OptiStruct_Optimization_v13(含拓扑,形貌,尺寸优化)
基于OptiStruct汽车控制臂的拓扑优化设计

基于OptiStruct汽车控制臂的拓扑优化设计Topology Optimization Design for Vehicle Control ArmBased on OptiStruct金莹莹麦格纳斯太尔汽车技术(上海)有限公司上海 201807摘 要:本文基于OptiStruct软件对某汽车控制臂进行了拓扑优化设计,并分别对比了优化前后结构的应力和位移。
结果表明,通过OptiStruct软件进行的拓扑优化设计满足结构的要求,并实现了轻量化的性能需求,体现了拓扑优化技术的工程价值。
关键词: OptiStruct拓扑优化控制臂强度Abstract:The control arm topology optimization simulation of the vehicle is based on the OptiStruct software. Compared with original control arm structure, the stress of the optimization control arm is a little larger, but lower than yield stress. For displacement, the optimization control arm is also larger than the original control arm structure, but lower than 1mm, which can be accepted. What’more, the weight is reduced by 35%, reflecting the engineering value of the topology optimization technology. Keywords:OptiStruct, topology optimization, control arm, strength前言随着汽车工业的快速发展和日益突出的能源问题,汽车轻量化越来越被人们重视,因此对机械结构和零部件进行优化设计具有重要意义。
OPTISTRUCT介绍

基于OptiStruct的结构优化设计方法2008-07-18 16:37摘要:最优化技术与有限元法结合产生的结构优化技术已逐渐发展成熟并成功地应用于产品设计的各个阶段。
本文总结了OptiStruct结构优化设计方法和特点,从优化设计三要素、迭代算法、灵敏度分析等方面阐述了基于有限元法的OptiStruct结构优化的数学基础,给出了OptiStruct结构优化设计流程和步骤。
关键词:结构优化,设计流程,有限元优化设计是以数学规划为理论基础,将设计问题的物理模型转化为数学模型,运用最优化数学理论,以计算机和应用软件为工具,在充分考虑多种设计约束的前提下寻求满足预定目标的最佳设计。
有限元法(FEM)被广泛应用于结构分析中,采用这种方法,任意复杂的问题都可以通过它们的结构响应进行研究。
最优化技术与有限元法结合产生的结构优化技术逐渐发展成熟并成功地应用于产品设计的各个阶段。
Altair OptiStruct是一个面向产品设计、分析和优化的有限元和结构优化求解器,拥有全球先进的优化技术,提供全面的优化方法。
OptiStruct从1993年发布以来,被广泛而深入地应用到许多行业,在航空航天、汽车、机械等领域取得大量革命性的成功应用,赢得多个创新大奖。
一、OptiStruct结构优化方法简介OptiStruct是以有限元法为基础的结构优化设计工具。
它提供拓扑优化、形貌优化、尺寸优化、形状优化以及自由尺寸和自由形状优化,这些方法被广泛应用于产品开发过程的各个阶段。
概念设计优化――用于概念设计阶段,采用拓扑(Topology)、形貌(Topography)和自由尺寸(Free Sizing)优化技术得到结构的基本形状。
详细设计优化――用于详细设计阶段,在满足产品性能的前提下采用尺寸(Size)、形状(Shape)和自由形状(Free Shape)优化技术改进结构。
拓扑、形貌、自由尺寸优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。
拓扑优化_精品文档

-1整数变量问题变为0~1间的连续变量优化模型,获得方程(在设计变
量上松弛整数约束)的最直接方式是考虑以下问题:
min u,
uout
N
s.t.: min 1 min e Ke u f e1
N
vee V
e1
0 e 1, e 1,2,, N
其中 e 可取0-1之间的值
(6)
然而这种方程会导致较大区域内 e 是在0-1之间的值,所以必须添加额外 的约束来避免这种“灰色”区域。要求是优化结果基本上都在 e 1 或
而对于结构拓扑优化来说,其所关心的是离散结构中杆件之间的最优 连接关系或连续体中开孔的数量及位置等。拓扑优化力图通过寻求结构的 最优拓扑布局(结构内有无孔洞,孔洞的数量、位置、结构内杆件的相互 联接方式),使得结构能够在满足一切有关平衡、应力、位移等约束条件 的情形下,将外荷载传递到支座,同时使得结构的某种性能指标达到最优。 拓扑优化的主要困难在于满足一定功能要求的结构拓扑具有无穷多种形式, 并且这些拓扑形式难以定量的描述即参数化。
结构渐进优化法(简称ESO法)
通过将无效的或低效的材料 一步步去掉,获得优化拓扑,方法通 用性好,可解决尺寸优化,还可同时 实现形状与拓扑优化(主要包括应力, 位移/刚度和临界应力等约束问题的 优化)。
2.问题的设定
柔顺机构的拓扑优化
首先假设线性弹性材料有微小的变形
柔顺结构的一个重要运用在于机电系统(MicroElectroMechanical Systems(MEMS),在该系统中小规模的计算使得很难利用刚体结构来实现铰链、 轴承以及滑块处的机动性。
如果我们只考虑线性弹性材料(只发生微小变形)的分析问题,则决定 输出位移的的有限元方法公式为:
optistruct拓扑优化方法

optistruct拓扑优化方法
OptiStruct是一种结构优化软件,它提供了多种优化方法,其中包括拓扑优化方法。
拓扑优化是一种用于在给定设计空间内寻找最佳结构形状的优化方法,以实现最佳的性能和重量比。
在OptiStruct中,拓扑优化方法主要包括两种,基于密度的拓扑优化和基于形状的拓扑优化。
基于密度的拓扑优化是一种常见的拓扑优化方法,它通过在设计空间内分配材料密度来实现结构形状的优化。
在这种方法中,初始设计空间被填充满材料,然后通过逐步移除材料来实现最优结构形状的确定。
OptiStruct使用这种方法来帮助工程师在不同载荷情况下找到最佳的结构形状,以实现最佳的性能。
另一种拓扑优化方法是基于形状的拓扑优化,它着重于优化结构的整体形状,而不是局部密度分布。
通过调整结构的整体形状,可以实现更有效的载荷传递路径和减少应力集中,从而改善结构的性能。
OptiStruct可以使用这种方法来帮助工程师设计出更加优化的结构形状,以满足特定的性能需求。
总的来说,OptiStruct提供了多种拓扑优化方法,包括基于密
度的拓扑优化和基于形状的拓扑优化,工程师可以根据具体的设计需求和性能目标选择合适的方法来进行结构优化,以实现最佳的设计效果。
OptiStruct

Copyright © 2006 Altair Engineering, Inc. All rights reserved.
9
形状优化过程
初始模型 有限元分析
对设计区域 进行分区
改变各设计分 区的形状
保存为形状变量
OptiStruct给 出满足要求的 最佳形状
Copyright © 2006 Altair Engineering, Inc. All rights reserved.
12
面向优化的结构响应
目标
Min MinMax
Max MaxMin
Response
约束
LowerBound UpperBound Constraint Constraint
Response 1
LowerBound UpperBound Constraint Constraint
Functions of Responses
11
Optimization Disciplines
Solving the design problem by choosing and combining the right optimization disciplines
Copyright © 2006 Altair Engineering, Inc. All rights reserved.
6
Optimization Disciplines
Topography optimization Method to evaluate the optimum bead structure on a thin part
Copyright © 2006 Altair Engineering, Inc. All rights reserved.
基于OptiStruct的结构优化设计方法--张胜兰.

基于OptiStruct的结构优化设计方法张胜兰湖北汽车工业学院汽车工程系基于OptiStruct的结构优化设计方法张胜兰湖北汽车工业学院汽车工程系442002 湖北省十堰市车城西路167号摘要:最优化技术与有限元法结合产生的结构优化技术已逐渐发展成熟并成功地应用于产品设计的各个阶段。
本文总结了OptiStruct结构优化设计方法和特点,从优化设计三要素、迭代算法、灵敏度分析等方面阐述了基于有限元法的OptiStruct 结构优化的数学基础,给出了OptiStruct结构优化设计流程和步骤。
关键词:结构优化,设计流程,有限元优化设计是以数学规划为理论基础,将设计问题的物理模型转化为数学模型,运用最优化数学理论,以计算机和应用软件为工具,在充分考虑多种设计约束的前提下寻求满足预定目标的最佳设计。
有限元法(FEM被广泛应用于结构分析中,采用这种方法,任意复杂的问题都可以通过它们的结构响应进行研究。
最优化技术与有限元法结合产生的结构优化技术逐渐发展成熟并成功地应用于产品设计的各个阶段。
Altair OptiStruct是一个面向产品设计、分析和优化的有限元和结构优化求解器,拥有全球先进的优化技术,提供全面的优化方法。
OptiStruct从1993年发布以来,被广泛而深入地应用到许多行业,在航空航天、汽车、机械等领域取得大量革命性的成功应用,赢得多个创新大奖。
一、OptiStruct结构优化方法简介OptiStruct是以有限元法为基础的结构优化设计工具。
它提供拓扑优化、形貌优化、尺寸优化、形状优化以及自由尺寸和自由形状优化,这些方法被广泛应用于产品开发过程的各个阶段。
概念设计优化――用于概念设计阶段,采用拓扑(Topology、形貌(Topography和自由尺寸(Free Sizing优化技术得到结构的基本形状。
详细设计优化――用于详细设计阶段,在满足产品性能的前提下采用尺寸(Size、形状(Shape和自由形状(Free Shape优化技术改进结构。
OPTISTRUCT介绍
基于OptiStruct的结构优化设计方法2008-07-18 16:37摘要:最优化技术与有限元法结合产生的结构优化技术已逐渐发展成熟并成功地应用于产品设计的各个阶段。
本文总结了OptiStruct结构优化设计方法和特点,从优化设计三要素、迭代算法、灵敏度分析等方面阐述了基于有限元法的OptiStruct结构优化的数学基础,给出了OptiStruct结构优化设计流程和步骤。
关键词:结构优化,设计流程,有限元优化设计是以数学规划为理论基础,将设计问题的物理模型转化为数学模型,运用最优化数学理论,以计算机和应用软件为工具,在充分考虑多种设计约束的前提下寻求满足预定目标的最佳设计。
有限元法(FEM)被广泛应用于结构分析中,采用这种方法,任意复杂的问题都可以通过它们的结构响应进行研究。
最优化技术与有限元法结合产生的结构优化技术逐渐发展成熟并成功地应用于产品设计的各个阶段。
Altair OptiStruct是一个面向产品设计、分析和优化的有限元和结构优化求解器,拥有全球先进的优化技术,提供全面的优化方法。
OptiStruct从1993年发布以来,被广泛而深入地应用到许多行业,在航空航天、汽车、机械等领域取得大量革命性的成功应用,赢得多个创新大奖。
一、OptiStruct结构优化方法简介OptiStruct是以有限元法为基础的结构优化设计工具。
它提供拓扑优化、形貌优化、尺寸优化、形状优化以及自由尺寸和自由形状优化,这些方法被广泛应用于产品开发过程的各个阶段。
概念设计优化――用于概念设计阶段,采用拓扑(Topology)、形貌(Topography)和自由尺寸(Free Sizing)优化技术得到结构的基本形状。
详细设计优化――用于详细设计阶段,在满足产品性能的前提下采用尺寸(Size)、形状(Shape)和自由形状(Free Shape)优化技术改进结构。
拓扑、形貌、自由尺寸优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。
OptiStruct结构优化
• 第1天
• 简介 • 理论背景 • 优化设置界面 • 拓扑优化 • .fem 文件 和.out文件 • 一个完整的流程:从 CAD 到 CAD
• 第2天
• 使用Inspire进行拓扑优化 • HyperMorph网格变形 • 形状优化
• 第3天
• 自由形状优化 • 形貌优化 • 尺寸优化
• 自由尺寸优化 • 优化策略
OptiStruct 文件和结果
Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
OptiStruct:完整的结构分析解决方案
• 静态线性和非线性准静态分析 • 线性热应力分析 • 惯性释放 • 屈曲分析(可带预应力) • 正则模态/复模态(可带预应力) • 频率响应(模态法,直接法) • 瞬态响应(模态法,直接法和傅里叶变换法) • NVH分析 (包括流固耦合) • 谱分析(随机谱、响应谱) • 疲劳分析 • 超单元 • 瞬态和稳态传热分析 • 复材分析 • 转子动力学 • ……
HyperWorks 优化技术
Altair OptiStruct® 结构、振动和疲劳优化
Altair HyperStudy® 多学科研究和优化
solidThinking Inspire 面向设计师的结构优化
Copyright © 2015 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
• 制造约束
• 练习1c – Pattern Repetition using Topology Optimization • 练习1d – Topology Optimization of a frame
optistruct拓扑优化原理
optistruct拓扑优化原理
OptiStruct是一种用于结构优化的有限元分析软件,它使用拓扑优化原理来寻找最佳的结构形状。
拓扑优化是一种通过改变结构的拓扑形状(即结构的布局或连接方式)来实现结构轻量化和性能优化的方法。
在OptiStruct中,拓扑优化主要通过以下步骤实现:
1. 设定设计域,用户首先需要定义一个设计域,即结构可以存在的空间范围。
这个设计域可以是整个结构的空间,也可以是结构的某个局部区域。
2. 设定约束条件,用户需要指定一些设计约束条件,例如结构的最大尺寸、最小厚度、受力范围等。
这些约束条件可以帮助OptiStruct在优化过程中保持结构的可行性和实用性。
3. 设定载荷和边界条件,用户需要定义结构所受的载荷和边界条件,这些载荷和边界条件将影响结构的性能和行为。
4. 进行拓扑优化,OptiStruct将根据用户设定的设计域、约束条件、载荷和边界条件,通过数学优化算法和有限元分析技术,在给定的设计空间中寻找最佳的结构拓扑形状。
在这个过程中,
OptiStruct会自动调整结构的拓扑形状,以满足设计要求并最小化结构的重量或成本。
5. 评估优化结果,优化过程结束后,用户需要对优化结果进行评估,包括结构的性能、重量、刚度等方面。
根据评估结果,用户可以进一步调整设计参数,重新进行优化,直至达到满意的设计目标。
总的来说,OptiStruct的拓扑优化原理基于数学优化和有限元分析技术,通过自动调整结构的拓扑形状来实现结构的轻量化和性能优化,为工程设计提供了强大的工具和方法。
OptiStruct_Optimization
• Shape: is an automated way to modify the structure shape based on a predefined
shape variables to find the optimal shape.
• Size: is an automated way to modify the structure parameters (Thickness, 1D
Copyright © 2008 Altair Engineering, Inc. All rights reserved.
Day 1 Agenda
• • • Introduction Structural Optimization Concepts OptiStruct Features: FEA Solver and Optimizer
•
• • • •
Exercise 5.4: Creating Shapes
Exercise 5.5: Pre-processing the Shape Optimization of a Channel Exercise 5.6: Shape Optimization of a Rail Joint Exercise 5.7: Shape optimization of a 3-D bracket model using Free-Shape method
•
Shape Optimization Concepts (Morphing based and Free Shape)
• •
• • •
Exercise 5.1: Basics of Domains and Handles Exercise 5.2: Morph Volume Exercise 5.3: Mapping a mesh to a new geometry
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OptiStruct Optimization Overview
Topology Free-size
Design Fine Tuning
Design Process
Topography Free-shape
Concept Level Design
Gauge9 & 10
Gauge1, 2 & 3
Shape
Lightweight SUV Frame Development
New Frame
Mass reduction: 20% Increase torsion stiffness: 31% Weld length reduction: 50%
Old Frame
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
Structural Optimization Concepts
The Optimization Problem Statement: • Objective (What do I want?) min f(x) also min [max f(x)] • Design Variables (What can I change?) XiL ≤ Xi ≤ XiU i =1,2,3,…N • Design Constraints (What performance targets must be met?) gj(x) ≤ 0 j = 1, 2, 3, …, M Note: The functions f(x), gi(x), can be linear, non-linear, implicit or explicit, and are continuous Example: Explicit y(x) = x2 – 2x Implicit y3 – y2x + yx - √ x = 0
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
Optimization Definitions • Topology:
is a mathematical technique that optimized the material distribution for a structure within a given package space shape optimization in which a design region for a given part is defined and a pattern of shape variable-based reinforcements within that region is generated using OptiStruct .
Size and Shape Optimization Fine-tuning the Design
Upper and lower link mass without pins is down to 176 lbs from 240 lbs.
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
• HyperWorks Overview • OptiStruct Overview
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
HyperWorks Overview
MBD Analysis
• Kinematics
• Static
O2
B
3
A
4
2
otion
O4 1
1
• Quasi-static
• Dynamics
x
F
k, c
x F /k
m
F
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
Altair Engineering
July 2014
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
Day 1 Agenda
• Introduction • Theoretical Background • Optimization Interface and Setup • Concept Design
Gauge11, 12 & 13
Gauge5
Optimization
Gauge14 &15
Gauge4
Gauge6 Golver
Size
Solver Neutral DOE Approximations Stochastic Studies
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
Optimization Process for Torsion Links
Topology Optimization Design Space and Load
Topology Optimization Stiffness Material Layout
Topology Optimization Geometry Extraction
Copyright © 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
Structural Optimization using OptiStruct®
Concepts, Analysis, and Optimization for General Structures
•
Advanced analysis features
•
• •
•
• • •
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
OptiStruct Overview
• • •
Design Interpretation OSSmooth
• • •
Topography Optimization Free-size Optimization
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
•
Shape Optimization
• •
•
Free-shape Optimization
• •
• Optional Exercises
• Topology Exercises Using Solid Thinking Inspire
• • Exercise A1: Getting Started Using Inspire Exercise A2: Topology Optimization Using Multiple Load Cases in Inspire Exercise B1: Optimizing a Plate with Hole Test Coupon (PCOMPP-STACK-PLY)
Day 2 Agenda
• Review • Fine Tuning Design
• Size Optimization
• • Exercise 5a: Size Optimization of a Rail Joint Exercise 5b: Discrete Size Optimization of a Welded Bracket Exercise 5c: Cantilever L-beam Shape Optimization Exercise 5d: Shape Optimization of a Rail Joint Exercise 5e: Free-shape optimization Compressor Bracket Exercise 5f: Shape Optimization of a 3-D Bracket using the Free-Shape Method
OptiStruct in HyperWorks
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.
OptiStruct Overview
Finite Elements Analysis
Chapter 2 – Theoretical Background
• Optimization • Optimization Concepts and Definitions
Copyright © 2013 2012 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.