,y ,使得DE x AB y AC =+,所以必要性成立;若存在实数x ,y ,使得DE x AB y AC =+,则,,DE AB AC 共面,则//DE 平面ABC 或DE ⊂平面ABC ,所以充分性不成立;所以 “存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的必要不充分条件, 故选:B【点睛】关键点点睛:本题考查空间向量共面的问题,理清存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC 是解题的关键,属于基础题.7.已知双曲线22221x y a b -=(a >0,b >0)与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1B .(1C .∞)D .,+∞)【答案】C【分析】根据渐近线的斜率的范围可求离心率的范围. 【详解】因为双曲线的一条渐近线方程为by x a=,由题意得2b a >,所以双曲线的离心率c e a ==故选:C.8.已知()f x 是定义在R 上的偶函数,当0x >时,()()0xf x f x '-<,且()20f -=,则不等式()0f x x>的解集是( ). A .()()2,00,2-⋃ B .()(),22,∞∞--⋃+ C .()()2,02,-+∞ D .()(),20,2-∞-【答案】D 【分析】记()()(),0f x g x x x=≠.判断出()g x 的奇偶性和单调性,即可解不等式. 【详解】记()()(),0f x g x x x=≠.因为()f x 是定义在R 上的偶函数,所以()()f x f x -= 因为()()()()f x f x g x g x x x --==-=--,所以()g x 为奇函数,所以()()()()222222f fg g --==-=--. 因为()20f -=,所以()()220g g -==. 当0x >时,()()()20xf x f x g x x'-'=<,所以()g x 在()0,∞+上单减.因为()g x 为奇函数,图像关于原点对称,所以()g x 在(),0∞-上单减. 不等式()0f x x>即为()0g x >.当0x >时, ()g x 在()0,∞+上单减,且()20g =,所以()0g x >的解集为()0,2; 当0x <时, ()g x 在(),0∞-上单减,且()20g -=,所以()0g x >的解集为(),2-∞-. 综上所述:()0f x x>的解集为()(),20,2-∞-.故选:D二、多选题9.下列导数运算正确的有( )A .211x x '⎛⎫= ⎪⎝⎭B .()(1)x x xe x e '=+C .()222x x e e '=D .()2ln 2x x'=【答案】BC【分析】根据导数的运算法则逐项运算排除可得答案.【详解】对于A ,()12211x x x x --'⎛⎫'==-=- ⎪⎝⎭,故错误;对于B , ()()(1)x x x x xe x e x e x e '''==++,故正确; 对于C , ()()22222x x x e x e e ''==,故正确; 对于D , ()()''11ln 222x x x x==,故错误. 故选:BC.10.设等差数列{}n a 的前n 项和为n S ,其公差1d >,且7916+=a a ,则( ). A .88a = B .15120S = C .11a < D .22a >【答案】ABC【分析】利用等差数列基本量代换,对四个选项一一验证.【详解】对于A :因为7916+=a a ,所以978216a a a +==,解得:88a =.故A 正确; 对于B :()1158151521581512022a a a S +⨯⨯===⨯=.故B 正确;对于C :因为88a =,所以178a d +=,所以187a d =-. 因为1d >,所以11a <.故C 正确;对于D :因为88a =,所以268a d +=,所以286a d =-. 因为1d >,所以22a <.故D 错误. 故选:ABC11.已知曲线1C :函数()nx m f x x m+=-的图像,曲线()()2222:12C x y r -+-=,若1C 的所有对称轴平分2C ,且1C 与2C 有公共点,则r 的值可以等于( ).ABCD .3【答案】BD【分析】先将()f x 整理成()nm mf x n x m+=+-可得()f x 的所有对称轴都经过(),m n ,故可求得1,2m n ==,再计算()f x 上的点到圆心()1,2M 的最短距离即可求得答案【详解】因为()nx m nm mf x n x m x m++==+--,且()f x 是由nm m y x +=向右平移m 个单位长度,向上平移n 个单位长度得到,nm my x+=的所有对称轴都经过()0,0, 所以()nx m nm mf x n x m x m++==+--的所有对称轴都经过(),m n , 因为1C 的所有对称轴平分2C ,所以1C 的所有对称轴经过2C 的圆心()1,2M , 所以1,2m n ==,所以()321f x x =+-, 设函数()f x 图象上的动点3,21P x x ⎛⎫+ ⎪-⎝⎭,则()()2233121611MP x x x x ⎛⎫⎛⎫=-+≥-= ⎪ ⎪--⎝⎭⎝⎭,当且仅当311x x -=-时,取等号, 所以()f x 上的点到圆心()1,2M 的最短距离为6, 若1C 与2C 有公共点,则6r ≥ 故选:BD12.我国知名品牌小米公司今年启用了具备“超椭圆”数学之美的全新Logo .新Logo 将原本方正的边框换成了圆角边框(如图),这种由方到圆的弧度变化,为小米融入了东方哲学的思想,赋予了品牌生命的律动感.设计师的灵感来源于数学中的曲线:1nnC x y +=,则下列有关曲线C 的说法中正.确.的是( ).A .对任意的n ∈R ,曲线C 总关于原点成中心对称B .当0n >时,曲线C 上总过四个整点(横、纵坐标都为整数的点) C .当01n <<时,曲线C 围成的图形面积可以为2D .当1n =-时,曲线C 上的点到原点最近距离为22【答案】ABD【分析】对于A :利用代数法验证;对于B :直接求出曲线C 过四个整点()()()()1,0,1,0,0,1,0,1--,即可判断;对于C :先判断出||||1x y +=与坐标轴围成的面积为2,再判断出1n nx y +=在||||1x y +=内部,即可判断;对于D :表示出距离222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭.令()11x t t -=>-,利用基本不等式求出最小值.【详解】对于A :在曲线:1nnC x y +=中,以x -替换x ,以y -替换y ,方程不变,则曲线C 关于原点成中心对称.故A 正确;对于B,当0n >时,令0x =,得1y =±;令0y =,得1x =±.曲线C 总过四个整点()()()()1,0,1,0,0,1,0,1--.故B 正确;对于C :当01n <<时,由1n nx y +=,得:1,1x y ≤≤,且等号不同时成立. ∴||||||||1n n x y x y +>+=.又||||1x y +=与坐标轴围成的面积为2222⨯=,且1n nx y +=在||||1x y +=内部,则曲线C 围成图形的面积小于2.故C 错误.对于D :当1n =-时,曲线C 的方程为:11||||1x y --+=.不妨令,x y 均大于0,曲线化为111x y +=,即1x y x =-,则222221x d x y x x ⎛⎫=+=+ ⎪-⎝⎭. 令()11x t t -=>-,则2222222112(1)2228t t d t t t t t t ++=++=++++≥=,当且仅当221t t =且22t t=,即1t =时等号成立.结合对称性可知,曲线C上点到原点距离的最小值为故D 正确.故选:ABD.三、填空题13.已知{}n a 是公比为2的等比数列,则1234a a a a ++的值为______. 【答案】14##0.25【分析】利用等比数列的通项公式计算即可. 【详解】{}n a 是公比为2的等比数列,121113411123148124a a a a a a a a a a ++∴===++ 故答案为:14.14.设点P是曲线32y x =+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是______.【答案】20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】求出23'=y xtan α≥α的范围可得答案. 【详解】∵23y x '=≥∴tan α≥ 又∵0απ≤≤, ∴02πα≤<或23a ππ≤< 则角α的取值范围是20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.故答案为:20,,23πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭.15.已知数列{}n a 满足()21n a n m n =--,若满足123456a a a a a a <<<<<且对任意[)9,n ∈+∞,都有1n n a a +>,则实数m 的取值范围是______.【答案】1016,1117⎛⎫⎪⎝⎭【分析】由123456a a a a a a <<<<<解出1111m -<,由对任意[)9,n ∈+∞,都有1n n a a +>,解出1117m ->,即可求出实数m 的取值范围. 【详解】因为()21n a n m n =--,若满足123456a a a a a a <<<<<,所以()()()()()()222222111212313414515616m m m m m m --⨯<--⨯<--⨯<--⨯<--⨯<--⨯,解得:1111m -<. 因为对任意[)9,n ∈+∞,都有1n n a a +>,由二次函数的性质可得:()()101910212m m ⎧--<⎪+⎨-<⎪--⎩,解得:1117m ->. 所以1111711m <-<,解得:10161117m <<. 所以实数m 的取值范围为1016,1117⎛⎫⎪⎝⎭.故答案为:1016,1117⎛⎫⎪⎝⎭16.若方程2l e n 1x x ax x -=--存在唯一实根,则实数a 的取值范围是_____.【答案】(]1,01e ⎧⎫-∞+⎨⎬⎩⎭【分析】方程2l en 1xx ax x -=--存在唯一实根,则2ln 1e x x a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,利用导数分析()f x 的单调性,并在同一坐标系中做出y a =与函数()e ln 1x f x xx x +=+的图象,即可求解【详解】方程2l e n 1x x ax x -=--存在唯一实根, 则2ln 1e x x a x x-++=存在唯一实根,令()()2ln 10e ,x x x x xf x -++=>,则()()2221e n e e 2l 1x x x x x x x x x x f x ---⎛⎫-+⋅- +⎪⎭+⎝'= ()222231l e l e n e n x x x x x x x x xx x ----+==-⋅-- 令()()()2211ln e e ln xxx x h x x x x x --⋅=-++⋅=,注意到()10h =,则()10f '=,且当()0,1x ∈时,210,ln 0,0,e 0x x x x >-<><, 所以()()22110,n e el 0x xx x x x x ⋅⋅--<+<,即()0h x <; 当()1,x ∈+∞时,210,ln 0,0,e 0x x x x >->>>, 所以()()22110,n e el 0x xx x x x x ⋅⋅-->+>,即()0h x >; 所以当()0,1x ∈时,0fx,()f x 单调递增;当()1,x ∈+∞时,()0f x '<,()f x 单调递减; 又()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>, 当()1,x ∈+∞时,()0f x >恒成立; 当0x →时,()f x →-∞;所以()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>的大致图象为:由2ln 1e xx a x x-++=存在唯一实根,则函数y a =与函数()()2ln 1ln 10e ,e x x f x x x x x x x x-+++==+>有唯一的交点,由图象可知0a ≤或11ea =+时满足条件,所以方程2l e n 1x x ax x -=--存在唯一实根时, 实数a 的取值范围是(]1,01e a ⎧⎫∈-∞⋃+⎨⎬⎩⎭故答案为:(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭四、解答题17.已知函数321()213f x x x =-++.(1)求()f x 的单调区间;(2)求函数()f x 在区间[]1,2-上的最大值与最小值.【答案】(1)单调递增区间为[]0,4;单调减区间为(),0∞-和()4,+∞;(2)()min 1f x =;()max 193f x =. 【解析】(1)求出导函数,令0fx,求出单调递增区间;令()0f x '<,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解. 【详解】(1)函数()f x 的定义域是R , 2()4f x x x '=-+,令()0f x '≥,解得04x ≤≤ 令()0f x '<,解得>4x 或0x <, 所以()f x 的单调递增区间为[]0,4, 单调减区间为(),0∞-和()4,+∞; (2)由()()1f x 在[)1,0-单调递减,在[]0,2单调递增,所以()()min 01f x f ==,而()81928133f =-++=,()11012133f -=++=, 故最大值是()9231f =. 18.已知抛物线2:2(0)C y px p =>的准线与x 轴交于点()1,0M -.(1)求抛物线C 的方程;(2)若过点M 的直线l 与抛物线C 相切,求直线l 的方程.【答案】(1)24y x =;(2)10x y -+=或10x y ++=【解析】(1)利用准线方程2p x =-求解 (2)设出直线方程,与抛物线方程联立,利用0∆=求解.【详解】(1)2:2(0)C y px p =>的准线2p x =-过()1,0M - 故12p -=-,则2p = 抛物线方程为24y x =(2)设切线方程为1x my =-与抛物线方程联立有2440y my -+=()24160m ∆=-=故1m =±故直线l 的方程为:10x y -+=或10x y ++=【点睛】求抛物线的切线方程的方法:方法一:将抛物线转化为二次函数,然后利用导数求解切线方程,这在开口朝上的抛物线中经常用到。

河南省高二上学期期末考试数学试题(解析版)

河南省高二上学期期末考试数学试题(解析版)

一、单选题1.直线的倾斜角为( ) 50x +=A . B .C .D .30︒60︒120︒150︒【答案】D【分析】求出直线的斜率,然后根据斜率的定义即可求得倾斜角.【详解】直线可化为 50x +=y x =则斜率,满足, tan k α==α0180α≤<︒所以倾斜角为. 150︒故选:D2.下列有关数列的说法正确的是( )A .数列1,0,,与数列,,0,1是相同的数列 1-2-2-1-B .如果一个数列不是递增数列,那么它一定是递减数列C .数列0,2,4,6,8,…的一个通项公式为 2n a n =D ,…的一个通项公式为n a =【答案】D【分析】根据数列的定义和表示方法,逐一判断,即可得到本题答案.【详解】对于选项A ,数列1,0,-1,-2与数列-2,-1,0,1中的数字排列顺序不同,不是同一个数列,故A 错误;对于选项B ,常数数列既不是递增数列,也不是递减数列,故B 错误; 对于选项C ,当时,,故C 错误;1n =120a =≠对于选项D ,因为123a a a =====4a ==…,所以数列的一个通项公式为D 正确. n a =故选:D3.已知直线l 过点且方向向量为,则l 在x 轴上的截距为( ) ()3,4-()1,2-A . B .1C .D .51-5-【答案】A【分析】先根据方向向量求得直线的斜率,然后利用点斜式可求得直线方程,再令,即2k =-0y =可得到本题答案.【详解】因为直线的方向向量为,所以直线斜率, l ()1,2-2k =-又直线过点,所以直线方程为,即, l ()3,4-42(3)y x -=-+220x y ++=令,得,所以在x 轴上的截距为-1. 0y ==1x -l 故选:A4.已知,“直线与平行”是“”的( )m ∈R 1:0l mx y +=22:910l x my m +--=3m =±A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】根据平行的成比例运算即可求解.【详解】直线与平行1:0l mx y +=22:910l x my m +--=则, 210=91m m m ≠--所以, 29m =解得,3m =±经检验,均符合题意, 3m =±故选:C.5.已知等差数列中,,是函数的两个零点,则{}n a 5a 14a 232()=--x x x f 381116a a a a +++=( ) A .3 B .6C .8D .9【答案】B【分析】由等差数列的性质进行计算即可.【详解】由已知,函数的两个零点,即方程的两根,, 232()=--x x x f 2320x x --=1x 2x ∴, 51412331a a x x -+=+=-=∵数列为等差数列, {}n a ∴, 3168115143a a a a a a +=+=+=∴. 3811166a a a a +++=故选:B.6.已知圆关于y 轴对称的圆与直线相切,则m 的值为( )221:230C x y x ++-=2C x m =A .B .3C .或3D .1或1-1-3-【答案】C【分析】先求出关于y 轴对称的圆的标准方程,然后利用圆心到切线的距离等于半径,列出方2C 程求解,即可得到本题答案.【详解】由圆,可得标准方程,圆心为,半径, 221:230C x y x ++-=22(1)4x y ++=(1,0)-2r =故关于轴对称的圆的圆心为,半径,则其标准方程为, y 2C (1,0)2r =22(1)4x y -+=又因为圆与直线相切,所以圆心到切线的距离等于半径, 2C x m =即,解得或. 12m -=1m =-3m =故选:C7.已知数列满足,且,则数列的前项和为( ) {}n a 13n n a a +=11a =-{}2n a n +5A . B . C . D .151-91-91151【答案】B【分析】由等比数列的定义判断出数列为等比数列,再使用分组求和法求解即可. {}n a 【详解】∵数列满足,且, {}n a 13n n a a +=11a =-∴数列是首项为,公比为的等比数列,{}n a 1-3∴,11133n n n a --=-⨯=-∴数列的前项和为,{}2n a n +5()()()()()01234532343638310S =-++-++-++-++-+()()0123433333246810=-----+++++()()51132105132-⨯-+⨯=+-12130=-+.91=-故选:B.8.已知椭圆过点且与双曲线有相同焦点,则椭圆的离心率22221(0)x y a b a b +=>>()3,2-22132x y -=为( )A B C D 【答案】C【分析】由题可得,,联立方程可求得,然后代入公式,即225a b -=22941a b +=22,a b e =可求得本题答案.【详解】因为椭圆与双曲线有相同焦点,所以椭圆两个焦点分别为22132x y -=12(F F ,则①, 2225c a b =-=又椭圆过点,所以②, ()3,2P -22941a b +=结合①,②得,,2215,10a b ==所以, e ==故选:C9.已知圆与圆的公共弦长为2,则m 的值为221:2220C x y x y +-+-=222:20(0)C x y mx m +-=>( )A B .C D .332【答案】A【分析】根据圆的圆心和半径公式以及点到直线的距离公式,以及公共线弦方程的求法即可求解. 【详解】联立和, 222220x y x y +-+-=2220x y mx +-=得,由题得两圆公共弦长,(1)10m x y -+-=2l =圆的圆心为,半径, 221:2220C x y x y +-+-=(1,1)-r 2=圆心到直线(1,1)-(1)10m x y -+-=,===平方后整理得,, 2230m -=所以 m m =故选:A.10.“斐波那契数列”又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,…,即斐波那契数列满足,,设其前n 项和为,若,则{}n a 121a a ==21++=+n n n a a a n S 2021S m =2023a =( ) A . B .mC .D .1m -1m +2m 【答案】C【分析】由斐波那契数列满足,归纳可得,令{}n a 12121,1,n n n a a a a a --===+21m m a S +=+2021m =,即可求得本题答案.【详解】因为斐波那契数列满足, {}n a 12121,1,n n n a a a a a --===+所以,321a a a =+, 432211a a a a a =+=++, 5433211a a a a a a =+=+++……, 21122111m m m m m m m a a a a a a a a S ++--=+=++++++=+ 则. 2023202111a S m =+=+故选:C11.如图,在直四棱柱中,底面ABCD 是边长为2的正方形,,M ,N 分1111ABCD A B C D -13D D =别是,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为( )11B CA B C D 【答案】D【分析】建立空间直角坐标系,设出点的坐标,根据两点距离公式表示,利用二次函数求值P MP 域,即可得到本题答案.【详解】以点为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空D 1,,DA DC DD x y z 间直角坐标系.因为底面ABCD 是边长为2的正方形,,所以, 13D D =(1,2,3)M ∵点在平面上,∴设点的坐标为,P xOy P ()[],,0,0,1x y y ∈∵在上运动,∴,∴,∴点的坐标为, P DN 2AD x y AN==2x y =P (2,,0)y y==∵,∴当时, 取得最小值. []0,1y ∈45y =MP 故选:D12.已知双曲线C :l 与C 相交于A ,B 两2221(0)y x b b-=>点,若线段的中点为,则直线l 的斜率为( ) AB ()1,2NA .B .1CD .21-【答案】B【分析】先利用题目条件求出双曲线的标准方程,然后利用点差法即可求出直线的斜率.l 【详解】因为双曲线的标准方程为,2221(0)y x b b-=>所以它的一个焦点为,一条渐近线方程为, (,0)c 0bx y -=所以焦点到渐近线的距离,化简得,解得,d =2222(1)b c b =+22b =所以双曲线的标准方程为,2212y x -=设,所以①,②, 1122(,),(,)A x y B x y 221112y x -=222212y x -=①-②得,,222212121()()02x x y y ---=化简得③,121212121()()()()02x x x x y y y y +--+-=因为线段的中点为,所以, AB ()1,2N 12122,4x x y y +=+=代入③,整理得, 1212x x y y -=-显然,所以直线的斜率. 1212,x x y y ≠≠l 12121y y k x x -==-故选:B二、填空题13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则xy=___________. 【答案】2.【详解】试题分析:由三点共线得向量与共线,即,,AB AC ABk AC = (3,4,8)(1,2,4)k x y -=-+,解得,,∴. 124348x y -+==-12x =-4y =-2xy =【解析】空间三点共线.14.已知抛物线的焦点为F ,直线与抛物线交于点M ,且,则22(0)x py p =>2x =2MF =p =_______. 【答案】2【分析】先求点的纵坐标,然后根据抛物线的定义,列出方程,即可求得的值.M p 【详解】把代入抛物线标准方程,得,2x =22(0)x py p =>2(2,)M p 根据抛物线的定义有,,化简得,,解得. 222p MF MH p==+=244p p +=2p =故答案为:215.已知点,点为圆上的任意一点,点在直线上,其中为坐标原(1,1)--P M 22:1C x y +=N OP O点,若恒成立,则点的坐标为______.|||MP MN =N【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设和的坐标,由,列等式,利用点在圆上,点在直线上,NM |||MP MN =M N OP 化简得恒成立的条件,求得点的坐标.N 【详解】易知直线的方程为,由题意可设,OP 0x y -=00(,)N x x 设,则可得,由,可得(,)M x y ''221x y ''+=||||MP MN 22222200||(1)(1)||()()MP x y MN x x y x ''+++==''-+-, 2002()322()12x y x x y x ''++=''-+++则,化简得,2002()322()12x y x x y x ''''⎡⎤++=-+++⎣⎦200(24)()41x x y x ''++=-即,[]00(12)2()(12)0x x y x ''+++-=若恒成立,则,解得,故.|||MP MN =0120x +=012x =-11,22N ⎛⎫-- ⎪⎝⎭故答案为:11,22⎛⎫-- ⎪⎝⎭16.已知双曲线C :的左、右焦点分别为,,其中与抛物线的22221(0,0)x y a b a b-=>>1F 2F 2F 28y x =焦点重合,点P 在双曲线C 的右支上,若,且,则的面积为122PF PF -=1260F PF ∠=︒12F PF △_______. 【答案】【分析】结合题目条件与余弦定理,先算出的值,然后代入三角形的面积公式12PF PF ⋅,即可得到本题答案. 1212121sin 2F PF S PF PF F PF =⋅∠A 【详解】由双曲线右焦点与抛物线的焦点重合,可得,所以, 2F 28y x =2(2,0)F 124F F =设,则,1122,PF r PF r ==122r r -=因为,所以, 22212121212||||2cos F F PF PF PF PF F PF =+-⋅⋅∠22121212162r r r r +-⨯=则,解得,21212()16r r r r -+=1212r r =所以,. 12121sin 602F PF S r r =︒=A故答案为:三、解答题17.已知数列满足,且点在直线上.{}n a 11a =111,n n a a +⎛⎫⎪⎝⎭2y x =+(1)求数列的通项公式;{}n a (2)设,求数列的前n 项和. 1n n n b a a +={}n b n T 【答案】(1) 121n a n =-(2) 21nn + 【分析】(1)先求出数列的通项公式,从而可得到数列的通项公式;1n a ⎧⎫⎨⎬⎩⎭{}n a (2)根据(1)中数列的通项公式,可写出数列的通项公式,再利用裂项相消的方法即可{}n a {}n b 求得前n 项和.n T 【详解】(1)由题意得,即, 1112n n a a +=+1112n n a a +-=所以数列是首项为,公差为2的等差数列,1n a ⎧⎫⎨⎬⎩⎭111a =故,即. 1112(1)21n n n a a =+-=-121n a n =-(2)由(1)知,11111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭ 111111123352121n n ⎛⎫=⨯-+-++- ⎪-+⎝⎭. 111221n ⎛⎫=- ⎪+⎝⎭21n n =+18.已知的顶点坐标分别是,,. ABC A ()3,0A ()1,2B ()1,0C -(1)求外接圆的方程;ABC A (2)若直线l :与的外接圆相交于M ,N 两点,求. 3480x y +-=ABC A MCN ∠【答案】(1) 22(1)4x y -+=(2) 60MCN ∠=︒【分析】(1)设出圆的一般方程,代入点,求出方程组的解,即可得到本题答案; ,,A B C (2)先求出圆心到直线的距离,即可得到,然后求出,即可得到本题答MN 30PMN ∠=︒MPN ∠案.【详解】(1)设圆的一般方程为:,, 220x y Dx Ey F ++++=22(40)D E F +->代入点得,(3,0),(1,2),(1,0)A B C -,解得,9+30142010D F DEF D F +=⎧⎪++++=⎨⎪-+=⎩203D E F =-⎧⎪=⎨⎪=-⎩所以圆的一般方程为:, 22230x y x +--=标准方程为:.22(1)4x y -+=(2)圆心到直线的距离,(1,0)P :3480l x y +-=d 又因为,在等腰中,, 2PM =PMN A 30PMN ∠=︒所以圆心角,则.260120MPN ∠=⨯︒=︒60MCN ∠=︒19.如图所示,在四棱锥中,平面ABCD ,,,且P ABCD -PA ⊥AD BC ∥AB BC ⊥,.1AB AP BC ===2AD =(1)求证:平面;CD ⊥PAC (2)若E 为PC 的中点,求与平面所成角的正弦值.PD AED 【答案】(1)证明见解析【分析】(1)先证,,由此即可证得平面; AC CD ⊥PA CD ⊥CD ⊥PAC (2)建立空间直角坐标系,求出,平面的一个法向量为,然后利用公(0,2,1)PD =- AED ()1,0,1n =- 式,即可求得本题答案. sin cos ,n PD n PD n PDθ⋅==⋅ 【详解】(1)作,垂足为,易证,四边形为正方形.CF AD ⊥F ABCF 所以,又1CF AF DF ===CD ==AC ==因为,所以.222AC CD AD +=AC CD ⊥因为平面,平面,所以.PA ⊥ABCD CD ⊂ABCD PA CD ⊥又,平面,平面,所以平面.AC PA A ⋂=AC ⊂PAC PA ⊂PAC CD ⊥PAC(2)以点为坐标原点,以所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间A ,,AB AD AP 直角坐标系,则,,,,. ()0,0,0A ()0,0,1P ()1,1,0C ()0,2,0D 111,,222E ⎛⎫ ⎪⎝⎭则,,. (0,2,0)AD = (0,2,1)PD =- 111(,,)222AE = 设平面的法向量为,AED (),,n x y z = 由,得, 00n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩ 11102220x y z y ⎧++=⎪⎨⎪=⎩令,可得平面的一个法向量为.1z =AED ()1,0,1n =- 设与平面所成角为,PD AED θ则sin cos ,n PD n PD n PDθ⋅====⋅ 20.已知抛物线:()的焦点为,过上一点向抛物线的准线作垂线,垂足C 22y px =0p >F C P 为,是面积为.Q PQF △(1)求抛物线的方程;C (2)过点作直线交于,两点,记直线,的斜率分别为,,证明:()1,0M -l C A B FA FB 1k 2k .120k k +=【答案】(1)24y x =(2)证明见解析【分析】(1)由等边三角形的面积可以求出边的长,再求出中的长,即可求出QF Rt FQN A FN 的值,从而求出抛物线的标准方程;p (2)设过的直线方程,与抛物线方程联立,借助,坐标表示,化简证明即可.M A B 12k k +【详解】(1)如图所示,的面积 PQF △1sin 602PQF S PQ PF =︒A ∴, 4PF PQ QF ===设准线与轴交于点,则在中,, x N Rt FQN A 906030FQN ∠=︒-︒=︒∴, 122p FN QF ===∴抛物线的方程为.C 24y x =(2)由题意知,过点的直线l 的斜率存在且不为,()1,0M -0∴设直线的方程为:(),l l ()1y k x =+0k ≠直线的方程与抛物线的方程联立,得,消去y 整理得, l C 2(1)4y k x y x=+⎧⎨=⎩,()2222240k x k x k +-+=当,即时,设,, ()2242440k k ∆=-->()()1,00,1k ∈-⋃()11,A x y ()22,B x y 则,, 212224k x x k =-+-121=x x 由第(1)问知,,()1,0F ∴直线的斜率,直线的斜率, FA 1111y k x =-FB 2221y k x =-∴. ()()()()()()()()()12112121212121221121011111111x x k x x y y k x k x x k k x x x x x -++--+=+===------+∴原命题得证.21.已知数列满足,且.{}n a 12n n a a +=12314++=a a a (1)求的通项公式;{}n a (2)设,数列的前n 项和为,若对任意的,不等式2n n b n a =⋅{}n b n T n *∈N ()2224844n n T n n λ++-≥-恒成立,求实数λ的取值范围.【答案】(1)2n n a =(2) 3,128⎡⎫+∞⎪⎢⎣⎭【分析】(1)由,可得数列为等比数列,公比,代入到,算出12n n a a +={}n a 2q =12314++=a a a ,即可得到本题答案;1a (2)根据错位相减的方法求得,然后将不等式,逐步等价转化为n T ()2224844n n T n n λ++-≥-,再利用单调性求出的最大值,即可得到本题答案. 2112n n λ-≥2112n nn c -=【详解】(1)因为,所以是公比为2的等比数列, 12n n a a +={}n a 所以,故,1231112414a a a a a a ++=++=12a =故.2n n a =(2),1222n n n b n n +=⋅=⋅则,23411222322n n T n +=⨯+⨯+⨯++⨯ 所以,()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯= 两式相减得,,()()2234122221222222212412n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅-- 因此. 2(1)24n n T n +=-⋅+由,可得,所以, ()2224844n n T n n λ++-≥-222844n n n n λ+⋅≥-2112nn λ-≥该式对任意的恒成立,则. n *∈N max2112n n λ-⎛⎫≥ ⎪⎝⎭令,则, 2112n n n c -=()1112111211132222n n n n n n n n c c ++++----=-=当时,,即数列递增,当时,,即数列递减,6n ≤10n n c c +->{}n c 7n ≥10n n c c +-<{}n c所以当时,, 7n =()max 3128n c =所以实数λ的取值范围是. 3,128⎡⎫+∞⎪⎢⎣⎭22.已知椭圆M :的短轴长为. 22221(0)x y a b a b +=>>(1)求椭圆M 的方程;(2)若过点的两条直线分别与椭圆M 交于点A ,C 和B ,D ,且共线,求直线AB 的()1,1Q -,AB CD 斜率.【答案】(1)22193x y +=(2) 13【分析】(1)由短轴长可求出可求出,由此即可求得本题答案; 23b =29a =(2)设点,因为共线,可设()()()()11223344,,,,,,,A x y B x y C x y D x y ,AB CD ,AQ QC BQ QD λλ== ,可得,,代入椭圆方程,然后相减,即可得到本题答案. 13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩24241(1)xx y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩【详解】(1)因为短轴长为,b =23b =因为离心率,所以,可得, e 2222213c b a a =-=2213b a =29a =所以椭圆M 的方程为. 22193x y +=(2)设.()()()()11223344,,,,,,,A x y B x y C x y D x y 设,则,即, AQ QC λ= 13131(1)1(1)x x y y λλ-=-⎧⎨--=+⎩13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩代入椭圆方程,得, ()()22112211193x y λλλλ+-++⎡⎤⎡⎤⎣⎦⎣⎦+=即① ()()221141211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭同理可得② ()()222241211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭由②-①,得, 11229393x y x y -=-所以,()12123y y x x -=-所以直线AB 的斜率. 121213y y k x x -==-【点睛】思路点睛:把共线这个条件,转化为,是解决此题的关键. ,AB CD ,AQ QC BQ QD λλ==。

2022-2023学年福建省永春第一中学高二上学期期末考试数学试卷含答案

2022-2023学年福建省永春第一中学高二上学期期末考试数学试卷含答案

永春一中20221-2023学年(上)期末考试高二数学试题一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()()11,0,1,0,2a b ==- ,,且ka b + 与2a b -互相垂直,则k 的值是()A .1B .15C .35D .752.已知数列{}n a 的前n 项和为n S ,首项11a =,且满足132nn n a a ++=⋅,则11S 的值为()A .4093B .4094C .4095D .40963.已知()()21220222022ln 2f x x xf x '=+-,则()2022f '=()A .2021B .2021-C .2022D .2022-4.如图,在正三棱柱111ABC A B C -中,124AA AB ==,E 是1BB 的中点,F 是11AC 的中点,若过A ,E ,F 三点的平面与11B C 交于点G ,则1A G =()A .73B .279C .273D.5.已知双曲线2222:1(0,0)x y C a b a b-=>>,过点(3,6)P 的直线l 与C 相交于,A B 两点,且AB 的中点为(12,15)N ,则双曲线C 的离心率为()A .2B .32C .355D .526.设等差数列{}n a 的前n 项的和为527,9,16n S a a a =+=,则下列结论不正确的是()A .21n a n =-B .3616a a +=C .2n S n n=+D .数列11n n a a +⎧⎫⎨⎩⎭的前n 和为21nn +7.图1为一种卫星接收天线,其曲面与轴截面的交线为拋物线的一部分,已知该卫星接收天线的口径6AB =,深度2MO =,信号处理中心F 位于焦点处,以顶点O 为坐标原点,建立如图2所示的平面直角坐标系xOy ,若P 是该拋物线上一点,点15,28Q ⎛⎫⎪⎝⎭,则PF PQ +的最小值为()A .4B .3C .2D .18.如图,已知直线:20l x y m ++=与圆22:2O x y +=相离,点P 在直线l 上运动且位于第一象限,过P 作圆O 的两条切线,切点分别是,M N ,直线MN 与x 轴、y 轴分别交于,R T 两点,且ORT 面积的最小值为1625,则m 的值为()A .4-B .9-C .6-D .5-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆22:49O x y +=,直线l 过点(2,6)N ,且交圆O 于,P Q 两点,点M 为线段PQ 的中点,则下列结论正确的是()A .点M 的轨迹是圆B .||PQ 的最小值为6C .若圆O 上仅有三个点到直线l 的距离为5,则l 的方程是43100x y -+=D .使||PQ 为整数的直线l 共有16条10.斐波那契数列又称黄金分割数列,因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用n a 表示斐波那契数列的第n 项,则数列{}n a 满足:121a a ==,21n n n a a a ++=+,记121nin i aa a a ==++⋅⋅⋅+∑,则下列结论正确的是()A .934a =B .()2233n n n a a a n -+=+≥C .20212202120221i i aa a ==⋅∑D .201920211ii aa ==∑11.一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点()3,0F ,椭圆的短轴与半圆的直径重合.若直线()0y t t =>与半圆交于点A ,与半椭圆交于点B ,则下列结论正确的是()A .椭圆的离心率是22B .线段AB 长度的取值范围是(0,32+C .ABF △面积的最大值是)9214+D .OAB 的周长不存在最大值12.在直四棱柱中1111ABCD A B C D -中,底面ABCD 为菱形,160,2,BAD AB AD AA P ∠====为1CC 中点,点Q 满足][()1,0,1,0,1DQ DC DD λμλμ⎡⎤=+∈∈⎣⎦.下列结论正确的是()A .若12λμ+=,则四面体1A BPQ 的体积为定值B .若AQ 平面1A BP ,则1AQ C Q +10310+C .若1A BQ △的外心为O ,则11A B A O ⋅为定值2D .若17A Q =,则点Q 的轨迹长度为23π三、填空题:本题共4小题,每小题5分,16题,第一空答对得2分,共20分.13.在空间直角坐标系O xyz -中,()2,1,1A ,(),0,5B b ,()0,,4C c ,若四边形OABC 为平行四边形,则b c +=________.14.设函数()3221f x x ax bx =+++的导函数为()f x ',若函数()y f x '=的图象的顶点的横坐标为12-,且()10f '=,则ba的值为__________.15.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,以线段12F F 为直径的圆交C 于,A B 两点,其中点A 在第一象限,点B 在第三象限,若113AF BF ≤,则C 的离心率的取值范围是__________.16.对于正整数n ,设n x 是关于x 的方程:()222253log 1nn n n x x x ++++=的实根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,则1a =_____;若πsin 2n n n b a =⋅,n S 为{}n b 的前n 项和,则2022S =______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知曲线31:C y x =和22:2,(R)C y ax x a =+-∈.(1)若曲线1C 、2C 在1x =处的切线互相垂直,求a 的值;(2)若与曲线1C 、2C 在0x x =处都相切的直线的斜率大于3,求a 的取值范围.18.(本题满分12分)如图,在平面直角坐标系xoy 中,已知圆22:40C x y x +-=及点),(1,0)(1,2A B -.(1)若直线l 过点B ,与圆C 相交于M N 、两点,且||3MN =l的方程;(2)圆C 上是否存在点P ,使得222||||1PA PB +=成立?若存在,求点P 的个数;若不存在,请说明理由.19.(本题满分12分)如图,在四棱锥P ABCD -中,已知底面ABCD 是正方形,PC ⊥底面ABCD ,且1,PC BC E ==是棱PB 上动点.(1)若过C ,D ,E 三点的平面与平面PAB 的交线是l ,证明://CD l(2)线段PB 上是否存在点E ,使二面角P AC E --的余弦值是23?若存在,求PE PB 的值;若不存在,请说明理由.20.(本题满分12分)已知数列{}n a ,{}n b 满足1n n n b a a +=-,其中,*N n ∈.(1)若12a =,2nn b =.①求数列{}n a 的通项公式;②试求数列{}n n a ⋅的前n 项和.(2)若2n n b a +=,数列{}n a 的前6291项之和为1926,前77项之和等于77,试求前2024项之和是多少?21.(本题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,,F F P 为双曲线C 上一点,12121cos ,24F PF PF PF ∠==,且焦点到渐近线的距离为3(1)求双曲线C 的方程;(2)设A 为双曲线C 的左顶点,点(),0B t 为x 轴上一动点,过2F 的直线l 与双曲线C 的右支交于,M N 两点,直线,AM AN 分别交直线2a x =于,S T 两点,若π02SBT ∠<<,求t 的取值范围.22.(本题满分12分)已知函数2()4f x x =-,设曲线()y f x =在点()(),n n x f x 处的切线与x 轴的交点为()()*1,0n x n +∈N,其中1x 为正实数.(1)用n x 表示1n x +;(2)若14x =,记2lg2n n n x a x +=-,证明数列{}n a 成等比数列,并求数列{}n x 的通项公式.(3)若14,2n n x b x ==-,n T 是数列{}n b 的前n 项和,证明:3n T <.。

河北省唐山市2022-2023学年高二上学期期末数学试题(答案版)

河北省唐山市2022-2023学年高二上学期期末数学试题(答案版)

唐山市2022~2023学年度高二年级第一学期学业水平调研考试数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线2330x y +-=的一个方向向量是()A.()2,3- B.()2,3 C.()3,2- D.()3,2【答案】C 【解析】【分析】当直线的斜率存在时,由直线的方向向量为(,)n x y = ,则yk x=代入计算即可.【详解】因为2330x y +-=,所以23k =-,设直线的方向向量为(,)n x y = ,则23yk x=-=,取3x =,则=2y -,所以直线的一个方向向量为(3,2)n =-.故选:C.2.在等差数列{}n a 中,11a =,923a =-,则5a =()A.-11B.-8C.19D.16【答案】A 【解析】【分析】代入等差数列通项公式求出公差,再代入公式即可求得.【详解】因为数列{}n a 为等差数列,11a =,923a =-,所以91823a a d =+=-,解得3d =-,则51411211a a d =+=-=-.故选:A3.已知向量()0,1,1a =- ,()1,2,b y = ,3a b ⋅=-,则a 与b 的夹角为()A.30︒ B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据题意,先得到b的坐标,然后根据空间向量数量积的坐标运算即可得到结果.【详解】根据题意可得,0231a b y y ⋅=-+=-⇒=-,即()1,2,1b =-则cos ,2a b a b a b⋅<>==-,且[],0,πa b <>∈r r ,所以a 与b的夹角为150︒故选:D4.在正方体1111ABCD A B C D -中,E 为11C D 的中点,则异面直线1B C 与DE 所成角的余弦值为()A.5B.105-C.4D.4-【答案】A 【解析】【分析】设出正方体的棱长,建立空间直角坐标系,得到各点坐标,表达出1B C 和DE,即可得出异面直线1B C 与DE 所成角的余弦值.【详解】由题意在正方体1111ABCD A B C D -中,E 为11C D 的中点,设正方体的棱长为2a ,建立空间直角坐标系如下图所示,则()10,0,0A ,()12,0,0B a ,()2,2,2C a a a ,()12,2,0C a a ,()0,2,2D a a ,(),2,0E a a ∴()10,2,2B C a a = ,(),0,2DE a a =-,设异面直线1B C 与DE 所成角为θ,1110cos 5B C D B EC DEθ==⋅ ,∴异面直线1B C 与DE 所成角的余弦值为105,故选:A.5.F 为抛物线C :24x y =的焦点,点A 在C 上,点()0,5B ,若AF BF =,则ABF △的面积为()A. B. C.4D.8【答案】B 【解析】【分析】求出焦点F 的坐标,根据两点间距离公式求得BF ,即AF 的长度,根据抛物线定义可求得A 点坐标,进而可求出面积.【详解】解:因为抛物线C :24x y =,所以()0,1F ,准线为:1y =-因为()0,5B ,所以4BF AF ==,设()11,A x y ,根据抛物线定义可知:114y +=,解得13y =,所以()A ±,所以111422ABF S BF x =⋅⋅=⨯⨯= .故选:B6.设直线210x y --=与x 轴的交点为椭圆()222210x y a b a b+=>>的右焦点2F ,过左焦点1F 且垂直x 轴的直线与椭圆交于M ,132F M =,则椭圆的离心率为()A.33B.22C.12D.32【答案】C 【解析】【分析】根据题意可得()21,0F 以及2132b F M a =±=,再结合椭圆,,a bc 的关系,列出方程即可得到结果.【详解】根据题意可得,直线210x y --=与x 轴的交点为()1,0,即()21,0F ,所以1c =,且过左焦点1F 且垂直x 轴的直线与椭圆交于M ,将x c =-代入椭圆方程可得,2by a=±,即2132b F M a =±=,所以232b a =所以2222132c ba abc =⎧⎪⎪=⎨⎪=+⎪⎩,解得21a b c =⎧⎪=⎨⎪=⎩12c e a ==故选:C7.已知圆O :2216x y +=和点(P ,若过点P 的5条弦的长度构成一个递增的等比数列,则该数列公比的取值范围是()A.(B.(]1,2C.( D.(]0,2【答案】A 【解析】【详解】圆半径4r =,OP r ==,则点P 在圆内,则过点P 的弦长[]2,8d Î=,(乱码,查看原文亦是乱码)故所求公比的取值范围是(乱码,查看原文亦是乱码)1,纟çúçú棼,即(.故选:A8.已知数列{}n a 满足11a =,()121n n n a a a ++=,令1n n n b a a +=,则数列{}n b 的前2022项和2022S =()A.40444045B.20224045C.40434045D.20244045【答案】B 【解析】【分析】化简()121n n n a a a ++=,得1112n na a +-=,可得1n a ⎧⎫⎨⎬⎩⎭是等差数列,求出通项公式,再用裂项相消的方法求数列{}n b 的前2022项和即可.【详解】因为数列{}n a 满足()121n n n a a a ++=,即112n n n n a a a a ++⋅+=,即1112n na a +-=,111a =,所以数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,所以121n n a =-,则121n a n =-,因为1n n n b a a +=,则()()1111(212122121n b n n n n ==-+-+-,数列{}n b 的前2022项和2022111111112022(1(1233522022122022122202214045S =-+-++-=-=⨯-⨯+⨯+ .故选:B【点睛】易错点睛:裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知直线l :y x =+,圆O :222(0)x y r r +=>,且圆O 上至少有三个点到直线l 的距离都等于1,则r 的值可以是()A.1 B.2C.3D.4【答案】CD 【解析】【分析】根据圆的对称性,结合圆心到直线距离列式求解即可.【详解】圆O 到直线的距离2d ==,由圆O 上至少有三个点到直线l 的距离都等于1得13r d r -侈.故选:CD.10.将数列{}n 中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号3个数,第四个括号4个数,…,进行排列:()1,()2,3,()4,5,6,()7,8,9,10,…,则()A.第8个括号内的第一个数是29B.前9个括号内共有45个数C.第10个括号内的数的和比第8个括号内的数的和大136D.2022在第64个括号内【答案】ABD 【解析】【分析】第n 个括号有n 个数,则括号里数的数量满足等差数列,且括号里的数同为等差数列,根据等差数列的通项公式及求和公式逐个判断即可.【详解】对A ,第n 个括号有n 个数,则前7个括号内共有()177282+´=个数,故第8个括号内的第一个数是29,A 对;对B ,前9个括号内共有()199452+⨯=个数,B 对;对C ,由AB 得,第10个括号内的数的和为()4655105052+´=,第8个括号内的数的和为()293682602+´=,故第10个括号内的数的和比第8个括号内的数的和大505260245-=,C 错;对D ,设2022在第()*k k ∈N 个括号内,则有()()()1111202222k k k k +--+<£,解得64k =,D 对.故选:ABD.11.已知双曲线C :2213y x -=的左,右焦点分别为1F ,2F ,P 是C 的右支上一点,则()A.若120PF PF ⋅≤ ,则P 到x 轴的最大距离为32B.存在点P ,满足124PF PF =C.P 到双曲线的两条渐近线的距离之积为34D.12PF F △内切圆半径r 的取值范围是0r <<【答案】ACD 【解析】【分析】利用数量积坐标运算表示120PF PF ⋅≤,解不等式求点P 的纵坐标范围,判断A ,结合双曲线定义判断B ,利用点到直线的距离公式求P 到双曲线的两条渐近线的距离之积判断C ,根据直线与双曲线的位置关系确定12PF F ∠的范围,结合内切圆的性质判断D.【详解】设双曲线的实半轴为a ,虚半轴为b ,半焦距为c ,则双曲线2213y x -=的焦点1F 的坐标为()2,0-,2F 的坐标为()2,0,1,2a b c ===,渐近线方程为y =,设点P 的坐标为(),m n ,则m 1≥,2213n m -=,对于A ,因为()()122,,2,PF m n PF m n =---=--,所以()()222122240PF PF m m n m n ⋅=---+=+≤- 所以221403n n ++-≤,所以3322n -≤≤,所以P 到x 轴的最大距离为32,A 正确;对于B ,由已知124PF PF =,122PF PF -=,所以223PF =,又21PF c a ≥-=,矛盾,B 错误,对于C ,点P223344m n -==,C 正确;对于D ,因为12,,P F F 三点不共线,所以直线1PF 的斜率不为0,可设直线1PF 的方程为()2y k x =+,0k ≠,联立()22132y x y k x ⎧-=⎪⎨⎪=+⎩,消y ,得()222234430k x k x k ----=,方程()222234430kxk x k ----=的判别式()()422216434336360k k k k ∆=----=+>,由已知224303k k--<-,所以23k <,又0k ≠,故0k <<或0k <<,设12PF F △的内切圆的圆心为E ,12PF F △的内切圆与x 轴相切于点M ,因为122PF PF -=,所以122MF MF -=,又124MF MF +=,所以13MF =,设122PF F θ∠=,则π023θ<<,又12PF F △内切圆半径1tan 3tan r MF θθ==,所以0r <<D 正确.故选:ACD.【点睛】本题为双曲线的综合性问题,考查双曲线的定义,直线与双曲线的位置关系,双曲线的性质,难度较大.12.已知正方体1111ABCD A B C D -的棱长为2,点P 在正方形ABCD 内运动(含边界),则()A.存在点P ,使得11D P BC ⊥B.若15D P =BP 的最小值为221C.若11D P B D ⊥,则P 2D.若1A P BD ⊥,直线1A P 与直线1BD 所成角的余弦值的最大值为33【答案】BD 【解析】【分析】A 选项,建立适当空间直角坐标系,利用向量垂直的坐标运算判定即可;B 选项,找出动点P 在正方体底面ABCD 内的运动轨迹,利用点到圆上点的最值求解即可;C 选项,根据立体几何中线面垂直推出线线垂直,可找出动点P 在正方体底面ABCD 内的运动轨迹是线段AC ,即可求解;D 选项:建立适当空间直角坐标系,利用1A P BD ⊥可得出点(),2,0P x x -,再利用空间向量的坐标表示求解即可.【详解】对于A 选项:如图1,以D 为坐标原点建立空间直角坐标系,则()2,2,0B ,()10,2,2C ,()10,0,2D ,设(),,0P x y ,[],0,2x y ∈,则()1,,2D P x y =- ,()12,0,2BC =-,若11D P BC ⊥,则11240D P BC x ×=--=,解得2x =-,不合题意,错误;对于B 选项:如图2,若15D P =DP ,则点P 在以D 为圆心,DP 为半径的圆上,此时点P 的轨迹为 FPE ,又15D P =,12DD =,2211541DP D P DD \=-=-,min 221BP BD DP \=-=,故正确;对于C 选项:如图3,连接1AD ,AC ,BD ,1CD ,11B D ,ABCD 为正方形,则AC BD ⊥,又1DD ⊥Q 平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,1BD DD D = ,1,BD DD ⊂平面11BDD B ,AC ∴⊥平面11BDD B ,1B D ⊂平面11BDD B ,1AC B D ∴⊥,同理可证:11AD B D ⊥,又1AC AD A =I ,1,AC AD ⊂平面1ACD ,1B D ∴⊥平面1ACD ,平面1ACD ⋂平面ABCD AC =,故点P 在正方体底面ABCD 内的运动轨迹是线段AC ,又正方体1111ABCD A B C D -的棱长为2,AC ∴=,故错误;对于D 选项:如图4,以D 为坐标原点建立空间直角坐标系,连接AC ,BD ,1BD ,1A P ,则()2,2,0B ,()12,0,2A ,()10,0,2D ,()0,0,0D ,设(),,0P x y ,[],0,2x y ∈,则()1-2,,2A P x y =- ,()2,2,0BD =--,当1A P BD ⊥,有()122202240A P BD x y x y ×=---+=--+=,则2y x =-,此时(),2,0P x x -,又()12,2,2A P x x =--- ,()12,2,2BD =--,111111cos ,A P BD A P BD A P BD ×\<>==×当2x =时,11cos,A P BD <> 有最大值,此时11cos ,A P BD <>=.故答案选:BD.【点睛】关键点点睛:立体几何中线面垂直的判定定理,动点在立体几何中的轨迹问题,以及利用空间向量法解决立体几何的问题,属于难题.三、填空题:本题共4小题,每小题5分,共20分.13.已知正项等比数列{}n a ,若1234a a +=,343a a +=,则4a =______.【答案】2【解析】【分析】由等比数列基本量列方程求得基本量,即可得结果.【详解】由题意,设等比数列的公比()0q q >,则()121314a a a q +=+=,()234113a a a q q +=+=,两式相除得,242q q =⇒=,∴31411,24a a a q ===.故答案为:2.14.正四面体ABCD 中,若M 是棱CD 的中点,AP AM λ= ,1166AB BP AC AD +=+,则λ=______.【答案】13【解析】【分析】根据空间向量线性运算得到1166AC AM AD λλ+= ,证明出共线定理的推论,由,,M C D 三点共线,得到11166λλ+=,求出13λ=.【详解】因为AB BP AP +=,所以1166AP AC AD =+ ,即1166AC A AM D λ+= ,1166AC AM AD λλ+=,下面证明:已知OB xOA yOC =+,若,,A B C 三点共线,则1x y +=,因为,,A B C 三点共线,所以存在非零实数t ,使得AB t AC =,即()OB OA t OC OA -=- ,整理得()1OB tOC t OA =+- ,故1x t =-,y t =,所以1x y +=,因为,,M C D 三点共线,故11166λλ+=,解得:13λ=.故答案为:1315.已知圆1O :221x y +=,圆2O :22(3)(4)100x y -+-=,过圆2O 上的任意一点P 作圆1O 的两条切线,切点为A ,B ,则四边形1PAO B 面积的最大值为______.【答案】【解析】【分析】根据题意分析可得四边形1PAO B面积112△PAO B PAO S S ==,结合圆的性质求1PO 的最大值即可.【详解】圆1O :221x y +=的圆心()10,0O ,半径11r =,圆2O :22(3)(4)100x y -+-=的圆心()23,4O ,半径210r =,四边形1PAO B面积1111222△PAO B PAO S S PA AO PA ==⨯⨯⨯===,∵11221015PO O O r ≤+=+=,∴四边形1PAO B=.故答案为:.16.设双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,点()0,P b ,直线20x y m ++=与C 交于M ,N 两点.若0FM FN FP ++=,则C 的离心率为______.【答案】233【解析】【分析】设()()1122,,,M x y N x y ,(),0F c ,根据0FM FN FP ++=,得到F 为MNP △的重心,利用重心的坐标式得到12123x x cy y b+=⎧⎨+=-⎩,再利用点差法和222c a b =+得到,,a b c 关系求解即可.【详解】设()()1122,,,M x y N x y ,(),0F c ,因为0FM FN FP ++=,所以F 为MNP △的重心,则1212303x x c y y b +⎧=⎪⎪⎨++⎪=⎪⎩,即12123x x c y y b +=⎧⎨+=-⎩,①因为()()1122,,,M x y N x y 在双曲线C :()222210,0x ya b a b-=>>上,所以22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得:22221212220x x y y a b ---=,化简得:()()()()12121212220x x x x y y y y a b +-+--=,即()()()()12121222120x x y y y y a b x x ++⋅--=⋅-,②将①代入②得:()()22320b c a b--⋅-=,即()222322bc a c b ==-,解得:2c b =,所以a ==,则233c e a ==,即C 的离心率为233.故答案为:3.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知圆心为()3,3C 的圆经过点()1,5A .(1)求圆C 的方程;(2)过点()1,5B -作直线l 与圆C 交于E ,F 两点.若4EF =,求直线l 的方程.【答案】(1)22(3)(3)8x y -+-=(2)1x =或158550x y --=.【解析】【分析】(1)直接将点A 的坐标代入圆的方程,即可得到结果;(2)根据截得的弦长,分l 的斜率不存在与l 的斜率存在分别讨论,结合点到直线的距离公式,列出方程,即可得到结果.【小问1详解】设所求圆C 的方程为222(3)(3)x y r -+-=,因为点()1,5A 在圆C 上,则222(13)(53)r -+-=,解得28r =,所以圆C 的方程为22(3)(3)8x y -+-=.【小问2详解】因为直线l 被圆C 截得的弦长为4,所以圆心到直线l的距离2d ==.当l 的斜率不存在时,直线l 方程为1x =,符合题意.当l 的斜率存在时,设直线l 方程为()51y k x +=-,即50kx y k ---=.则2d =,解得158k =.此时直线l 方程为155(1)8y x +=-,即158550x y --=.综上所述,直线l 的方程为1x =或158550x y --=.18.如图,在直三棱柱111ABC A B C -中,M ,N 分别为AC ,1BB 的中点.(1)证明://MN 平面11A B C ;(2)若CB ⊥平面11ABB A ,2AB BC ==,14BB =,求点A 到平面11A B C 的距离.【答案】(1)证明见解析(2)5【解析】【分析】(1)要证明//MN 平面11A B C ,通过证明平面MHN ∥平面11A B C 即可证得;(2)根据已知条件可以以B 为原点建立空间直角坐标系,求出平面11A B C 的法向量,以及一个方向向量,代入公式计算即可.【小问1详解】证明:取1AA 的中点H ,连接MH ,HN .因为M 为AC 的中点,所以1MH A C ∥.因为MH ⊄平面11A B C ,1AC ⊂平面11A B C ,所以MH ∥平面11A B C .因为H ,N 分别为1AA ,1BB 的中点,所以11HN A B ∥,因为HN ⊄平面11A B C ,11A B ⊂平面11A B C ,所以HN ∥平面11A B C .因为,,MH HN H MH HN ⋂=⊂面MHN ,所以平面MHN ∥平面11A B C .因为MN ⊂平面MHN ,所以//MN 平面11A B C .【小问2详解】因为CB ⊥平面11ABB A ,AB ⊂平面11ABB A ,所以CB AB ⊥.因为三棱柱111ABC A B C -是直三棱柱,所以1BB BC ⊥,1BB AB ⊥.以BA ,1BB ,BC 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系B xyz -,则()0,0,0B ,()2,0,0A ,()10,4,0B ,()12,4,0A ,()0,0,2C ,()10,4,0AA = ,()10,4,2CB =- ,()112,0,0B A =.设平面11A B C 的法向量为(),,n x y z =.由11100CB n B A n ⎧⋅=⎪⎨⋅=⎪⎩,得42020y z x -=⎧⎨=⎩,取()0,1,2n = .所以点A 到平面11A B C 的距离1455AA n d n⋅==.19.已知抛物线C :24y x =的焦点为F ,O 为坐标原点,A ,B 为C 上异于O 的两点,OA OB ⊥.(1)证明:直线AB 过定点;(2)求4AF BF +的最小值.【答案】(1)证明见解析(2)21【解析】【分析】(1)设()11,A x y ,()22,B x y ,直线AB 的方程为x m ty -=,联立抛物线方程,由垂直斜率关系及韦达定理可求得参数m ,进而确定定点;(2)由抛物线定义结合基本不等式求最值.【小问1详解】设()11,A x y ,()22,B x y ,直线AB 的方程为x m ty -=,将直线AB 的方程代入24y x =,得2440y ty m --=.由OA OB ⊥,得121212441y y x x y y ⋅=-=⋅,即1216y y =-,所以416m -=-,4m =,故直线AB :4x ty -=,恒过定点()4,0.【小问2详解】抛物线准线为=1x -,由抛物线的定义,()()121144x x AF BF =++++221254y y =++12521y y ≥+=,当且仅当221248y y ==时等号成立,所以4AF BF +的最小值为21.20.已知数列{}n a 满足11a =,11,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数.(1)记2n n b a =,写出1b ,2b ,3b ,4b ,并猜想数列{}n b 的通项公式;(2)证明(1)中你的猜想;(3)若数列{}n a 的前n 项和为n S ,求2n S .【答案】(1)12b =,25b =,311b =,423b =,猜想1321n n b -=⨯-(2)证明见解析(3)123236n n S n +=⨯--【解析】【分析】(1)根据{}n a 的递推关系式及首项,写出2348,,,,a a a a L ,进而求得1b ,2b ,3b ,4b ,根据推导过程及各项即可猜想其通项公式;(2)因为2n n b a =,所以找到22n a +和2n a 的关系,即1n b +与n b 的关系,对式子进行配凑,可发现{}1n b +是以3为首项,2为公比的等比数列,即可得{}n b 的通项公式;(3)根据2122n n a a +=,可得2112n n a b --=,将2n S 写为()()1321242n n a a a a a a -+++++++ ,再将2112n n a b --=,2n n a b =代入,可得()211123n n n S b b a b b -=+++++ ,将1321n n b -=⨯-代入,再利用等比数列的求和公式即可得2n S .【小问1详解】由题知11,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数,因为11a =,所以12112b a a ==+=,3224a a ==,24315b a a ==+=,54210a a ==,536111b a a +===,76222a a ==,748123b a a +===,综上:12b =,25b =,311b =,423b =,猜想1321n n b -=⨯-.【小问2详解】由题意,知2122n n a a +=,22211n n a a ++=+,代入得22221n n a a +=+,于是222122n n a a ++=+,即()1121n n b b ++=+,因为113b +=,所以{}1n b +是以3为首项,2为公比的等比数列,故1321n n b -=⨯-.【小问3详解】因为()()2112112122n n n n a a a b ---+-===,()()21321242n n n S a a a a a a -=+++++++()()112112222n n a b b b b b b -=++++++++ ()11213n n b b b b a -=+++++ ()()1012332323232111n n n --=⨯+⨯++⨯+⨯---+ ()()1012332323232111n n n --=⨯+⨯++⨯+⨯---+ ()()11311122332n n n --⎛⎫ ⎪=+⨯ ⎪⎝⎭----13236n n +=⨯--.21.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=︒,PB PD =,PA AC ⊥.(1)证明:PA ⊥平面ABCD ;(2)若PA =PC 上是否存在点M ,使直线AM 与平面PBC 所成角的正弦值为154?若存在,求出点M 的位置;若不存在,请说明理由.【答案】(1)证明见解析(2)不存在,理由见解析【解析】【分析】(1)由线线垂直证BD ⊥平面PAO ,再依次证PA BD ⊥、PA ⊥平面ABCD ;(2)以A 为坐标原点,分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图的空间直角坐标系A xyz -,设()01PM PC λλ=≤≤,由向量法建立线面角正弦值的方程,从解的情况即可判断.【小问1详解】证明:连接BD 交AC 于O ,连接PO .因为底面ABCD 是边长为2的菱形,所以BD AO ⊥,因为O 是BD 中点,PB PD =,所以BD PO ⊥.因为AO PO O = ,AO PO ⊂、平面PAO ,所以BD ⊥平面PAO ,因为PA ⊂平面PAO ,所以PA BD ⊥.因为PA AC ⊥,BD AC O ⋂=,BD AC ⊂、平面ABCD ,所以PA ⊥平面ABCD .【小问2详解】如图,取线段BC 的中点H ,连接AH ,易知AH AD ⊥.以A 为坐标原点,分别以AH ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图的空间直角坐标系A xyz -,则()0,0,0A,)1,0B-,)C,(P .()0,2,0BC =uu u r,PC = .设()01PM PC λλ=≤≤,则有(),,,,M M Mx y z λ=,解得),Mλ-,进而),AM λ=.设平面PBC 的法向量为(),,m x y z =.由00m BC m PC ⎧⋅=⎪⎨⋅=⎪⎩,得200y y =⎧⎪+=,取()1,0,1m = .设直线AM 与平面PBC 所成的角为θ,则154sin cos ,m AM AM m m AMθ==⋅===⋅,化简得,2353070λλ-+=,此方程无解,所以满足条件的点P 不存在.22.已知点()4,0A ,()10B ,,动点P 满足6AB AP PB ⋅=.(1)求动点P 的轨迹C 的方程;(2)设点10,2E ⎛⎫ ⎪⎝⎭,斜率为k 的直线l 与曲线C 交于M ,N 两点.若EM EN =,求k 的取值范围.【答案】(1)22143x y +=(2)1122k -<<【解析】【分析】(1)设动点(),P x y ,分别表示出,,AB AP PB,然后代入计算,化简即可得到结果;(2)根据题意,分0k =与0k ≠两种情况讨论,当0k ≠时,设直线l :y kx m =+,联立直线与椭圆方程,结合韦达定理表示出MN 的中点Q 的坐标,再由条件列出方程,即可得到结果.【小问1详解】设动点(),P x y ,则()3,0AB =- ,()4,AP x y =-,()1,PB x y =--,由已知,得3(4)x --=,化简,得223412x y +=,故动点P 的轨迹C 的方程是22143x y +=.【小问2详解】当0k ≠时,设直线l :y kx m =+,将y kx m =+代入22143x y+=,整理,得()2223484120kxkmx m +++-=,设()11,M x y ,()22,N x y ,()()2222644412340k m m k∆=-⨯-⨯+>,整理,得22430k m +->,①设MN 的中点为Q ,1224234x x km k +=-+,()12122232234k x x m y y mk +++==+,所以2243,3434km m Q k k ⎛⎫-⎪++⎝⎭,由EM EN =,得EQ MN ⊥,即直线EQ 的斜率为1k-,所以22131234434m k km k k-+=-+,化简,得()21432m k =-+,②将②代入①式,解得1122k -<<且0k ≠.当0k =时,显然存在直线l ,满足题设.综上,可知k 的取值范围是1122k -<<.。

2022-2023学年河南省焦作市温县第一高级中学高二上学期期末数学试题(解析版)

2022-2023学年河南省焦作市温县第一高级中学高二上学期期末数学试题(解析版)

2022-2023学年河南省焦作市温县第一高级中学高二上学期期末数学试题一、单选题1.若复数()1i 1i z -=+,则z =( )A B .1 C D .2【答案】B【分析】由复数的除法运算求出复数z ,然后根据复数模长公式即可求解. 【详解】解:因为复数()1i 1i z -=+,所以()21i 1i 2i i 1i 22z ++====-, 所以1z =, 故选:B.2.已知函数()422y x x x =+>-,则此函数的最小值等于( )AB C .4 D .6【答案】D【分析】将函数配凑为4222y x x =-++-,利用基本不等式可求得结果. 【详解】2x >,20x ∴->,44222622y x x x x ∴=+=-++≥=--(当且仅当422x x -=-,即4x =时取等号),()422y x x x ∴=+>-的最小值为6. 故选:D.3.要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin4y x =的图象( )A .向左平移12π个单位长度 B .向右平移3π个单位长度 C .向左平移3π个单位长度D .向右平移12π个单位长度 【答案】D【分析】由三角函数图象变换判断.【详解】sin 4sin 4()312y x x ππ⎛⎫=-=- ⎪⎝⎭,因此将函数sin4y x =的图象向右平移12π个单位.故选:D .4.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,则选派方案共有 A .180种 B .360种 C .15种 D .30种【答案】B【详解】试题分析:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,利用排列的意义可得:选派方案有46A .详解:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,则选派方案有46A =360种. 故选B .点睛:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.5.若3262020C C x x ++=,则正整数x 的值是( ) A .2 B .3 C .4 D .2或3【答案】D【分析】直接根据组合数的性质求解即可.【详解】3262020C C x x ++=,326x x ∴+=+或者32620x x +++=,解得2x =或3x =, 经检验,都成立, 故选:D6.已知()212nx n N x *⎛⎫-∈ ⎪⎝⎭的展开式中各项的二项式系数之和为64,则其展开式中3x 的系数为( )A .160B .160-C .60D .60-【答案】B【分析】由二项式系数的性质求出n ,写出二项展开式的通项公式,令x 的指数为3,即可得出答案. 【详解】由展开式中各项的二项式系数之和为64,得264n =,得6n =.∵6212x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()626123166r 1C 2(1)C 2(1)rr r r rr r r T x x x ---+⎛⎫=-=- ⎪⎝⎭, 令1233r -=,则3r =,所以其展开式中3x 的系数为()333621160C -=-.故选:B.7.甲,乙两人独立地破解同一个谜题,破解出谜题的概率分别为1223,,则谜题没被破解的概率为( )A .16B .13C .56D .1【答案】A【分析】根据相互独立事件的乘法公式即可得解.【详解】解:设“甲独立地破解出谜题”为事件A ,“乙独立地破解出谜题”为事件B ,()()12,23P A P B ==,故()()12,23P A P B ==,所以()111236P AB =⨯=,即谜题没被破解的概率为16.故选:A.8.某产品的广告费用x 与销售额y 的统计数据如表:根据如表可得回归方程ˆˆˆybx a =+中的b 为7.根据此模型预测广告费用为10万元时销售额为( )万元A .63.6 B .75.5 C .73.5 D .72.0【答案】C【分析】线性回归方程.根据回归方程必过样本中心点,求出回归系数,再将10x =代入,即可得到预报销售额.【详解】解:由题意,3456 4.54x +++==,25304045354y +++==, 由回归方程ˆˆˆybx a =+中的b 为7可得,ˆ357 4.5a =⨯+,解得ˆ 3.5a =, 所以,回归方程为7 3.5ˆyx =+, 所以10x =时,710 3.5 3.ˆ75y=⨯+=元. 故选:C .9.圆22:(1)(1)2C x y -+-=关于直线:1l y x =-对称后的圆的方程为( ) A .22(2)2x y -+= B .22(2)2x y ++= C .22(2)2x y +-= D .22(2)2x y ++=【答案】A【分析】由题可得圆心关于直线的对称点,半径不变,进而即得.【详解】圆22:(1)(1)2C x y -+-=的圆心(1,1),由:1l y x =-得1l k =, 设圆心关于直线对称点的坐标为(,)m n ,则 111111022n m m n -⎧=-⎪⎪-⎨++⎪--=⎪⎩,解得20m n =⎧⎨=⎩, 所以对称圆的方程为22(2)2x y -+=. 故选:A.10.设随机变量X ,Y 满足:31Y X =-,12,3X B ⎛⎫~ ⎪⎝⎭,则()D Y =( )A .4B .5C .6D .7【答案】A【分析】二项分布与n 次独立重复试验的模型.先利用二项分布的数学期望公式求出()D X ,再利用方差的性质求解即可. 【详解】解:因为12,3XB ⎛⎫= ⎪⎝⎭,则()11421339D X ⎛⎫=⨯⨯-= ⎪⎝⎭,又31Y X =-,所以()()()224313349D Y D X D X =-==⨯=.故选:A .11.2022年北京冬奥会的顺利召开,引起大家对冰雪运动的关注.若A ,B ,C 三人在自由式滑雪、花样滑冰、冰壶和跳台滑雪这四项运动中任选一项进行体验,则不同的选法共有( ) A .12种 B .16种 C .64种 D .81种【答案】C【分析】按照分步乘法计数原理计算可得;【详解】解:每个人都可在四项运动中选一项,即每人都有四种选法,可分三步完成, 根据分步乘法计数原理,不同的选法共有44464⨯⨯=种. 故选:C12.某市新冠疫情封闭管理期间,为了更好的保障社区居民的日常生活,选派6名志愿者到甲、乙、丙三个社区进行服务,每人只能去一个地方,每地至少派一人,则不同的选派方案共有( ) A .540种 B .180种 C .360种 D .630种【答案】A【分析】首先将6名志愿者分成3组,再分配到3个社区.【详解】首先将6名志愿者分成3组,再分配到3个社区,可分为3种情况,第一类:6名志愿者分成123++,共有12336533C C C A 360=(种)选派方案,第二类:6名志愿者分成114++,共有1143654322C C C A 90A =(种)选派方案, 第三类:6名志愿者分成222++,共有2223642333C C C A 90A =(种)选派方案, 所以共3609090540++=(种)选派方案, 故选:A.二、填空题13.已知()523450123451x a a x a x a x a x a x -=+++++,则0a =______.【答案】-1【分析】由二项式定理,结合二项式展开式的系数的求法求解即可. 【详解】令0x =,则()50011a =-=-, 故答案为:-1.14.在空间直角坐标系中,已知()2,1,3OA =,()5,1,1OB =-,则AB =_______. 【答案】5【分析】根据题意,求得AB ,再根据空间向量的模的计算公式,即可求得结果. 【详解】因为()2,1,3OA =,()5,1,1OB =-,故可得()3,0,4AB OB OA =-=-, 故235AB ==. 故答案为:5.15.重庆八中某次数学考试中,学生成绩X 服从正态分布()2105,δ.若()1901202P X =,则从参加这次考试的学生中任意选取3名学生,至少有2名学生的成绩高于120的概率是__________. 【答案】532##0.15625 【分析】结合正态分布特点先求出()120P X >,再由独立重复试验的概率公式即可求解. 【详解】因学生成绩符合正态分布()2105,N δ,故()()190120112024P X P X ->==,故任意选取3名学生,至少有2名学生的成绩高于120的概率为23231315C 44432P ⎛⎫⎛⎫=⋅+=⎪ ⎪⎝⎭⎝⎭. 故答案为:53216.设1F ,2F 分别是椭圆()2222:10x y E a b a b+=>>的左右焦点,过点1F 的直线交椭圆E 与A ,B 两点,123AF AF =,2AF x ⊥轴,则椭圆的离心率为___________.【分析】根据椭圆的定义结合123AF AF =,求得21,AF AF ,再利用勾股定理构造齐次式即可得解. 【详解】解:由123AF AF =, 得12242a AF AF AF +==,所以213,22A a F aF A ==, 因为2AF x ⊥轴,所以2222121AF F F AF +=,即2229444a a c +=,所以c a =三、解答题17.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球. (1)求“两球颜色相同”的概率;(2)设ξ表示所取白球的个数,求ξ的概率分布列. 【答案】(1)12 (2)分布列答案见解析【分析】(1)利用独立事件和互斥事件的概率公式可求得所求事件的概率;(2)分析可知随机变量ξ的可能取值有0、1、2,计算出随机变量ξ在不同取值下的概率,可得出随机变量ξ的分布列.【详解】(1)解:从甲中取出黑球的概率为13,取出白球的概率为23,从乙中取出黑球的概率为12,取出白球的概率为12,故“两球颜色相同”的概率1211232213P ⨯+⨯==.(2)解:由题意可得,ξ所有可能取值为0、1、2,()1110326P ξ==⨯=,()11211132322P ξ==⨯+⨯=,()2112323P ξ==⨯=,故ξ的分布列如下表所示:ξ0 12P 16121318.某校所在省市高考采用新高考模式,学生按“3+1+2”模式选科参加高考:“3”为全国统一高考的语文、数学、外语3门必考科目;“1”由考生在物理、历史2门中选考1门科目;“2”由考生在思想政治、地理、化学、生物学4门中选考2门科目,(1)为摸清该校本届考生的选科意愿,从本届750名学生中随机抽样调查了100名学生,得到如下部分数据分布:请在答题卡的本题表格中填好上表中余下的5个空,并判断是否有99.9%的把握认为该校“学生选科的方向”与“学生的性别”有关;(2)已选物理方向的甲、乙两名同学,在“4选2”的选科中,求他们恰有一门选择相同学科的概率.附:22(),n ad bcK n a b c d-==+++.【答案】(1)填表答案见解析,有99.9%的把握认为该校“学生选科的方向”与“学生的性别”有关(2)2 3【分析】(1)根据题意完善列联表,计算2K,即可得出结论.(2)先求出已选物理方向的甲、乙两名同学,在“4选2”的选科中,所有的基本事件的总数,再求出在“4选2”的选科中,他们恰有一门选择相同学科的事件总数,由古典概率的公式代入即可得出答案. 【详解】(1)根据题意可得,列联表如下:由于2K 的观测值2100(30402010)5016.66710.828406050503k ⨯⨯-⨯==≈>⨯⨯⨯,所以有99.9%的把握认为该校“学生选科的方向”与“学生的性别”有关.(2)已选物理方向的甲、乙两名同学,在“4选2”的选科中,所有的基本事件(记为事件Ω)列举如下:(政,地;政,地),(政,地;政,化),(政,地;政,生),(政,地;化,地),(政,地;生,地),(政,地;生,化),(政,化;政,地),(政,化;政,化),(政,化;政,生),(政,化;化,地),(政,化;生,地),(政,化;生,化),(政,生;政,地),(政,生;政,化),(政,生;政,生),(政,生;化,地),(政,生;生,地),(政,生;生,化),(地,化;政,地),(地,化;政,化),(地,化;政,生),(地,化;化,地),(地,化;生,地),(地,化;生,化),(地,生;政,地),(地,生;政,化),(地,生;政,生),(地,生;化,地),(地,生;生,地),(地,生;生,化),(化,生;政,地),(化,生;政,化),(化,生;政,生),(化,生;化,地),(化,生;生,地),(化,生;生,化),共36种,设事件{A =在“4选2”的选科中,他们恰有一门选择相同学科},有24种, 则()242()(Ω)363n A P A n ===.19.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c sin cos C c c A =+. (1)求角A 的大小;(2)若a =ABC ∆ABC ∆的周长.【答案】(1) 3A π=(2) 【详解】试题分析:(1)由正弦定理,将边长转化为正弦,由内角的范围和特殊三角函数值,求出角A ;(2)由余弦定理以及三角形面积公式求出b c +的值,再求出周长.试题解析:(1sin sin sin cos A C C C A =+()0,C π∈,sin 0C ∴≠,1cos A A =+;1sin 62A π⎛⎫∴-= ⎪⎝⎭;5,666A πππ⎛⎫-∈- ⎪⎝⎭,663A A πππ∴-=⇒= (2)()22222cos 312a b c bc A b c bc =+-⇒+-=;1sin 342ABC S bc A bc ∆==⇒=;26b c ∴+=;∴ ABC ∆的周长为2326+20.如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在上且.(Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的余弦值. 【答案】(Ⅰ)证明见解析. (Ⅱ)1442【详解】试题分析:(1)以为坐标原点,射线为轴的正半轴,建立如图所示的空间直角坐标系.可得各点坐标,从而可得各向量坐标,根据向量数量积为0则两向量垂直,可得,根据线面垂直的判定定理可证得平面.(2)根据向量垂直数量积等于0可求得平面的一个法向量,由数量积公式可求得两法向量所成角的二面角.两法向量所成的角与二面角的平面角相等或互补,所以观察图像可得所求二面角的平面角为锐角,所以所求二面角的平面角的余弦值等于两法向量余弦值的绝对值. 试题解析:以为坐标原点,射线为轴的正半轴,建立如图所示的空间直角坐标系.依题设,.11(0,2,1),(2,2,0),(2,2,4),(2,0,4)DE DB AC DA ===--= . (1)1122220(4)0,0(2)221(4)0AC DB AC DE ⋅=-⨯+⨯+⨯-=⋅=⨯-+⨯+⨯-= ,11,AC DB AC DE ⊥⊥,即又BD DE D ⋂=,平面. (2)由(1)知1(2,2,4)AC =--为面的一个法向量. 设向量(,,)n x y z =是平面的法向量,则1,n DE n DA ⊥⊥,. 令,则,. 所以1112421(4)(2)14cos ,42||||44161614AC n AC n AC n ⋅-⨯+⨯+-⨯-<>===⋅++⨯++ 观察可知二面角的平面角为锐角,∴二面角的余弦值为.【解析】1线面垂直;2用空间向量法解决立体几何问题.【方法点晴】本题主要考查的是线线垂直、线面垂直、空间直角坐标系和空间向量在立体几何中的应用,属于中档题.用空间向量法解题时一定要注意二面角的余弦值等于两法向量夹角的余弦值或其绝对值,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.21.已知圆221:4C x y +=,圆()222:31C x y -+=,直线l 过点()1,2M .(1)若直线l 被圆1C 所截得的弦长为l 的方程;(2)若直线l 与圆2C 相交于A ,B 两点,求线段AB 的中点P 的轨迹方程.【答案】(1)1x =或3450x y -+=(2)224230x y x y +--+=x y <<<<⎝⎭【分析】(1)根据题意,由直线与圆的位置关系可得圆心1C 到直线l 的距离d ,进而分直线l 的斜率存在与否两种情况讨论,求出直线的方程,综合即可得答案; (2)根据题意,设P 的坐标为(,)x y ,分析可得2C P MP ⊥,则P 在以2C M 为直径上为圆上,据此分析可得答案.【详解】(1)解:根据题意,圆221:4C x y +=,圆心为(0,0),半径2r =,若直线l 被圆1C 所截得的弦长为1C 到直线l 的距离1d ==, 分2种情况讨论:()i 当直线的斜率不存在时,1x =,显然满足题意,()ii 当直线的斜率存在时,可设直线方程2(1)y k x -=-即20kx y k -+-=,则圆心(0,0)到直线20kx y k -+-=的距离d1=,解得34k =,此时直线方程为3450x y -+=, 综上可得满足题意的直线1x =或3450x y -+=,(2)解:根据题意,设P 的坐标为(,)x y ,P 为线段AB 的中点,则有2C P MP ⊥,则P 在以2C M 为直径的圆上,又由圆222:(3)1C x y -+=,其圆心2C 的坐标为(3,0)且(1,2)M ,因为()23,C P x y =-,()1,2MP x y =--,所以2(3)(1)(2)0C P MP x x y y ⋅=--+-=,变形可得224230x y x y +--+=;故P 的轨迹方程为224230x y x y +--+=,显然点P 位于圆2C 内部,由224230x y x y +--+=且22(3)1x y -+=,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P 的轨迹方程为224230x y x y +--+=x y <<<<⎝⎭. 22.已知椭圆C :22221(0)x y a b a b +=>>3122⎛⎫ ⎪⎝⎭,. (1)求椭圆C 的方程.(2)过点()02P ,的直线交椭圆C 于A 、B 两点,求AOB 为原点)面积的最大值. 【答案】(1)2213x y +=【分析】(1)由题意可得2222291144c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a ,b ,即可得出答案. (2)由题意可知直线l 的斜率存在,设直线:2l y kx =+,1(A x ,1)y ,2(B x ,2)y ,联立直线l 与椭圆的方程,结合韦达定理可得12x x +,12x x ,由弦长公式可得||AB ,点到直线的距离公式可得点O 到直线l 的距离d ,再计算AOB 的面积,利用基本不等式,即可得出答案.【详解】(1)解:由题意可得2222291144c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得1a b ==,所以椭圆C 的标准方程为2213x y +=. (2)解:由题意可知直线l 的斜率存在,设直线:2l y kx =+,1(A x ,1)y ,2(B x ,2)y ,联立22213y kx x y =+⎧⎪⎨+=⎪⎩,得22(31)1290k x kx +++=, 222Δ14436(31)36(1)0k k k =-+=->, 所以21k >,即1k >或1k <-, 则121222129,3131k x x x x k k +=-=++, 故2222212226(1)(1)12911()43131k k k AB k x x k k k +-+-+--⨯=++, 点O 到直线l 的距离21d k =+所以AOB 的面积21612k S AB d -=⋅= 设210t k ->,则221k t =+, 故2666343(1)12123t S t t t ===+++23t =时,等号成立, 所以AOB 3。

北京市高二上学期期末数学试题(解析版)

北京市高二上学期期末数学试题(解析版)

一、单选题1.在等比数列中,,,则等于( ) {}n a 11a =84a =234567a a a a a a A .32 B .64 C .128 D .256【答案】B【分析】根据等比数列下标和性质计算可得. 【详解】解:在等比数列中,,, {}n a 11a =84a =则,273645184a a a a a a a a ====所以.7323456464a a a a a a ==故选:B2.双曲线上的点到左焦点的距离为9,则点到右焦点的距离为( )22:1916x y C -=P P A .3 B .15 C .15或3 D .10【答案】C【分析】由双曲线的定义求解即可.【详解】设双曲线的左焦点为,右焦点为,1F 2F因为双曲线方程为,所以,,,22:1916x y C -=3a =4b =5c ==由双曲线的定义得,则, 122PF PF a -=126PF PF -=126PF PF -=±又因为,所以或,19PF =215PF =3由双曲线的性质可知,到焦点距离的最小值为, P 5323c a -=-=<故选:C3.设函数在点处的切线方程为,则( )()f x (1,(1))f 43y x =-()()11lim x f x f x∆→+∆-=∆A . B .C .D .4213-【答案】A【分析】根据导数的几何意义可知,再根据导数值的定义即可选出答案. (1)f '【详解】由导数值的定义,,根据导数的几何意义,,即()()11lim(1)x f x f f x∆→+∆-'=∆(1)4f '=.()()11lim4x f x f x∆→+∆-=∆故选:A4.数列满足,,则( ) {}n a 111n na a +=-13a =2023a =A .3B .C .D .12-5223【答案】A【分析】根据递推公式求得数列中的前几项,从而得到数列的周期,由此即可求得的值. 2023a 【详解】因为,, 111n na a +=-13a =所以,1132111111111111111111111n n n n n n n n n n n a a a a a a a a a a a +++++++------=======---------所以数列是以3为周期的周期数列, {}n a 故. 20231367413a a a +⨯===故选:A.5.已知抛物线,直线l 过定点P (0,1),与C 仅有一个公共点的直线l 有( )条 2:4C y x =-A .1 B .2 C .3 D .4【答案】C【分析】过抛物线外一定点的直线恰好与该抛物线只有一个交点,则分两种情况分别讨论,(0,1)P 一是直线与抛物线的对称轴平行,二是直线与抛物线相切,根据这两种情况进而求解.【详解】过点的直线与抛物线仅有一个公共点,则该直线可能与抛物线的对称(0,1)P l 2:4C y x =-l 轴平行,也可能与抛物线相切,下面分两种情况讨论:当直线与抛物线的对称轴平行时,则直线的方程为:,满足条件;l l 1y =当直线与抛物线相切时,由于点在轴上方,且在抛物线外,则存在两条直线与抛物线相l (0,1)P x 切,易知:是其中一条,0x =不妨设另一条直线的方程为,联立直线与抛物线方程可得:,则l 1y kx =+l 22(24)10k x k x +++=有,解得:,22(24)40k k ∆=+-=1k =-所以过点的直线的方程为:或或, (0,1)P l 1y =0x =1y x =-+故选:.C 6.已知,,则数列的通项公式是( )12a =()1+=-n n n a n a a {}n a n a =A .n B . C .2nD .1n +1nn n +⎛⎫⎪⎝⎭【答案】C【分析】根据题意可得,再利用累乘法计算可得; 11n n a n a n++=【详解】解:由,得, ()1+=-n n n a n a a ()11n n n a na ++=即, 11n n a n a n++=则,,,…,,11n n a n a n -=-1212n n a n a n ---=-2323n n a n a n ---=-2121a a =由累乘法可得,因为,所以,1na n a =12a =2n a n =故选:C .7.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”( ) A .6天 495人 B .7天 602人 C .8天 716人 D .9天 795人【答案】B【分析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数{}n a 165a =列,解方程可得所求值.【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且n n a {}n a ,,123216a a a =++21300n n n a a a --++=∴,, 13002161723n a a ++==107n a =∴天 1177n a a n -=+=则目前派出的人数为人,()17776022a a S +==故选:B .8.已知圆和两点,若圆上存在点,使得()()22:5121C x y -+-=(0,),(0,)(0)A m B m m ->C P ,则的最小值为( )90APB ∠= m A .14 B .13 C .12 D .11【答案】C【分析】将问题转化为以为直径的圆与圆有公共点的问题来列不等式,解不等式求得的AB O C m 取值范围,由此求得的最小值.m【详解】解:以为直径的圆的方程为,圆心为原点,半径为.圆AB O 222x y m +=1r m =的圆心为,半径为.()()22:5121C x y -+-=()5,12C 21r =要使圆上存在点,使得,则圆与圆有公共点, C P 90APB ∠=︒O C所以,即,1212r r OC r r -≤≤+1m +所以, 11313113113113113m m m m m ⎧-≤-≤-≤⎧⎪⇒⎨⎨+≥+≤-+≥⎪⎩⎩或⇒12141212m m m -≤≤⎧⎨≤-≥⎩或又,所以,所以的最小值为. 0m >1214m ≤≤m 12故选:C二、多选题9.已知等差数列则( ) 10,7,4,, A .该数列的通项公式为 313n a n =-+B .是该数列的第13项 25-C .该数列的前5项和最大D .设该数列为,则 {}n a 1238||||||||48a a a a ++++= 【答案】AD【分析】根据首项和公差求出和,利用和计算可得答案.n a n S n a n S 【详解】依题意,所以,故A 正确; 110,3a d ==-1(1)103(1)313n a a n d n n =+-=--=-+由,得,故B 不正确; 31325n a n =-+=-38133n =≠由,得,由,得,所以该数列的前4项和最大,故C 不3130n a n =-+≥4n ≤3130n a n =-+<5n ≥正确;,(1)10(3)2n n n S n -=+⨯-23232n n-+= 123812345678||||||||()a a a a a a a a a a a a ++++=+++-+++ 482S S =-,故D 正确. 223423438238222-⨯+⨯-⨯+⨯=⨯-48=故选:AD10.已知圆,则下列说法正确的是( )22230M x y x +--=:A .点(2,0)在圆M 内B .圆M 关于对称10x y +-=CD .直线与圆M 的相交所得弦长为10x +=【答案】ABD【分析】根据点的坐标与圆的方程的关系判断A ,判断点与直线的位置关系,判断M 10x y +-=B ;配方后得到圆的半径,判断C ;利用弦长公式求弦长判断D. 【详解】整理得:,22230x y x +--=()2214x y -+=因为,时,∴点在圆M 内,A 正确; 2x =0y =222330x y x +--=-<()2,0因为圆心在直线上,所以圆M 关于对称,B 正确; ()1,0M 10x y +-=10x y +-=因为圆M 半径为2,故C 错误;∵圆心到直线的距离为,()1,0M 10x +=1d ==所以直线与圆M 的相交所得弦长为,D 正确. 10x +==故选:ABD.11.已知数列满足,其中,Sn 为数列{}的前n 项{}n a ()12321n a a n a n +++-= ()21nn a b n =+n b和,则下列四个结论中,正确的是( ) A .B .数列{}的通项公式为: 11a =n a 121n a n =+C .数列{}为递减数列 D .若对于任意的都有,则 n a *N n ∈n S λ<12λ≥【答案】ACD【分析】令可求;利用已知求的方法求数列通项公式;根据递减数列的定义判断1n =1a n S n a {}n a 数列的单调性,利用裂项相消法求数列的前n 项和,由条件求的范围. {}n b λ【详解】因为,()12321n a a n a n +++-= 所以当时,, 2n ≥()1213231n a a n a n -+++-=- 两式相减得,所以, ()211n n a -=121n a n =-又因为当时,满足上式,1n =11a =所以数列的通项公式为:,故A 正确,B 错误, {}n a 121n a n =-因为,,所以, 121n a n =-N n *∈()()1112021212121n n a a n n n n +-=-=-<+-+-所以,所以数列为递减数列,故C 正确;1n n a a +<{}n a ,()()()111121212122121n n a b n n n n n ⎛⎫===- ⎪+-+-+⎝⎭所以 12n n S b b b =+++ , 11111111111232352212124221n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭ 因为对于任意的都有,所以,其中,*N n ∈n S λ<max 21n n λ⎛⎫< ⎪+⎝⎭*N n ∈又,所以,故D 正确. 1121221n n n =<++12λ≥故选:ACD.12.已知、分别为双曲线的左、右焦点,点在直线l 上,过点1F 2F 222:1(0)4x yC b b-=>(4,0)M -2F 的直线与双曲线的右支交于A 、B 两点,下列说法正确的是( )A .若直线l 与双曲线左右两支各一个交点,则直线l 的斜率范围为)(,)22b b-B .点2F C .若直线AB垂直于x 轴,且△ABM 为锐角三角形,则双曲线的离心率取值范围为 D .记的内切圆的半径为r 1,的内切圆的半径为,若,则12AF F △1I 12BF F △2I 2r 124r r =b =【答案】ACD【分析】设出直线的方程,与双曲线方程联立,根据题意,两交点的横坐标异号,利用韦达定理l 即可求解,判断选项;求出右焦点到渐近线的距离为,进而判断选项;要使为锐角三A bB ABM :角形,则,所以,进行等量代换求出离心率的取值即可判断选项;根据三245AMF ∠<︒24b c a +>C 角形内切圆的特点先求出两圆的内心在上,然后利用三角形相似求出的值,进而求出,即x a =c b 可判断选项.D 【详解】对于,由题意知:直线的斜率存在,设直线的方程为:, A l l (4)y k x =+设直线与双曲线左右两支的交点分别为,,l 11(,)P x y 22(,)Q x y 联立方程组,整理可得:,22214(4)x y b y k x ⎧-=⎪⎨⎪=+⎩222222(4)326440b k x k x k b ----=则,也即,解得:,故选项正确; 22122264404k b x x b k --⋅=<-2240b k ->22b b k -<<A 对于,设右焦点为,双曲线的渐近线方程为:,由点到直线的距离公式可得:B 2(,0)F c 0bx ay ±=点到双曲线渐近线的距离错误;2F d b ==≠B 对于,若直线AB 垂直于x 轴,则直线的方程为:,设点,,要使C AB x c =2(,)bA c a2(,b B c a-为锐角三角形,由双曲线的对称性可知:,ABM :245AMF ∠<︒则,即,所以,22F M AF >24b c a+>24b ac a <+又因为,则,也即,整理可得:,则2a =2242b ac a ac a <+=+2222c a ac a -<+2230c ac a --<, 230e e --<e <1e >所以,故选项正确; e ∈C 对于,过分别作的垂线,垂足为,D 1I 1212,,AF AF F F ,,DE F则,因为,1122,,AD AE F D F F F F F E ===122AF AF a -=则,又因,1212()()2AD DF AE EF F F F F a +-+=-=12122F F F F F F c =+=则,所以,即在直线上,同理也在直线上,所以11FF OF OF a c =+=+OF a =1I x a =2I x a =轴,12I I x ⊥因为,1212122221,I F A I F F I F B I F F ∠=∠∠=∠则,所以, 1221212121222I F I F I F F I F F F I A B I ∠∠∠∠∠++==22190I F I ∠=︒由可知:,则,也即,1222I FF F FI :::1222I F F F F FI F=2212IF I F FF ⋅=212()r r c a ⋅=-因为,,所以,,故选项正确,2a =124r r =4c =b ==D故选:.ACD三、填空题13.已知直线l 1,若,则实数a =______. ()210130x ay l a x y +-=+++=:,:12l l ⊥【答案】##12-0.5-【分析】根据若,则,运算求解. 12l l ⊥12120A A B B +=【详解】若,则,解得.12l l ⊥()1110a a ⨯++⨯=12a =-故答案为:.12-14.已知函数,则=______. 2()ln 31f x x x x =+-1f '()【答案】7【分析】求出的导数,再将代入,即可得答案. ()f x ()f x '1x =【详解】解:因为, 2()ln 31f x x x x =+-所以,1()ln 6ln 61f x x x x x x x'=+⋅+=++所以. (1)ln16117f '=+⋅+=故答案为:715.设椭圆的左、右焦点分别为、,点M 、N 在C 上(M 位于第一象2222:1(0)x y C a b a b+=>>1F 2F 限),且点M 、N 关于原点O 对称,若,则C 的离心率为______.12290,2||||MF N MF NF ︒∠==【分析】根据几何分析确定四边形为矩形,根据勾股定理构造齐次式即可求出离心率. 12MF NF 【详解】依题意,作图如下,因为点关于原点对称,所以为的中点,,M N O O MN且为的中点,,所以四边形为矩形,O 12F F 190N MF ︒∠=12MF NF 由,设 222MF NF =21,2,MF x MF x ==由椭圆的定义知,解得: 212,MF MF a +=2124,,33a a MF MF ==所以()22224233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭整理得:,因为, 259e =01e <<所以 e =四、双空题16.已知数列满足,,则______;高斯是德国著名的数学家,近代数学{}n a 11a =12n n a a n ++=3a =奠基者之一,享有“数学王子”的称号,设,用表示不超过的最大整数,称为x ∈R []x x ()[]f x x =高斯函数.设,且数列的前项和为,则______. []1g n n b a ={}n b n n T 2022T =【答案】34956【分析】根据递推公式一一计算即可求出,再归纳出的通项,最后结合高斯函数的定义并项3a {}n a 求和计算可得.【详解】解:因为,, 11a =12n n a a n ++=当时,则, 1n =122a a +=21a =当时,则, 2n =324a a +=33a =当时,则, 3n =346a a +=43a =当时,则,4n =548a a +=55a =,由此可归纳得,当为奇数时,当为偶数时,n n a n =n 1n a n =-显然当时成立,假设当(为奇数)时成立,即,则,即1n =11a =n k =k k a k =12k k a a k ++=也成立,1k a k +=假设当(为偶数)时成立,即,则,即也成立,故归纳成n k =k 1k a k =-12k k a a k ++=11k a k +=+立;因为,[]1g n n b a =当时,则, 110n ≤≤19n a ≤≤[]1g 0n n b a ==当时,则, 11100n ≤≤1199n a ≤≤[]1g 1n n b a ==当时,则, 1011000n ≤≤101999n a ≤≤[]1g 2n n b a ==当时,则,10012022n ≤≤10012021n a ≤≤[]1g 3n n b a ==()232320220101(1010)2(1010)3202210T ∴=⨯+⨯-+⨯-+⨯- 190290031022=⨯+⨯+⨯.4956=故答案为:,.34956五、解答题17.在数列{}中,n a ()*11534N n n a a a n +==-∈,(1)求证:是等比数列: {}2n a -(2)求数列{}的前n 项和. n a n S 【答案】(1)证明过程见详解(2)3(31)22n n S n -=+【分析】(1)根据递推公式和等比数列的定义即可使问题得证; (2)利用等比数列的求和公式,分组求和即可求解.【详解】(1)由题意知:,所以, 134n n a a +=-12362(2)n n n a a a +-=-=-即,又, 1222n n a a +-=-1230a -=≠所以数列是以3为首项,以3为公比的等比数列.{}2n a -(2)由(1)可知:,所以,23n n a -=23nn a =+所以1221n n n S a a a a a -=+++++1231(2+2+2++2+2)(33333)n n -=++++++ 3(13)213n n -=+-. 3(31)22n n -=+18.如图,正方体ABCD —的棱长为2,P 、Q 分别为BD 、的中点.1111D C B A 1CD(1)证明:PQ 平面;:11BCC B (2)求直线与平面所成角的大小. 1CD 11ABC D 【答案】(1)证明见详解 (2) π6【分析】(1)建系,利用空间向量证明线面平行;(2)先求平面的法向量,再利用空间向量求线面夹角. 11ABC D 【详解】(1)如图,以D 为坐标原点建立空间直角坐标系,则,()()()()()()12,0,0,2,2,0,0,2,0,,1,1,0,0,1,10,0,2A B C D P Q 可得,平面的法向量,()1,0,1PQ =-u u u r11BCC B ()0,1,0n = ∵,且平面,1001100PQ n ⋅=-⨯+⨯+⨯=u u u r rPQ ⊄11BCC B ∴PQ 平面.:11BCC B (2)由(1)可得:, ()()()110,2,0,2,0,2,0,2,2AB AD CD ==-=-设平面的法向量为,则, 11ABC D (),,m x y z = 120220m AB y m AD x z ⎧⋅==⎪⎨⋅=-+=⎪⎩令,则,故,1x =0,1y z ==()1,0,1m =∵,1111cos ,2m CD m CD m CD ⋅===u r u u u ru r u u u ru r u u u r 故直线与平面所成角的正弦值为,则其大小为. 1CD 11ABC D 12π619.已知抛物线上一点到抛物线焦点的距离为,()2202C y px p =<<:1P p ⎛ ⎝32(1)求抛物线的方程:C (2)若直线(为参数)与抛物线C 交于两点,且,求直线的方程 :l y x m =+m ,A B OA OB ⊥l 【答案】(1) 22y x =(2) 2y x =-【分析】(1)利用抛物线的定义,列方程求出即可;p (2)联立直线和抛物线方程,设出,,然后用韦达定1122(,),(,)A x y B x y 12120OA OB x x y y ⊥⇔+=理求解.【详解】(1)根据抛物线的定义,到焦点的距离等于到准线的距离,即,结合题干条P 3122pp =+件,解得,故抛物线方程为:02p <<1p =22y x =(2)设,依题意:1122(,),(,)A x y B x y ()()112212120,,00OA OB OA OB x y x y x x y y ⊥⇔⋅=⇔⋅=⇔+=,联立直线和抛物线:,得到,,解得,由韦达定22y x y x m⎧=⎨=+⎩2220y y m -+=480m ∆=->12m <理:,在抛物线上,故,于是,于是122y y m =1122(,),(,)A x y B x y 21122222y x y x ⎧=⎨=⎩22212124y y x x m ==,解得或,但时,其中一点和重合,不符题意,时,220m m +=0m =2m =-0m =,A B O 2m =-符合判别式条件.综上可知,,此时直线方程为:2m =-2y x =-20.已知数列的前n 项和为,且,______.请在①:②{}n a n S 11n n n S S a +=++*()N n ∈3914a a +=,,成等比数列:③,这三个条件中任选一个补充在上面题干中,并解答下面问2a 5a 11a 844S =题.注:如果选择多个条件分别解答,按第一个解答计分. (1)求数列的通项公式; {}n a (2)若,设数列{}的前n 项和,求证: 2nn n a b =n b n T 13n T ≤<*()N n ∈【答案】(1) 1n a n =+(2)证明见解析【分析】(1)先根据推出数列为等差数列,公差.若选①,根据等差中项11n n n S S a +=++{}n a 1d =求出,再求出,根据和可得通项公式;若选②,根据等比中项列式求出,可得;若6a 1a 1a d 1a n a 选③,根据等差数列求和公式列式求出,可得. 1a n a (2)利用错位相减法求出,根据为正数,得,根据为递增数列,可得. n T 32n n +3nT <n T 11n T T =≥【详解】(1)由,得,得, 11n n n S S a +=++11n n n S S a +-=+11n n a a +-=所以数列为等差数列,公差.{}n a 1d =若选①,因为,所以,, 3914a a +=6214a =67a =所以,, 6157a a d =+=12a =所以,1(1)211n a a n d n n =+-=+-=+若选②,因为,,成等比数列,所以,2a 5a 11a 25211a a a =所以,所以,2111(4)()(10)a d a d a d +=++2111(4)(1)(10)a a a +=++所以,所以. 12a =1(1)211n a a n d n n =+-=+-=+若选③,因为,所以, 81878442S a ⨯=+=12a =所以, 1(1)211n a a n d n n =+-=+-=+(2)由(1)知,,则, 1n a n =+12n nn b +=则, 12323412222n nn T +=++++ , 23411234122222n n n T ++=++++ 所以,23411111111222222n n n n n T T ++-=+++++- 所以, 1111(1)1142112212n n n n T -+-+=+--所以,因为为正数,所以, 332n n n T +=-32nn +3n T <因为, 11433322n n n nn n T T ++++-=--+112642022n n n n n +++--+==>所以,所以数列为递增数列, 1n n T T +>{}n T 所以, 14312n T T ≥=-=综上所述:.13n T ≤<*()N n ∈21.在平面五边形中(如图1),是梯形,,,ABCDE ABCD //AD BC 22AD BC ==AB =,是等边三角形.现将沿折起,连接,得四棱锥90ABC ∠=ADE V ADE V ADEB EC E ABCD-(如图2)且EC =(1)求证:平面平面; EAD ⊥ABCD (2)在棱上有点,满足,求二面角的余弦值. EB F 13EF EB=E AD F --【答案】(1)证明见解析【详解】(1)在图1中,取的中点,连,依题意得,,如图:AD O ,OC OE OC OA ⊥OE OA ⊥则 OC AB ==2OE ==折叠后,在图2中,,如图:OE AD ⊥在中,,所以, COE :OC =OE =EC 222EC OC OE =+OE OC ⊥由,,,平面,平面, OE AD ⊥OE OC ⊥OC AD O = OC ⊂ABCD AD ⊂ABCD 得平面,又平面, OE ⊥ABCD OE ⊂EAD 所以平面平面。

高二上学期数学期末测试题

高二上学期数学期末测试题

高二上学期数学期末测试题The document was prepared on January 2, 2021高 二 上 学 期 数 学 期 末 测 试 题一、选择题:1.不等式212>++x x 的解集为 A.()()+∞-,10,1 B.()()1,01, -∞- C.()()1,00,1 - D.()()+∞-∞-,11, 2.0≠c 是方程 c y ax =+22 表示椭圆或双曲线的 条件 A .充分不必要B .必要不充分C .充要D .不充分不必要3.若,20πθ≤≤当点()θcos ,1到直线01cos sin =-+θθy x 的距离为41,则这条直线的斜率为 B.-1 C.23 D.-334.已知x 的不等式01232>+-ax ax 的解集是实数集 R ,那么实数a 的取值范围是A.0,916 B.0, 916 C.916,0 D.⎪⎭⎫⎢⎣⎡38,0 5.过点2,1的直线l 被04222=+-+y x y x 截得的最长弦所在直线方程为: A. 053=--y x B. 073=-+y x C. 053=-+y x D. 013=+-y x6.下列三个不等式:①;232x x >+②2,0,≥+≠∈ba ab ab R b a 时、;③当0>ab 时,.b a ba +>+其中恒成立的不等式的序号是 A.①② B.①②③ C.① D.②③7.圆心在抛物线x y 22=上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y xD .041222=+--+y x y x8.圆C 切y 轴于点M 且过抛物线452+-=x x y 与x 轴的两个交点,O 为原点,则OM 的长是 A .4 B . C .22 D .29.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为A .191622=-x yB .191622=-y xC .116922=-x yD .116922=-y x10.抛物线x y 42-=上有一点P,P 到椭圆1151622=+y x 的左顶点的距离的最小值为A .32B .2+3C .3D .32-11.若椭圆)1(122>=+m y mx与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是 A .4B .2C .1D .12.抛物线px y 22=与直线04=-+y ax 交于两点AB,其中点A坐标为1,2,设抛物线焦点为F,则|FA |+|FB |= A.7 B.6 C.5 D.4二、填空题13. 设函数,2)(+=ax x f 不等式6|)(|<x f 的解集为-1,2,则不等式()1≤x f x的解集为 14.若直线)0,0(022>>=+-b a by ax 始终平分圆014222=+-++y x y x 的圆周,则ba11+的最小值为______ 15.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 . 16.抛物线x y 22-=上的点M 到焦点F 的距离为3,则点M 的坐标为____________. 三、解答题: 18.已知椭圆)0(1:2222>>=+b a by a x C 经过点)221(,M ,其离心率为22,设直线m kx y l +=:与椭圆C 相交于B A 、两点.Ⅰ求椭圆C 的方程;Ⅱ已知直线l 与圆3222=+y x 相切,求证:OA ⊥OBO 为坐标原点;Ⅲ以线段OA,OB 为邻边作平行四边形OAPB,若点Q 在椭圆C 上,且满足OP OQ λ=O 为坐标原点,求实数λ的取值范围.19.已知圆C y 轴对称,经过抛物线x y 42=的焦点,且被直线x y =分成两段弧长之比为1:2,求圆C 的方程.20. 平面内动点Px,y 与两定点A-2, 0, B2,0连线的斜率之积等于-1/3,若点P 的轨迹为曲线E,过点Q (1,0)-作斜率不为零的直线CD 交曲线E 于点C D 、.1求曲线E 的方程; 2求证:AC AD ⊥;3求ACD ∆面积的最大值.21.已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x 相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程. 22、设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆与x 轴正半轴Q P 、两点,且PQ AP 58=I 求椭圆离心率e ;II 若过A,F,Q 三点的圆恰好与直线033:=++y x l 相切,求椭圆方程答案一、ABDB A CD D A A C A 二、13. {x|x>21或52≤x }; 14. 4 ; 15.0,±3; 16.-5,25±. 三、17.解:由062322<--+-x x x x ,得0)2)(3()2)(1(<+---x x x x 18.Ⅰ椭圆方程为2212x y +=;Ⅱ见解析Ⅲ22λ-<<且0λ≠.解析试题分析:Ⅰ由已知离心率为22,可得等式222b a =;又因为椭圆方程过点(1M 可求得21b =,22a =,进而求得椭圆的方程; Ⅱ由直线l 与圆2223x y +=相切,可得m 与k 的等式关系即222(1)3m k =+,然后联立直线l 与椭圆的方程并由韦达定理可得122412kmx x k +=-+,21222212m x x k -=+,进而求出=21y y 222212m k k -+,所以由向量的数量积的定义可得→→⋅OB OA 的值为0,即结论得证;Ⅲ由题意可分两种情况讨论:ⅰ当0m =时,点A 、B 原点对称;ⅱ当0m ≠时,点A 、B不原点对称.分别讨论两种情形满足条件的实数λ的取值范围即可.试题解析:Ⅰ222c e a b c a==+离心率,222a b ∴= 222212x y b b ∴+=椭圆方程为,将点(12M ,代入,得21b =,22a =∴所求椭圆方程为2212x y +=.Ⅱ因为直线l 与圆2223x y +=相切,所以=即222(1)3m k =+ 由22,22y kx m x y =+⎧⎨+=⎩,得222(12)4220k x kmx m +++-=.设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122412kmx x k +=-+,21222212m x x k -=+,所以1212()()y y kx m kx m =++=221212()k x x km x x m +++=222212m k k -+,所以1212OA OB x x y y ⋅=+=222212m k -++222212m k k -+=22232212m k k --+=0,故OA OB ⊥, Ⅲ由Ⅱ可得121222()212my y k x x m k +=++=+, 由向量加法平行四边形法则得OA OB OP +=,OP OQ λ=,OA OB OQ λ∴+= ⅰ当0m =时,点A 、B 原点对称,则0λ= 此时不构成平行四边形,不合题意. ⅱ当0m ≠时,点A 、B 不原点对称,则0λ≠,由OA OB OQ λ+=,得12121(),1().Q Q x x x y y y λλ⎧=+⎪⎪⎨⎪=+⎪⎩ 即224,(12)2.(12)Q Qkm x k m y k λλ-⎧=⎪+⎪⎨⎪=⎪+⎩点Q 在椭圆上,∴有222242[]2[]2(12)(12)km mk k λλ-+=++, 化简,得222224(12)(12)m k k λ+=+.2120k +≠,∴有2224(12)m k λ=+. ①又222222164(12)(22)8(12)k m k m k m ∆=-+-=+-,∴由0∆>,得2212k m +>. ②将①、②两式,得2224m m λ>0m ≠,24λ∴<,则22λ-<<且0λ≠.综合ⅰ、ⅱ两种情况,得实数λ的取值范围是22λ-<<且0λ≠.19.解:设圆C 的方程为)(2a y x -+22r =, 抛物线x y 42=的焦点()0,1F221r a =+∴ ①又直线x y =分圆的两段弧长之比为1:2,可知圆心到直线x y =的距离等于半径的,21即22r a = ②解①、②得2,12=±=r a 故所求圆的方程为 2)1(22=±+y x20.1223144x y +=(2)x ≠±;2略;31. 解析试题分析:1根据题意可分别求出连线PA ,PB 的斜率PA k ,PB k ,再由条件斜率之积为13列出方程,进行化简整理可得曲线E 的方程,注意点P 不与点,A B 重合.根据斜率的计算公式可求得2PA y k x ,2PB yk x ,所以12223y yx x x ,化简整理可得曲线E 的方程为223144x y +=(2)x ≠±; 2若要证AB AC ,只要证0AB AC ,再利用两个向量数量积为零的坐标运算进行证明即可.那么由题意可设直线BC 的方程为1myx ,1122,,,C x y D x y ,联立直线与椭圆的方程消去x ,可得y 的一元二次方程032)3(22=--+my y m ,由违达定理知33,32221221+-=+=+m y y m m y y ,则12122623x x m y y m ,()()21212243113m x x my my m -+⋅=--=+,又112,ACx y ,222,AD x y ,所以()()()121212*********AC AD x x y y x x x x y y ⋅=+++=++++=,从而可以证明AB AC ;3根据题意可知122111223ACDS AQ y y m △=⋅-=⨯=+,=故当0m =时,ACD △的面积最大,最大面积为1.试题解析:1设动点P 坐标为(,)x y ,当2x ≠±时,由条件得:1223y y x x ⋅=--+,化简得223144x y +=, 故曲线E 的方程为223144x y +=(2)x ≠±. 4分说明:不写2x ≠±的扣1分 2CD 斜率不为0,所以可设CD 方程为1+=x my ,与椭圆联立得:032)3(22=--+my y m 设),(),,(2211y x D y x C , 所以33,32221221+-=+=+m y y m m y y ,. 6分 01323)1(31)()1(),2(),2(2222212122211=+++++-=++++=+⋅+m m m m y y m y y m y x y x ,所以AC AD ⊥ 8分3ACD ∆面积为2222221)3(334394||21+-+=++=-m m m m y y , 10分 当0=m 时ACD △的面积最大为1. 12分考点:1.椭圆的方程;2.向量法证明两直线垂直;3.三角形面积的计算.21.解:直线l 与x 轴不平行,设l 的方程为 a my x += 代入双曲线方程 整理得而012≠-m ,于是122--=+=m amy y y B A T 从而 12--=+=m a a my x T T 即 )1,1(22mam am T -- 点T 在圆上 012)1()1(22222=-+-+-∴mam a m am 即22+=a m ① 由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l T O k k 则 0=m 或 122+=a m当0=m 时,由①得 l a ∴-=,2的方程为 2-=x ;当122+=a m 时,由①得 1=a l m ∴±=,3的方程为13+±=y x . 故所求直线l 的方程为2-=x 或 13+±=y x22.解:I ),()、)(,(),由,(设b A b a c c F x Q 000220-=- 知),(),,(0b x AQ b c FA -==. cb x b cx AQ FA 2020,0,==-∴⊥ .设PQ AP y x P 58),,(11=由,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+==+=b b yc b x x 135581,138581581201 因为点P 在椭圆上,所以1)135()138(22222=+bb ac b 整理得ac c a ac b 3232222=-=)(,即 02322=-+⇒e e .21=⇒e II 由I,a c a c a c b ac b 21,21;23,3222====得由得 于是AQF a Q a F ∆-),0,23(),0,21(的外接圆圆心为)0,21(a ,半径.21a FQ r ==因为这个圆与直线033:=++y x l 相切,所以a a =+2|321|,解得a =2, ∴c=1,b=3,所求椭圆方程为13422=+y x。

2024北京西城区高二上学期期末数学试题及答案

2024北京西城区高二上学期期末数学试题及答案

2024北京西城高二(上)期末数 学2024.1本试卷共5页,共150分.考试时长120分钟.考生务必将答案写在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线3410x y −+=不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.抛物线26x y =的焦点到其准线的距离等于( ) A.32B.3C.6D.8 3.在空间直角坐标系O xyz −中,点()4,2,8A −到平面xOz 的距离与其到平面yOz 的距离的比值等于( ) A.14 B.12C.2D.4 4.在312x x ⎛⎫+ ⎪⎝⎭的展开式中,x 的系数为( ) A.3 B.6 C.9 D.125.在正四面体ABCD 中,棱AB 与底面BCD 所成角的正弦值为( )C.13D.36.已知直线,a b 和平面α,且b α⊂,则“直线a ∥直线b ”是“直线a ∥平面α”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.设,A B 为双曲线2222:1(0,0)x y E a b a b−=>>的左、右顶点,M 为双曲线E 上一点,且AMB 为等腰三角形,顶角为120,则双曲线E 的一条渐近线方程是( )A.y x =B.2y x =C.y =D.y =8.在正方体的8个顶点中任选3个,则这3个顶点恰好不在同一个表面正方形中的选法有( )A.12种B.24种C.32种D.36种9.如图,在长方体1111ABCD A B C D −中,13,4,AB BC CC E ===为棱11B C 的中点,P 为四边形11BCC B 内(含边界)的一个动点.且DP BE ⊥,则动点P 的轨迹长度为( )A.5B.10.在直角坐标系xOy 内,圆22:(2)(2)1C x y −+−=,若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣B.44⎡−−⎣C.22⎡−−−⎣D.22⎡−+⎣第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.过点()2,3A −且与直线30x y ++=平行的直线方程为__________.12.在4(21)x +的展开式中,所有项的系数和等于__________.(用数字作答)13.两个顶点朝下竖直放置的圆锥形容器盛有体积相同的同种液体(示意图如图所示),液体表面圆的半径分别为3,6,则窄口容器与宽口容器的液体高度的比值等于__________.14.若方程22124x y m m+=+−m 的取值范围是__________;若此方程表示的曲线为椭圆,则实数m 的取值范围是__________.15.如图,在正方体1111ABCD A B C D −中,2,AB E =为棱1BB 的中点,F 为棱1CC (含端点)上的一个动点.给出下列四个结论:①存在符合条件的点F ,使得1B F ∥平面1A ED ;②不存在符合条件的点F ,使得BF DE ⊥;③异面直线1A D 与1EC 所成角的余弦值为5; ④三棱锥1F A DE −的体积的取值范围是2,23⎡⎤⎢⎥⎣⎦. 其中所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题10分)从6男4女共10名志愿者中,选出3人参加社会实践活动.(1)共有多少种不同的选择方法?(2)若要求选出的3名志愿者中有2男1女,且他们分别从事经济、文化和民生方面的问卷调查工作,求共有多少种不同的选派方法?17.(本小题15分)如图,在直三棱柱111ABC A B C −中,1,3,4BA BC BC AB AA ⊥===.(1)证明:直线1AB ⊥平面1A BC ;(2)求二面角1B CA A −−的余弦值.18.(本小题15分)已知C 经过点()1,3A 和()5,1B ,且圆心C 在直线10x y −+=上.(1)求C 的方程; (2)设动直线l 与C 相切于点M ,点()8,0N .若点P 在直线l 上,且PM PN =,求动点P 的轨迹方程.19.(本小题15分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),四个顶点构成的四边形面积等于12.设圆22(1)25x y −+=的圆心为,M P 为此圆上一点.(1)求椭圆C 的离心率; (2)记线段MP 与椭圆C 的交点为Q ,求PQ 的取值范围.20.(本小题15分)如图,在四棱锥P ABCD −中,AD ⊥平面,PAB AB ∥,DC E 为棱PB 的中点,平面DCE 与棱PA 相交于点F ,且22PA AB AD CD ====,再从下列两个条件中选择一个作为已知.条件①:PB BD =;条件②:PA BC ⊥.(1)求证:AB ∥EF ;(2)求点P 到平面DCEF 的距离;(3)已知点M 在棱PC 上,直线BM 与平面DCEF 所成角的正弦值为23,求PM PC的值. 21.(本小题15分) 设椭圆2222:1(0)x y C a b a b+=>>左、右焦点分别为12,F F ,过1F 的直线与椭圆C 相交于,A B 两点.已知椭圆C 的离心率为21,2ABF 的周长为8. (1)求椭圆C 的方程;(2)判断x 轴上是否存在一点M ,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线?若存在,求点M 的坐标;若不存在,说明理由.参考答案一、选择题:本大题共10小题,每小题4分,共40分1.D2.B3.B4.D5.B6.D7.A8.C9.B 10.A二、填空题:本大题共5小题,每小题5分,共25分11.10x y ++= 12.81 13.414.()(),24,∞∞−−⋃+;()()2,11,4−⋃ 15.①②④注:第14题第一问3分,第二问2分;第15题全部选对得5分,有两个选对且无错选得3分,有一个选对且无错选得2分,其他得0分.三、解答题:本大题共6小题,共85分.其他正确解答过程,请参照评分标准给分. 16.(本小题10分)解:(1)从6男4女共10名志愿者中,选出3人参加社会实践活动,选择方法数为310C 120=种.(2)从10名志愿者中选2男1女,选择方法数共有2164C C 60=种,故从10名志愿者中选2男1女,且分别从事经济、文化和民生方面的问卷调查工作的选派方法数为213643C C A 360=种.17.(本小题15分)解:(1)在直三棱柱111ABC A B C −中,因为1AA ⊥.平面,ABC BC ⊂平面ABC ,所以1AA BC ⊥.又因为1,BA BC BA AA A ⊥⋂=,所以BC ⊥平面11AA B B ,所以1BC AB ⊥.由14AB AA ==,得四边形11AA B B 为正方形.所以11AB A B ⊥.又因为1BC A B B ⋂=,所以1AB ⊥平面1A BC .(2)因为1BB ⊥平面,ABC BA BC ⊥,所以1,,BA BC BB 两两互相垂直,故以B 为原点,1,,BA BC BB 的方向分别为x 轴、y .轴、z 轴正方向,建立如图所示的空间直角坐标系.则()()()()114,0,0,0,3,0,4,0,4,0,0,4A C A B .所以()()14,3,0,0,0,4AC AA =−=.设平面1A AC 的法向量为(),,m x y z =,则10,0,m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即430,40.x y z −+=⎧⎨=⎩令3x =,则4,0y z ==.于是()3,4,0m =.由(1)可知:()14,0,4AB =−是平面1A BC 的一个法向量.因为11112cos ,1042||AB m AB m AB m ⋅−===−⨯, 由图可知二面角1B CA A −−的平面角为锐角,所以二面角1B CA A −−的余弦值为10. 18.(本小题15分)解:(1)由题意,设C 的圆心(),1C a a +,半径为r ,则222222(1)(31),(5)(11).a a r a a r ⎧−+−−=⎨−+−−=⎩ 解得:5,5.a r =⎧⎨=⎩ 所以C 的方程为22(5)(6)25x y −+−=.(2)由平面几何,知PMC 为直角三角形,且PM MC ⊥,所以222||||||PM MC PC +=.由PM PN =,得222||||||PN MC PC +=.设(),P x y ,则2222(8)25(5)(6)x y x y −++=−+−.即36140x y −−=,经检验符合题意.所以动点P 的轨迹方程为36140x y −−=.19.(本小题15分)解:(1)由题意,得222212,c ab a b c ===+,所以3,2a b ==,所以椭圆C的离心率3c e a ==. (2)由题意,得5PQ MP MQ MQ =−=−.设()11,Q x y ,则2211194x y +=. 所以MQ ===. 因为[]13,3x ∈−,所以当195x=时,min ||MQ =;当13x =−时,max ||4MQ =.所以PQ 的取值范围为1,55⎡−⎢⎣⎦. 20.(本小题15分)解:选择条件①:(1)因为AB ∥,DC AB ⊄平面,DCEF DC ⊂平面DCEF ,所以AB ∥平面DCEF .又因为AB ⊂平面PAB ,平面PAB ⋂平面DCEF EF =,所以AB ∥EF .(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥.又因为,22PB BD PA AB AD CD =====,所以PAB DAB ≅.因此90PAB DAB ∠∠==,即,,AB AD AP 两两垂直.如图,以A 为原点,,,AB AD AP 的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系,所以()()()()0,2,0,1,2,0,0,0,2,2,0,0D C P B .由(1),得AB ∥EF ,且E 为棱PB 的中点,所以点F 为棱PA 的中点.()()1,0,1,0,0,1E F ,故()()()0,0,1,0,2,1,1,0,0FP DF CD ==−=−.设平面DCEF 的一个法向量为(),,n x y z =,则20,0,DF n y z CD n x ⎧⋅=−+=⎪⎨⋅=−=⎪⎩取1y =,则0,2x z ==,即()0,1,2n =.所以点P 到平面DCEF 的距离255FP nd n ⋅==. (3)设[],0,1PM PCλλ=∈, 则()()1,2,2,2,2PM PC λλλλλ==−=−.所以()2,2,22BM BP PM λλλ=+=−−.设直线BM 与平面DCEF 所成角为θ,所以||sin |cos ,|||||BM n BM n BM n θ⋅=<>== 23=. 化简,得29610λλ−+=,解得13λ=, 即13PM PC =. 选择条件②:(1)与上述解法相同,略.(2)因为AD ⊥平面PAB ,所以,AD PA AD AB ⊥⊥,又因为,PA BC BC ⊥与AD 相交,所以PA ⊥平面ABCD . 所以PA AB ⊥.即,,AB AD AP 两两垂直.以下与上述解法相同,略.21.(本小题15分)解:(1)由题意,得22248,1,2,a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩ 解得2,1.a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. (2)假设x 轴上存在一点()0,0M x 符合题意.由题意,设直线()()()()1122:10,,,,AB y k x k A x y B x y =+≠.联立方程()221,1,43y k x x y ⎧=+⎪⎨+=⎪⎩消去y , 得()22223484120k x k x k +++−=. 所以221212228412,3434k k x x x x k k−+=−=++. 由题意,知直线AM 的斜率存在,且为()11101010AMk x y k x x x x +−==−−, 同理,直线BM 的斜率为()22202010BM k x y k x x x x +−==−−. 所以()()12102011AM BM k x k x k k x x x x +++=+−−()()()()12120120102022k x x x x x x x x x x x x ⎡⎤++−+−⎣⎦=−−. 因为1MF 为AMB 的一条内角平分线,所以0AM BM k k +=.所以()()12120120220k x x x x x x x x ⎡⎤++−+−=⎣⎦.因为上式要对任意非零的实数k 都成立, 所以2220022241288220343434k k k x x k k k−⨯−+⨯−=+++, 解得04x =−.故x 轴上存在一点()4,0M −,对于任一条与两坐标轴都不垂直的弦AB ,使得1MF 为AMB 的一条内角平分线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学 第 2页(共 4 页)
四、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分 10 分)
已知等差数列{an} 的前 n 项和为 Sn , a2 3 , S7 35 . (Ⅰ)求数列{an} 的通项公式; (Ⅱ)设 bn 2n an ,求数列{bn}的前 n 项和 Tn .
1202 年所著的《算盘全书》.若将数列{Fn} 的每一项除以 2 所得的余数按原来项的顺序
构成新的数列{an},则数列{an} 的前 2021项和为
A.1345
B.1346
C.1347
D.1348
8.已知 F1,F2 分别是双曲线 C
:
x2 a2
y2 b2
1(a
0,b
0 )的左、右焦点,设以 F1F2 为
14.已知四面体 ABCD 的每条棱长都等于1,点 G 是棱 CD 的中点,则 BC AG _______.
15.已知
A,B
是椭圆
C
:
x2 a2
y2 b2
1
(a
b
0)
的左、右顶点,P

C
上一点,设直线
PA

PB
的斜率分别为
k1,k2
,若
k1k2
4 9
,则椭圆
C
的离心率为_________.
16.已知数列{an} 的前 n 项和为 Sn , a1 1 , an (Sn 1) Sn2 (n ≥ 2 ) ,则 an ________.
直径的圆与 C 在第一象限的交点为 P ,若直线 PF1 与圆 x2 y2 a2 相切,则 C 的渐近线
方程为
高二数学 第 1页(共 4 页)
A. y 1 x 2
B. y 2x
C. y 2x
D. y 2 x 2
二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,
已知动圆与直线 x 1 相切,且过点 F 1,0 ,设动圆圆心 P 的轨迹为 C .
(Ⅰ)求 C 的方程; (Ⅱ)若直线 l 与曲线 C 相交于 A , B 两点,且 O 为坐标原点, OA OB , 求证:直线 l 恒过定点.
高二数学 第 3页(共 4 页)
20.(本小题满分 12 分)
S
如图,在三棱锥 S ABC 中,侧面 SAB 为等边三角形,
ABC 90 , AB BC 2 ,平面 SAB 平面 ABC ,
D 为 AC 的中点.
(Ⅰ)求证: AB SD ;
A
(Ⅱ)在侧棱 SC 上是否存在一点 P ,使二面角
S AB P 的大小为 30 ,若存在,求 SP 的值;若不
B
PC
存在,请说明理由.
D C
21.(本小题满分 12 分) “绿水青山,就是金山银山.”从社会效益和经济效益出发,某市准备投入资金进行生
1.抛物线 x 2 y2 的准线方程为
A. x 1 8
B. x 1 2
C. y 1 8
D. y 1 2
2.已知复数 z (a i)i 在复平面内对应的点在直线 y 2x 1上,则实数 a 的值为
A. 3
B. 0
C. 1
D. 3
3.已知直线 ax 2 y 3 0 与直线 2x 3y 1 0 垂直,则实数 a 的值为
A. 6
B. 7
C. 6 或 7
D. 7 或 8
6.若 PA,PB,PC 是从点 P 发出的三条射线,每两条射线的夹角均为 60 ,则直线 PC 与
平面 PAB 所成角的余弦值为
1
2
3
3
A.
B.
C.
D.
2
2
3
4
7.数列{Fn} : F1 F2 1, Fn Fn1 Fn2 n 2 ,最初记载于意大利数学家斐波那契在
A. 3
B. 3
4
C.
D. 4
3
3
4.已知向量 a (1,3, 2) ,b (2,1,3) ,c (4,5,m) ,若 a ,b ,c 共面,则实数 m
的值为
A. 1
B. 1
1
C.
D. 1
2
2
5.设等差数列{an} 的前 n 项和为 Sn ,若 a1 0,S3 S10 ,则 Sn 取最大值时 n 的值为
B.若 m 1,n 0 ,则 C 是焦点在 x 轴上的椭圆
C.若 C 是双曲线,则 m 0
D.若 C 是两条直线,则 n 0
11.在棱长为1的正方体 ABCD A1B1C1D1 中, O 为底面 ABCD 的中心,则
A. AC1 B1C
B.
有多项符合题目要求.全部选对得 5 分,部分选对得 3 分,有选错的得 0 分.
9.若复数
z0
2 1i
,则
A. z0 的虚部为 1
B. z0 2
C. z02 为纯虚数
D.若 z z0 1,则 z 的最大值为 2 1
10.已知曲线 C : x2 my2 n ,则
A.若 m 1,n 0 ,则 C 是以 n 为半径的圆
高二数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.
回答非选择题时,将答案写在答题卡上. 写在本试卷上无效. 一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项
中,只有一项是符合题目要求的.
A. an
n 1 2
B. an 2n 1
C. Sn 2n1 n 2
D.
n i 1
2i ai ai 1
2n1 2 2n1 1
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.已知直线 l 过点 (1,0) 且与圆 x2 y2 4 y 1相切,则直线 l 的方程为___________.
O
B1CD1
的体积为
1 3
D.直线 AC1 与平面 AA1D1D 所成角的正弦值为
6 3
12. 设 直 线 ln : y x 2n 与 圆 Cn : x2 y2 2an n 1 交 于 不 同 的 两 点 An ,Bn
(n N* ) . 已知 a1 1,4an1 AnBn 2 ,记数列{an}的前 n 项和为 Sn ,则
18.(本小题满分 12 分)
已知正四棱柱 ABCD A1B1C1D1 的底面边长为 2 ,侧棱长
为 4 , E,F 分别为 B1C1 , AD 的中点.
(Ⅰ)求证: BE 平面 C1FD1 ;
(Ⅱ)求直线 BE 到平面 C1FD1 的距离.
D1 A1
FD A
C1 E B1
C B
19.(本小题满分 12 分)
相关文档
最新文档