接地的相关知识

合集下载

接地线的原理

接地线的原理

接地线的原理接地线是一种用于保护电气设备和人身安全的重要装置。

它的原理是利用接地的方式将电流引入大地,从而防止电气设备因电压过高而受损,同时也能保护人体免受电击伤害。

接地线的原理涉及到电流、电压、大地等多个方面的知识,下面我们将详细介绍接地线的原理及其作用。

首先,接地线的原理与电流的导通有关。

在电气设备中,如果发生了漏电或短路等故障,会导致电流异常增大,这时接地线就能够发挥作用。

当电流异常增大时,接地线会将电流引入大地,使电流得到释放,从而避免了电气设备因过载而受损。

其次,接地线的原理还与电压的分配有关。

在电气系统中,接地线可以将电压分配到大地中,从而保护电气设备和人身安全。

当电压过高时,接地线能够将多余的电压引入大地,使电压得到稳定,防止设备损坏和人身触电。

此外,接地线的原理还涉及到大地的导电性。

大地是一个良好的导体,能够有效地吸收电流和电压,使其得到释放。

因此,接地线通过与大地连接,可以将电流和电压引入大地,起到保护作用。

总的来说,接地线的原理是利用大地的导电性,将电流和电压引入大地,从而保护电气设备和人身安全。

接地线在电气系统中起着至关重要的作用,能够有效地防止因电流和电压异常而导致的损坏和危险。

因此,在电气设备的安装和使用中,接地线的设置和使用都是非常重要的。

在实际的电气工程中,接地线的设置和使用需要符合一定的标准和规范,以确保其能够正常发挥作用。

同时,定期对接地线进行检测和维护也是非常重要的,以确保其连接良好、导通可靠。

只有这样,接地线才能够有效地保护电气设备和人身安全。

综上所述,接地线的原理是利用大地的导电性,将电流和电压引入大地,从而保护电气设备和人身安全。

在电气工程中,接地线的设置和使用都是非常重要的,需要严格遵守相关规范和标准,以确保其有效发挥作用。

通过对接地线原理的了解,我们能更好地理解其作用和重要性,从而更好地保障电气设备和人身安全。

接地知识

接地知识

接地与防雷接地依据其目的而具有种种功能。

在这里将从设备的观点来对接地的技术,简述其观念及目前状况。

(1)避雷设备的接地雷击电流流入大地某点时,其附近的电压就会上升,并产生某种形状的电位分布。

若雷击地点的附近有电气设备、人类、家畜存在时,将被加上由于雷电电流所导致的电压。

此种电压若超出电气设备或人畜的忍受程度时,则将发生雷击事故。

在此种情况下,若装设与大地间具有电气端子功能的接地电极时,电压上升、电极分布、电位分布等将具有不同的形态。

亦即接地电极得以抑制电压上升,并具有减轻跨步电压的效果。

欲抑制电压上升,主要在于接地电阻(严格来说应为接地阻抗)。

此外,欲减低跨步电压,除了接地电阻以外,接地电极所具有的电位分布及电位梯度亦有影响。

至于避雷设备的接地电极,以往多使用板状电极,但若由突破阻抗的观点来看,则使用线装或环状电极将较为有利。

近年来也常省略人工接地电极而采用建筑物结构体接地。

以接地电极来施工时,若能满足接地电阻值,理应可以适用。

但若是共同接地或虽在不同点但与其他设备的接地间具有密切关系时,则一定要对接地系统加以慎重检讨。

(2)医疗设备的接地除了被为“触诊”的诊疗技术以外,进来医疗技术发展很快。

各种医用电子仪器、设备(以下简称ME机器:Medical Electronics)被开发研制出来。

且不论大医院或小诊所,ME 机器均被广泛使用。

代表性的ME机器有心电计、心图观测装置、X射线电视诊断装置等。

这些设备不仅使用于患者的诊断、治疗而已,也普遍使用于手术中患者状况监视之用。

此类ME机器的普及,则对医院的电气设备赋予新的要求,其中之一即ME机器的安全问题。

而主要措施即在设计上对ME机器本身强化绝缘等以及对电气设备的接地等需特别加以考虑。

医院设备接地属于等电位接地。

这种接地方式与电气设备的露出非带电金属部位所实施的保护接地不同,对于非电气设备的金属部分也应全部加以接地,其目的即在于医院设备(病房、检查室)的导电性的部分加以等电位化。

接地的参考知识

接地的参考知识

Q1:为什么要接地?Answer:接地技术的引入最初是为了防止电力或电子等设备遭雷击而采取的保护性措施,目的是把雷电产生的雷击电流通过避雷针引入到大地,从而起到保护建筑物的作用。

同时,接地也是保护人身安全的一种有效手段,当某种原因引起的相线(如电线绝缘不良,线路老化等)和设备外壳碰触时,设备的外壳就会有危险电压产生,由此生成的故障电流就会流经PE线到大地,从而起到保护作用。

随着电子通信和其它数字领域的发展,在接地系统中只考虑防雷和安全已远远不能满足要求了。

比如在通信系统中,大量设备之间信号的互连要求各设备都要有一个基准‘地’作为信号的参考地。

而且随着电子设备的复杂化,信号频率越来越高,因此,在接地设计中,信号之间的互扰等电磁兼容问题必须给予特别关注,否则,接地不当就会严重影响系统运行的可靠性和稳定性。

最近,高速信号的信号回流技术中也引入了“地”的概念。

Q2:接地的定义Answer: 在现代接地概念中、对于线路工程师来说,该术语的含义通常是‘线路电压的参考点’;对于系统设计师来说,它常常是机柜或机架;对电气工程师来说,它是绿色安全地线或接到大地的意思。

一个比较通用的定义是“接地是电流返回其源的低阻抗通道”。

注意要求是“低阻抗”和“通路”。

Q3:常见的接地符号Answer: PE,PGND,FG-保护地或机壳;BGND或DC-RETURN-直流-48V(+24V)电源(电池)回流;GND-工作地;DGND-数字地;AGND-模拟地;LGND-防雷保护地Q4:合适的接地方式Answer: 接地有多种方式,有单点接地,多点接地以及混合类型的接地。

而单点接地又分为串联单点接地和并联单点接地。

一般来说,单点接地用于简单电路,不同功能模块之间接地区分,以及低频(f<1MHz)电子线路。

当设计高频(f>10MHz)电路时就要采用多点接地了或者多层板(完整的地平面层)。

Q5:信号回流和跨分割的介绍Answer:对于一个电子信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。

电气接地知识培训内容

电气接地知识培训内容

电气接地知识内容一、术语和定义1.接地体(极):埋入地中并直接与大地接触的金属导体,称为接地体(极)。

接地体分为水平接地体和垂直接地体。

2.自然接地体:可利用作为接地体用的直接与大地接触的各种金属构件、金属井管、钢筋混凝土建筑的基础、金属管道和设备等,称为自然接地体。

3.接地线:电气设备、杆塔的接地端子与接地体或零线连接用的在正常情况下不载流的金属导体,称为接地体。

4.接地装置:接地体和接地线的总和,称为接地装置。

5.接地:将电力系统或建筑物电气装置、设施过电压保护装置用接地线与接地体连接,称为接地。

6. 接地电阻:接地体或自然接地体的对地电阻和接地线电阻的总和,称为接地装置的接地电阻。

接地电阻的数值等于接地装置对地电压与通过接地体流入地中电流的比值。

7. 零线:与变压器或发电机直接接地的中性点连接的中性线或直流回路中的接地中性线,称为零线。

8. 保护接零(保护接地):中性点直接接地的低压电力网中,电力设备外壳与保护零线连接称为保护接零(或保护接地)。

9. 安全接地:电气装置的金属外壳、配电装置的构架和线路杆塔等,由于绝缘损坏有可能带电。

为防止其危及人身和设备的安全而设的接地。

10. TN系统:TN电力系统有一点直接接地,电气设施的外露可导电部分用保护线与该点连接,按照中性线与保护线的组合情况,TN系统有以下三种形式:1).TN-S系统.如图:2).TN-C 系统.如图:3).TN-C-S 系统.如图:11. TT 系统TT 系统有一个直接接地点,电气设施的外露可导电部分接至电气上与电力系统的接地点无关的接地极。

如图电力系统接地点外露可导电部分电子系统接地点外露可导电部分电力系统接地点注:L1(即A)相为黄色,L2(即B)相为绿色,L3(即C)相为红色;按国际电工委员会(IEC)规定,中性线淡蓝色、保护线黄、绿双色。

二、部分国家标准及参考标准1. 电气装置安装工程低压电器施工及验收规范GB502542. 电气装置安装工程接地装置施工及验收规范GB501693. 电气装置安装工程电气照明装置施工及验收规范GB502594. 电气装置安装工程起重机电气装置施工及验收规范GB502565. 电气装置安装工程爆炸和火灾坏境电气装置施工及验收规范GB502576. 电气装置安装工程1kV及以下配线工程施工及验收规范GB502587. 10kV及以下变电所设计规范GB500538. 建筑物防雷设计规范GB500579. 通用用电设备配电设计规范GB5005510. 供配电系统设计规范GB5005212.低压配电设计规范GB5005413.爆炸和火灾危险环境电力装置设计规范GB5005814.电业安全工作规程(发电厂和变电所电气部分)DL40815.电业安全工作规程(电力线路部分)DL409三、现象与说明1.接地:具体表现在各电气屏、柜、箱等到各用电设备及其附属的金属平台、构架、立柱等等,均存在接地不规范或不全。

保护接地与保护接零知识图文解析(附注意事项)

保护接地与保护接零知识图文解析(附注意事项)

保护接地与保护接零知识图文解析(附注意事项)(1)保护接地:电气设备的导体部分或者外壳用足够容量的金属导线或导体可靠的与大地连接,当人体触及带电外壳时,人体相当于接地电阻的一条并联支路,由于人体电阻远远大于接地电阻,所以通过人体的电流将会很小,避免了人身触电事故。

(2)保护接零:电气设备在正常情况下,不带电的金属部分与零线做良好的金属或者导体连接。

当某一相绝缘损坏致使电源相线碰壳,电气设备的外壳及导体部分带电时,因为外壳及导体部分采取了接零措施,该相线和零线构成回路。

由于单相短路电流很大,使线路保护的熔断器熔断。

从而使设备与电源断开,避免了人身触电伤害的可能性。

适用范围(1)保护接地:适用于中性点不接地的三相电源系统中。

(2)保护接零:适用于中性点接地的三相电源系统中(一些民用三相四线中性点接地系统也采用保护接地,但必须是配合带有漏电保护的开关使用)。

保护原理及危害分析(1)在中性点不接地系统中:当人体触及电气设备的导体部分或者外壳时,人体相当于一个与接地电阻并联支路的一个大电阻。

若按人体电阻值1000Ω(通常人体电阻值为1000~2000Ω)计算,设备外壳所带电压为220V时,那么无保护接地时流经人体的电流为:Ir=220/Rr=220mA(人体可以承受的最大交流电流/交流摆脱电流为10mA)。

(2)在中性点接地系统中:在380V/220V三相四线制电源中性点直接接地的配电系统中,只能采用保护接零,采用保护接地则不能有效地防止人身触电事故的发生。

若采用保护接地,电流中性点接地电阻按4Ω考虑,而电源电压为220V,那么当电气设备的绝缘损坏使电气设备的外壳带电时,则中性点接地电阻与接地电阻之间的电流为:Ir=220/(R0+Rd)=220/(4+4)=27.5A。

熔断器的额定电流是根据电气设备的要求选定的,如果设备的容量较大,为了保证设备在正常情况下的运行。

所选熔体的额定电流将会随之增大。

如果在27.5A的接地短路电流作用下保护不动作,外壳带电的电气设备不能立即脱离电源,设备导体或者金属外壳会长期存在对地电压Ud=27.5×4=110V。

防雷接地的基本知识

防雷接地的基本知识

防雷接地的基本知识防雷接地是一项非常重要的安全措施,目的是为了保护建筑物、设备和人的安全,避免雷电对它们造成的危害。

在防雷接地中,接地是最基本的一个环节,正确的接地可以有效地将雷电流引至地下,从而减小雷电冲击对建筑物和设备的危害。

下面就介绍一些防雷接地的基本知识。

1. 雷电流:雷电在空气电离的过程中,形成的一种瞬时电流,具有较大的电磁能量和热能量,能够对人和设备造成严重的伤害。

2. 感应电压:当雷电电流经过建筑物或设备时,会在它们表面产生一定的感应电压,如果这些电压不能及时、有效地排放,就会对它们造成危害。

3. 防雷接地:防雷接地是指将建筑物或设备通过一定的方法接地,使其与地面形成良好的接触,从而将雷电流安全地引至地下,减小对它们的危害。

4. 接地系统:接地系统是指由接地体、接地线、引下线、接地装置等组成的系统,用于实现防雷接地的功能。

其中,接地体是最重要的组成部分。

二、防雷接地的分类根据接地体的性质和用途,防雷接地可以分为如下几类:1. 自然接地:即利用自然存在的电导率较好的地层和地下水,在接地点附近选择合适的接地体,将建筑物或设备安全地接地。

2. 人工接地:即在地下挖深孔或用开挖机械打孔,再将接地体埋入地下,从而实现防雷接地。

3. 钢筋混凝土接地:即在钢筋混凝土结构中设置接地电极体系,利用钢筋混凝土一些部位作为接地系统的组成部件。

三、接地体的选择和设计接地体的选择和设计是防雷接地系统中最为关键的一环,其正确性直接关系到接地效率和防雷效果。

根据应用场合、地质条件、土壤电阻率等因素选择合适的接地体材料和形式,然后由专业电气工程师进行设计,以保证接地系统可以达到设计要求。

四、接地的施工与维护接地的施工应由专业的电气工程师进行,采用科学的施工方法和工艺,保证接地体的质量和长期稳定性。

接地系统一旦建成,还需要进行定期的维护和检测,以确保其正常运行。

具体的维护内容包括:清除接地体附近的杂物、维护接地线的完好、检查接地系统的接地电阻等。

低压配电系统的接地安全基础知识

低压配电系统的接地安全基础知识

低压配电系统的接地安全基础知识是电气工程领域中非常重要的内容。

接地安全是指在低压配电系统的运行过程中,为了防止电气设备发生故障或者人员触电而采取的一系列措施。

下面将从接地的重要性、接地方式、接地电阻和接地保护等方面介绍低压配电系统的接地安全基础知识。

接地的重要性低压配电系统的接地是为了确保系统的正常运行和人身安全。

接地可以有效地解决电气设备的漏电问题,防止电气设备带电外壳触及,保护人体不被电流伤害。

另外,接地可以提供电路的零电位参考,保证电气设备的工作正常。

在发生故障时,接地能够迅速将电流引入地,起到保护设备和人员不受伤害的作用。

接地方式低压配电系统的接地方式主要有TN、TT和IT三种。

TN接地方式是指电源端接地,负载端通过零线与地相连,既能保证电流回流到电源处,又能提供电气设备的零电位。

TT接地方式是指电源端和负载端均与地相连,通过接地电阻保证电流回流到电源处,保护设备和人员安全。

IT接地方式是指系统无地点接地,通过接地电阻将系统与地分开,当发生故障时可定位故障点。

接地电阻接地电阻是指接地系统中的电阻,它能够限制故障电流的大小,保护设备和人员的安全。

接地电阻的大小取决于土壤电阻、接地体的材料和形状等因素。

通常要求低压配电系统的接地电阻不超过1Ω,以确保系统工作正常和人员安全。

为了降低接地电阻,可以采取增加接地体数量、加大接地体的面积或者改善土壤条件等措施。

接地保护接地保护是指在低压配电系统中针对接地故障采取的保护措施。

主要有过电流保护、差动保护和接地故障指示等措施。

过电流保护是通过安装保护装置,如熔断器和断路器等,当发生接地故障时,及时切断故障电路,保护设备和人员安全。

差动保护是通过检测电流差值,当差值大于设定值时,自动切断故障电路。

接地故障指示是通过接地故障指示仪,当发生接地故障时,及时指示故障位置,方便维修。

总结低压配电系统的接地安全基础知识包括接地的重要性、接地方式、接地电阻和接地保护等内容。

接地基础知识

接地基础知识

三、A类电气装置-接地电阻 (三) 2 变电所电气装置雷电保护接地的接地电阻: a) 独立避雷针(含悬挂独立避雷线的架构)的接地 电阻。在土壤电阻率不大于500Ω · m的地区不应 大于 10Ω ;在高土壤电阻率地区接地电阻应符 合相关规范的要求。 b) 变压器门型构上避雷针、线的接地电阻应符合 DL/ T 620—1997《交流电气装置的过电压保护 和绝缘配合》的要求。 c) 变电所有爆炸危险且爆炸后可能波及变电所内 主设备或严重影响发供电的建 (构)筑物,防雷 电感应的接地电阻不应大于30Ω 。
一、接地系统常用名词术语 (三)
名词术语 保护线(protective conductor) a) 线路或设备金属外壳; b) 线路或设备以外的金属部件; c) 总接地线或总等电位连接端子板; d) 接地极; e) 电源接地点或人工中性点。 保护中性线(PEN conductor) 等电位连接(equipotential bonding) 等 电 位 连 接 线 (equiptential bounding conductor)

一、接地系统常用名词术语 (二)

中 接 地 装 置 (concentrated grounding connection) 接地电阻(ground resistance) 接地装置对地电位(potential of grounding connection) 接触电位差(touch potential difference) 跨步电位差(step potential difference) 转移电位(diverting potential) 外露导电部分(exposed conductive part) 中性线(neutral conductor)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接地的相关知识
摘要:现实中部分电气施工人员对接地的方式不太了解,因此在安全和设施需要方面处理不是很恰当,本文就接地方式作一些概述。

关键词:接地问题分析作用
在电力系统中接地分为PE接地和N线接地:PE线,也就是我们通常所说的地线;PE线是专门用于将电气装置外露导电部分接地的导体,至于是直接连接至与电源点工作接地无关的接地极上(TT)还是通电源中性点接地(TN)并不重要,二者都叫PE线。

N线是中性线,是工作线,在单相系统中又被称为“零线”;没有它,设备可能就不能正常工作了,它与系统中性点连接并能起传输电能作用的导体。

因此在接地系统中就分为TN-C、TN-S、TN-C-S几种接地方式:TN-C简单的说就是在全系统内PE线和N线合在一起;TN-S则是全系统内PE线和N线是分开的;TN-C-S通常仅在低压电气装置电源进线点前N线和PE线是合一的,电源进线点后即分为两根线(如图1)。

在TN-C系统中可以节省一根导线,比较经济,但从安全的角度看,这个系统存在安全隐患。

设备的金属外壳产生接地电位,是利用PEN线通过中性线电流产生电压降。

对地电位会因为周围环境中的打火引爆。

所以IEC规定,易爆场所内不允许使用TN-C系统和对地电位。

直接接触地面的带电设备的金属外壳可能会在地下产生杂散电流,会对底下的金属物质有一定腐蚀作用,所以IEC标准规定,在可能经历的最高电压下,PEN线要进行绝缘。

由于PEN线通过电流,各点对地电位不同,它也不得用于信息技术系统,以免各信息技术设备地电位的不同而引起干扰。

因此,由于上述一些不安全的因素,现时TN-C系统已很少采用(如图2)。

根据上图可以看出,在整个TN-S系统内,PE线和N线被分为两根线,PE线在正常情况下是不通过电流也不带电位的。

它只在发生接地故障时通过故障电流,因此在电气装置的外露导电部分对地平时几乎不带电位。

TN-S系统适用于内部设有变电所的建筑物,特别是在爆炸危险场所,为避免电火花的发生,更宜采用TN-S系统(如图3)。

上图TN-C-S系统自电源到另一建筑物用户电气装置之间节省了一根专用的PE线,这一段PEN线上的电压降使整个电气装置对地升高△UPEN的电压,但由于电气装置内设有总位联结,且在电源进线点后PE线即和N线分开,而PE线并不产生电压降,整个电气装置对地电位都是△UPEN,在装置内并没有出现电位差,因此不会发生TN-C系统的种种不安全因素。

在建筑物电气装置内,它的安全水平和TN-S系
统是相仿的。

就信息技术设备的抗干扰而言,因为在采用TN-C-S系统的建筑物内,同一信息系统内的信息技术设备的“地”即其金属外壳,都是连接只通过正常泄漏电流的PE线的,PE线上的电压降很小,所以TN-C-S系统和TN-S一样都能使各信息技术设备取得比较均等的参考电位而减少干扰。

但就减少共模电压干扰而言,TN-C-S系统内的中性线和PE线是在低压电源进线处才分开,不像TN-S系统在变电所出线处就分开,所以在低压用户建筑物内TN-C-S系统内中性线对PE线的电位差或共模电压小于TN-S系统,所以当建筑物以低压供电如果采用TN系统时建议采用TN-C-S系统而不宜采用TN-S系统。

综合以上分析,我们在各种保护接地中更需依据实际需要作出不同的处理,权衡利弊才能更好地做出正确的选择。

相关文档
最新文档