2007级理工科概率统计期末考试试题B机答案

合集下载

《概率论与数理统计》考试试题B(答案)

《概率论与数理统计》考试试题B(答案)

广东白云学院2007—2008学年第二学期期末考试《概率论与数理统计》B卷参考答案及评分标准适用专业及方向: 经济管理类各专业、土木工程层次: 本科年级: 07级限时: 120分钟考试形式: 闭卷考场要求: 笔试考试形式:闭卷考场要求:笔试.(×)2. 设、为两事件, 则.(×)3. 设, 则其一定是某连续型随机变量的密度函数.(√)4. 设随机变量~N(1, 9), 则.(√)5.设, , 与相互独立, 则.二、填空题(请将正确答案填写在括号内。

每空3分,共30分), 则( 0.6 ).7.设随机变量和都服从[0,2]上的均匀分布, 则( 2 ).8. 设为两个随机事件,且已知, , ,则条件概率(0.6).则常数c=(0.1),}5.15.0{<<-XP=(0.5).10. 已知~,函数值,则=(0.9772).11. 服从参数的泊松分布, 令, 则(13), (75).12. 设三次独立试验中, 事件出现的概率相等, 若已知至少出现一次的概率等1/3 ).,则下列关系成立的是( C )A. B.C. D.15.同时抛掷3枚均匀的硬币, 则恰好有两枚正面朝上的概率为( D )A. 0.5B. 0.125C. 0.25D. 0.37516. 10张奖券中含有3张中奖的奖券,每人购买一张,则第3个购买者中奖的概率为( B )A. B. 0.3 C. D.17. 设连续型随机变量服从参数为的指数分布,若方差,则数学期望( B )A. B. C. D.18. 如果离散型随机变量相互独立,且服从参数为的泊松分布,则当充分大时,离散型随机变量( D )近似服从标准正态分布.A. B. C. D.19. 设连续型随机变量的概率密度为,则( A )A. B. C.D.四、计算题(每小题8分,共32分)(1)若事件BA,互不相容,求α; (2)若事件BA,相互独立,求α.解 (1)因为BA,互不相容,所以φ=AB, (1分)所以)()()()(BPABPBPBAP=-= (2分)而)(1)()()()(APBAPBPAPBAP-=-+=(3分)所以α=0.3 (4分)(2)因为BA,相互独立,则A与B也相互独立, (5分))())(1)(()()()()()(BPBPAPBPAPBPAPBAP+-=-+=(7分)所以α=73(8分)21. 某产品主要由三个厂家供货.甲、乙、丙三个厂家的产品分别占总数的15%,80%,5%,其次品率分别为0.02,0.01,0.03,试计算(1)从这批产品中任取一件是不合格品的概率;(2)已知从这批产品中随机地取出的一件是不合格品,问这件产品由哪个厂家生产的可能性最大?解记=A{所取一件产品是不合格品},321,,BBB分别表示”产品来自甲、乙、丙厂” (1分) 依题意有:15.0)(1=BP, 80.0)(2=BP,05.0)(3=BP02.0)(1=BAP,01.0)(2=BAP,03.0)(3=BAP (2分) (1)由全概率公式0125.0)()()(31==∑=iiiBPBAPAP (5分) (2)由贝叶斯公式24.00125.002.015.0)()()()(111=⨯==APBAPBPABP, (6分)64.00125.001.080.0)()()()(222=⨯==APBAPBPABP, (7分)12.00125.003.005.0)()()()(333=⨯==A PB A P B P A B P (8分) 22.设连续型随机变量X 的密度函数⎩⎨⎧<<=其他020)(2x Ax x ϕ,求(1)常数A ;(2))(),(X D X E .解 因为138)(202===⎰⎰∞+∞-A dx Ax dx x ϕ (2分) 所以 83=A (3分)所以 ⎪⎩⎪⎨⎧<<=其他2083)(2x xx ϕ2383)()(203===⎰⎰∞+∞-dx x dx x x X E ϕ (5分) 51283)()(20422===⎰⎰∞+∞-dx x dx x x X E ϕ (7分) 20323512)]([)()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D (8分) 23. 已知电站供电网有10000盏电灯, 夜晚每一盏灯开灯的概率都是0.7, 而假定开、关时间彼此独立, 试用切贝谢夫不等式估计夜晚同时开着的灯数在6800与7200之间的概率。

概率论与数理统计2007—2008学年第一学期期末考试试卷及参考答案与评分标准

概率论与数理统计2007—2008学年第一学期期末考试试卷及参考答案与评分标准

2007-2008学年第一学期期末考试试卷考试科目:概率论与数理统计 得 分:学生所在系: _________ 姓名 ______________ 学 号:______________________(考期:2008年1月22日,闭卷,可用计算器)一、 (15分)一串0,1数字(独立同分布)组成的序列中1的概率p 代表了某种有用的 信息,由于某种原因需要对其保密。

现对该串数字进行随机加密,对序列中的每一个数字抛 一枚硬币(每次正面出现的概率为〃),若抛出的为正面,则原序列的数字不变,若抛出的 为反面,则原序列中相应的数字由工变成1-工(即0变成1, 1变成0)。

加密后的序列可 以公布,其中1的概率p*可以估计出来。

若知道〃的值,就可以从加密后的序列中的1的频 率为〃*计算出原序列的p,所以〃称为“密钥”。

(1) 现己知p = 0.7 ,如果“密钥” "=0.4,试求p ;(2) 试说明为什么均匀硬币(7 = 0.5)不适合用来加密。

二、 (15 分)设随机变量 X 满足:| X |< 1, P (X = -1) = 1/8, P (X = 1) = 1/4 ,而且, X 在(-1, 1)内任一子区间上取值的概率与该子区间的长度成正比。

试求:(1) X 的概率分布函数F (x ) = P (X < x );(2)X 取负值的概率; (3) X 的数学期望项X )。

三、(20分)二维随机变量(X,F )的密度函数为:(1)试求系数A = ? ; (2) X 与Y 是否独立?(3)试求Z = X + Y 的密度函数心(z );(4) 试求W (X|X + y = l)of(x, y)=(而-(35)3 > 0, > > 0)其他四、(20分)设样本(X“X2,・・・,X〃)抽自正态总体X ~N(", 1),々为未知参数(1)试求0 = P(X>2)的极大似然估计0"(结果可用(D(.)的形式表示);(2)写出日的(1一。

07-08-1概率论与数理统计期末考试B卷答案与评分标准 (73)

07-08-1概率论与数理统计期末考试B卷答案与评分标准 (73)

学期: 2007 至 2008 学年度 第 1 学期一、 填空题(本大题5小题,每小题2分,共10分)1、A ,B 为随机事件,P (A )=51,P (A B |)=41,31)|(=B A P 则)(B A P ⋃= .2、连续型随机变量X 的概率密度为2(11/),12()0,A x x f x ⎧-≤≤=⎨⎩其它则A = . 3、随机变量X ~(,)b n p ,且E (X )=20,D (X )=15则n = ,p = .4、随机变量X ~N (7,2),Y ~N (8,3),X 与Y 独立,则E (2X +3Y )= ,D (X -6Y )= .5、随机变量X ~b (1000,0.2),用中心极限定理估计}200{≥X P = .(本题12分)在不超过100的自然数里任取1数,则它能被2或能被5整除的概率为多少? 三、 (本题13分)设二维随机变量(X ,Y )的概率密度为(1),0,0(,)0,x y xe x y f x y -+⎧>>=⎨⎩其它求(1)求边缘概率密度)(),(y f x f Y X . (2)求条件概率密度)|(),|(||x y f y x f X Y Y X .四、 (本题13分)设二维随机变量(X ,Y )求(1)}3|1{},2|2{====X Y P Y X P ,(2)V =max(X ,Y )的分布率,(3)W =X +Y 的分布率五、 (本题13分)设总体),(~2σμN X ,21,X X ,…,n X 是来自X 的样本。

求)(),(),(2S E X D X E 。

(本题13分)10,)(1<<=-x xx f θθ,其中0>θ是未知参数,,21X X …n X ,是来自X 的样本,,,21x x …n x ,是相应的观察值,求(1)θ的矩估计量,(2)θ的最大似然估计量。

随机地选取某种炮弹9发做实验,得炮口速度的样本标准差s =11(m/s)。

概率论与数理统计(经管类)试题答案2007年07月

概率论与数理统计(经管类)试题答案2007年07月

概率论与数理统计(经管类)试题答案2007年07⽉07年7⽉⾼等教育⾃学考试概率论与数理统计(经管类)试题答案⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)cg1.从标号为101,,2,1 的101个灯泡中任取⼀个,则取得标号为偶数的灯泡的概率为( A )A .10150B .10151C .10050D .100512.设事件A 、B 满⾜2.0)(=B A P ,6.0)(=A P ,则=)(AB P ( B ) A .0.12B .0.4C .0.6D .0.8A .)4,3(NB .)8,3(NC .)16,3(ND .)17,3(N率为( A ) A .3)1(1p --B .2)1(p p -C .213)1(p p C -D .32p p p ++5.设⼆维随机变量),(Y X 的分布律为设},{j Y i X P p ij ===,1,0,=j i ..A .0100p p <B .1110p p <C .1100p p <D .0110p p <6.设随机变量X ~)2(2χ,Y ~)3(2χ,且X ,Y 相互独⽴,则Y23所服从的分布为( B ) A .)2,2(FB .)3,2(FC .)2,3(FD .)3,3(FA .)()()(Y D X D Y X D +=+B .C XD C X D +=+)()( C .)()()(Y D X D Y X D -=-D .)()(X D C X D =-8.设随机变量X 的分布函数为≥<≤-<=4,142,122,0)(x x x x x F ,则=)(X E ( D )A .1B .1 C .3 D .39.设随机变量X 与Y 相互独⽴,且X ~??? ??61,36B ,Y ~??31,12B ,则=+-)1(Y X D ( C )A .4 B .7C .23D .26n 21样本⽅差,对假设检验问题:00:µµ=H ?01:µµ≠H ,在2σ未知的情况下,应该选⽤的检验统计量为( C )A .n X σµ0- B .--n X σµ C .n S X 0µ- D .10--n SX µ⼆、填空题(本⼤题共15⼩题,每⼩题2分,共30分)11.设事件A 与B 互不相容,且4.0)(=A P ,7.0)(=B A P ,则=)(B P ___________.颜⾊的球,若连取两次,则第⼀次取得红球且第⼆次取得⽩球的概率等于___________.15.已知随机变量X ~??21,n B ,且321}5{==X P ,则=n ___________.16.设随机变量X 的分布函数为≤>-=-0,00,)(2x x e a x F x ,则常数=a ___________.17.设⼆维随机变量),(Y X 的概率密度为=其他,0),(y x f ,则常数18.设⼆维随机变量),(Y X 的联合分布列为则==+}0{Y X P ___________.19.已知随机变量X 满⾜1)(-=X E ,2)(=X E ,则=)(X D ___________.,且X ,Y .率近似为___________.(附:9772.0)2(=Φ)22.设总体X 的概率密度为≤>=-0,00,)(x x e x f x αα,n x x x ,,,21 为总体X 的⼀个样本,则未23.设总体X 服从正态分布),(2σµN ,n X X X ,,,21 为来⾃该总体的⼀个样本,令µ)(-=X n U ,则=)(U D ___________.n 21的⼀个样本,则参数λ的矩估计量为___________.25.设总体X ~),(σµN ,n X X X ,,,21 为来⾃该总体的⼀个样本.对假设检验问题20212020::σσσσ≠?=H H ,在µ未知的情况下,应该选⽤的检验统计量为___________.26.某⽤户从两⼚家进了⼀批同类型的产品,其中甲⼚⽣产的占60%,若甲、⼄两⼚产品的次品率分别为5%、10%,今从这批产品中任取⼀个,求其为次品的概率.解:设A 表⽰“取到甲⼚产品”,B 表⽰“取到次品”,则6.0)(=A P ,4.0)(=A P ,05.0)|(=A B P ,1.0)|(=A B P ,所求概率为07.004.003.01.04.005.06.0)|()()|()()(=+=?+?=+=A B P A P A B P A P B P . 27.设随机变量X 服从参数为3的指数分布.试求:(1)X e Y =的概率密度;(2)}21{≤≤Y P .解:(1)X 的概率密度为≤>=-0,00,3)(3x x e x f x X ,X e Y =的分布函数为}{}{)(y e P y Y P y F X Y ≤=≤=.0≤y 时,0)()(=?=P y F Y ,0)()(='=y F y f Y Y , 0>y 时,=)(y F Y )(ln }ln (y F y X P X =≤,≤>=?=''='=-0ln ,00ln ,31)(ln ))(ln (ln )()(ln 3y y y e y y f y y F y F y f y X XY Y ,即≤<>=10,01,3)(4y y y y f Y ,总之,??≤>=1,01,3)(4y y y y f Y ;(2)8713)(}21{21321421=-===≤≤?y dy y dy y f Y P Y .四、综合题(本⼤题共2⼩题,每⼩题12分,共24分)28.设⼆维随机向量),(Y X 的的联合分布列为试求:(1)a 的值;(2)),(Y X 分别关于X 和什么?(4)Y X +的分布列.解:(1)由分布列性质可知12.01.01.02.01.0=+++++a ,3.0=a ;(2)),(Y X 关于X 的边缘分布列为4.01.02.01.0}2,1{}1,1{}0,1{}1{=++===+==+====Y X P Y X P Y X P X P , 6.02.01.03.0}2,2{}1,2{}0,2{}2{=++===+==+====Y X P Y X P Y X P X P ,),(Y X 关于Y 的边缘分布列为4.03.01.0}0,2{}0,1{}0{=+===+====Y X P Y X P Y P , 3.01.02.0}1,2{}1,1{}1{=+===+====Y X P Y X P Y P ,3.02.01.0}2,2{}2,1{}2{=+===+====Y X P Y X P Y P ;(3)1.0}0,1{===Y X P ,16.04.04.0}0{}1{=?===Y P X P ,≠==}0,1{Y X P }0{}1{=?=Y P X P ,所以X 与Y 不独⽴.(4)Y X +的可能取值为4,3,2,1,分布列为1.0}0,1{}1{=====+Y X P Y X P ,5.03.02.0}0,2{}1,1{}2{=+===+====+Y X P Y X P Y X P , 2.01.01.0}1,2{}2,1{}3{=+===+====+Y X P Y X P Y X P ,2.0}2,2{}4{=====+Y X P Y X P ,即29.设⼆维随机向量),(Y X 的概率密度为=其他,0),(y x f ,试求:(1))(X E ,)(Y E ;(2))(X D ,)(Y D ;(3)XY ρ.解:<<==?+∞∞-其他,010,2),()(x x dy y x f x f X ,??<<==?∞+∞-其他,020,2),()(y y dx y x f y f Y .(1)32322)()(1312====??∞+∞-x dx x dx x xf X E X , 3 4621)()(23202====??∞+∞-y dy y dy y yf Y E T ;(2)2122)()(141322====??∞+∞-x dx x dx x f x X E X , 1813221)]([)()(222=??? ??-=-=X E X E X D ,2821)()(2420322====??∞+∞-y dy y dy y f y Y E T ,92342)]([)()(222=-=-=Y E Y E Y D ;(3)9833),()(231310222====∞+∞-∞+∞-y x dy y dx x dxdy y x xyf XY E , 0343298)()()(),cov(=?-=-=Y E X E XY E Y X ,0)()(),cov(==Y D X D Y X XY ρ.五、应⽤题(本⼤题10分)30.设⼯⼚⽣产的螺钉长度(单位:毫⽶)X ~),(2σµN ,现从⼀⼤批螺钉中任取6个,测得长度分别为54,54,53,54,54,55.试求⽅差2σ的置信度90%的置信区间.(附:07.11)5(205.0=χ,15.1)5(295.0=χ)解:已知6=n ,1.0=α,查得=-)1(22/n αχ07.11)5(205.0=χ,=--)1(22/1n αχ15.1)5(295.0=χ,算得546161==∑=i i x x ,2)()1(6122=-=-∑=i i x x s n ,2σ的置信度90%的置信区间为(单位:平⽅毫⽶)-----)1()1(,)1()1(22/1222/2n s n n s n ααχχ[]7391.1,1807.015.12,07.112==.。

青岛理工大学概率统计期末试卷—B(附答案)

青岛理工大学概率统计期末试卷—B(附答案)

学号:姓名:班级:..........................................................密.......................................................封...........................................................线..........................................................专业本科各专业年级2007级班2008~2009学年第 1 学期概率论与数理统计课程期末试卷试卷类型:B 卷青岛理工大学试卷纸共 4 页第 1 页试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须..........................................................密.......................................................封..........................................................线....................................................................................................................密.......................................................封..........................................................线....................................................................................................................密.......................................................封..........................................................线..........................................................2008年下学期概率统计试卷(B)参考答案1. 设A, B, C 是三个随机事件. 事件:A 发生, B , C 中至少有一个不发生表示为(空1) .2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y . 则P {Y =2}=(空2) . 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4} =41×(0+21+31+41)=4813. 3. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 则常数c = (空3) . 概率}0|1{≠<X X P =(空4) .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++=所以3516c =. 所求概率为P {X <1| X 0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 4. 设随机变量X , Y 的数学期望分别是2和-4, 方差分别是1和4, 而相关系数为0.5. 则根据切比雪夫不等式估计{|2|P X Y +≥12}=(空5) .解 {2}2()()22(4)E X Y E X E Y +=+=⨯+-=,{2}4()()22Cov(,)D X Y D X D Y X Y +=+-⨯840.5124=-⨯⨯⨯=. 所以, {|2|P X Y +≥12}≤2411236=. 5. 若1X ,2X ,3X 为来自总体2(,)X N μσ 的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 则常数k =(空6) . 解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.1.设A, B 为任二事件, 则下列关系正确的是( ).(A) ()()()P A P AB P AB =+. (B)()()()P A B P A P B =+ . (C) ()()()P A B P A P B -=-. (D) ()()()P AB P A P B =.解 由文氏图易知本题应选(D).2. 设事件A 与B 独立, 则下面的结论中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()()()P P P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).3. 设随机变量X 的概率密度为()f x , 且()()f x f x =-, 又F (x )为随机变量X 的分布函数, 则对任意实数a , 有( ).(A) 0()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-. (C) ()()F a F a -=. (D) ()2()1F a F a -=-.解 由分布函数的几何意义及概率密度的性质知答案为(B).4. 设随机变量X 服从标准正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=. 若{}P X x α<=, 则x 等于( ).(A) /2u α . (B) 1/2u α- . (C) (1)/2u α-. (D) α-1u . 解 答案是(C).5. 设连续型随机变量X 的概率密度为f (x ), 则31Y X =+的概率密度为g (y )为( ).(A)111()333f y -. (B) 3(31)f y +. (C) 3()1f y +. (D) 1133()f y -.解 由随机变量函数的分布可得, 本题应选(A). 6. 在下列结论中, 错误的是( ).(A) 若随机变量X 服从参数为n ,p 的二项分布,则().E X np =(C) 若X 服从泊松分布, 则()()D X E X =. (D) 若2~(,),X N μσ 则~(0,1)X N μσ-.解 )1,1(~-U X , 则3112212)()(22==-=a b X D . 选(B). 7. 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.解 X 与 Y 相互独立是随机变量X 与Y 不相关的充分条件,而非必要条件. 选(D). 8. 已知X 1,X 2,…,X n 是来自总体2(,)X N μσ 的样本, 则下列结论中正确的是( ).(A) ().E X n μ= (B) 2().D X σ=(C) 22().E S σ= (D) 以上全不对.解 选(C).9. 设随机变量X 与Y 都服从标准正态分布, 则下列结论中正确的是( ).(A) X +Y 服从标准正态分布. (B) X 2+Y 2服从2χ分布.(C) X 2和Y 2都服从2χ分布. (D)22X Y服从F 分布.解 因为随机变量X 与Y 都服从标准正态分布, 但X 与Y 不一定相互独立,所以(A),(B),(D)都不对, 故选(C).10. 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()nii X nμ=-∑. (C) μ和σ2. (D) X 和211()nii X X n=-∑.解 选(D).三、(10分)在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球取自第二箱的概率. 解 以A 表示“取得的球是白球”,i H 表示“取得的球来自第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. ...................... 4分 (1) 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. ............ 4分(2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==. .................. 2分 四、(10分) 设二维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<<⎧⎨⎩其它 求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}22P Y X ≤≤;(3) X 与Y 是否独立?并说明理由. 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===⎰⎰;当x ≤0时或x ≥1时, ()0X f x =.故 2,01,()0,其它.X x x f x <<=⎧⎨⎩ ............................. 2分当0<y <2时,12()(,)d d 12y Y y f y f x y x x +∞-∞===-⎰⎰; 当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=⎧⎪⎨⎪⎩其它 ............................... 2分(2) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===⎧⎫⎨⎬⎩⎭. ............................. 4分 (3) 因为(,)()()X Y f x y f x f y ≠,所以X 与Y 是否独立. …………………………………2分 五、(10分)设随机变量(X , Y )的分布律为若E (XY )=0.8, 求常数a ,b 和协方差Cov(X ,Y ). 解 首先,由∑∑∞=∞==111i j ijp得4.0=+b a . 其次,由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+,得3.0=b . 进而1.0=a . ...................................................... 2分由此可得边缘分布律于是 4.14.026.01)(=⨯+⨯=X E , 5.05.015.00)(=⨯+⨯=Y E .故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=. ...................... 4分六、(10分)设某种商品每周的需求量X 是服从区间[10,30]上均匀分布的随机变量,而经销商店进货量为区间[10,30]中的某一整数. 该经销商店每销售一单位该种商品可获利500元; 若供大于求则削价处理, 每处理一单位该种商品亏损100元; 若供不应求, 则可从外部调剂供应, 此时每一单位商品仅获利300元. 为实现该商店所获利润期望值不小于9280元的目标, 试确定该经销商店对该种商品的进货量范围.解 设进货量为a 单位, 则经销商店所获利润为500300()300200,30,500100()600100,10.a a X a X a a X M X a X X a X a +-=+<=--=-⎧⎨⎩≤≤≤ ............ 4分 需求量X 的概率密度为()1,1030,200,.f x x =⎧<<⎪⎨⎪⎩其它 ........................... 2分 由此可得利润的期望值为30301010111()(600100)(300200)202020a a a aE M M dx x a dx x a dx =-++=⎰⎰⎰ .............. 2分 21535052502a a =-++依题意, 有21535052502a a -++≥9280,即21535040302a a -+≤0, 解得623≤a ≤26. 故期望利润不少于9280元的进货量范围为21单位~26单位. ................................................................ 2分七、(10分) 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求:(1) 未知参数λ的矩估计量; (2) 极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. ................................ 4分 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏, ...................... 2分取对数1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆx λ=,λ的极大似然估计量为1ˆX λ=. 4分八、(12分)已知一批零件的长度X (单位:cm)服从正态分布(,1)N μ, 从中随机地抽取16个零件, 得到长度的平均值为40cm.(1) 取显著性水平α=0.05时, 是否可以认为μ=41? (2) 求μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的条件与结论之间有什么关系? 解 (1) 提出假设 H 0: μ=μ0=41; H 1:μ≠μ0 . ................................... 2分 对于α=1-0.95= 0.05, 选取检验统计量X z =拒绝域为|z |>z 0.025=1.96 ............... 2分代入数据n =16, x =40, σ=1, 得到||x z ===4>1.96. 所以拒绝原假设, 不能认为μ=41 2分(2) 已知x =40, σ =1,α = 0.05, 查表可得0.025 1.96,z z α==所求置信区间为22()(40 1.96,40 1.96),x z x αα+=(39.51,40.49).= ..... 4分(3) 假设检验中的显著性水平α=0.05与置信区间估计的置信水平0.95满足关系0.95=1-α; .. 1分μ的双侧假设检验的接受域与μ的置信水平为0.95的置信区间相同...................... 1分 注意:题目参考数据: t 0.025(24)=2.0639, t 0.025(23)=2.0687, t 0.05(24)=1.7109, t 0.05(23)=1.7139z 0.025=1.96, z 0.05=1.65。

2007—2008 概率论与数理统计(B)

2007—2008 概率论与数理统计(B)

梅三#111光棍文印室 单面6分/张 双面8分/张 打印资料 复印课本 胶装电话:134 **** **** Q :124 111 2484(可发过来) 量大从优!欢迎光临松1#520打印室《概率论与数理统计》B 试卷 第1页共 4页河南理工大学 2007—2008 学年第 2 学期概率论与数理统计 试卷考试方式:闭卷 本试卷考试分数占学生总评成绩的 80 %复查总分 总复查人一、填空题(每小题5分,共25分)1.设,21)(,31)(==B P A P 且B A ⊂,则)(B A P = 。

2.设随机变量x ~N(1,4),8413.0)1(=Φ,则事件“31≤≤x ”的概率为 。

3.n x x x ,,,21 ,为来自两点分布),1(p b 的样本,则当n 很大时,其样本均值X 近似服从 分布。

4.设A 、B 为任意两个随机事件,则=++++)})()()((B A B A B A B A P 。

5.设n x x x ,,,21 为来自总体X 的简单随机样本,X ~N ),(2σμ,∑==n i i X n X 11,212)(11X X n S n i i --=∑=,若2σ已知,则μ的置信度为α-1(其中10<<ε)的双侧置信区间为 。

二、选择题(每小题5分,共25分)1.设P(A)=a,P(B)=b,P(A ∪B)=C ,则)(B A P 为( ) (A )a(1-b) (B )a-b (C )c-b (D )a(1-c)2.设X ~N (1,1)其概率密度函数为)(x f ,分布函数)(x F ,则有( )(A )5.0}0{}0{=≥=≤x P x P (B )),(),()(+∞-∞∈-=x x f x f (C )5.0}1{}1{=≥=≤x P x P(B)),(),()(+∞-∞∈-=x x F x F3.设X 、Y 是相互独立的随机变量,它们的分布函数分别为)()(y F x F y x =,则),min(Y X Z =的分布函数)(Z F 是( )。

《概率论与数理统计》期末考试(B)卷答案与评分标准

《概率论与数理统计》期末考试(B)卷答案与评分标准

海南师范大学物理、电子、自动化、地理、城规、计算机专业《概率论与数理统计》 2009—2010学年度第一学期期末考试(B )卷答案与评分标准注意事项:1. 考前请将密封线内填写清楚 2. 所有答案请直接答在试卷上3.考试形式:闭卷4. 本试卷共五大题,满分100分, 考试时间100分钟一、单项选择题(本题共六小题,每小题3分,共18分。

在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分)1、将3个不同的球随机地放入4个不同的杯中, 有一个杯子放入2个球的概率是( B ).. A :324234C C ⋅; B :324234P C ⋅ ; C :424233P C ⋅; D :424233C C ⋅.2、下列函数中,可看作某一随机变量X 的概率分布密度函数的是( C ) A :;,1)(2+∞<<-∞+=x x x f B :;,11)(2+∞<<-∞+=x xx fC :;,)1(1)(2+∞<<-∞+=x x x f π; D :.,)1(2)(2+∞<<-∞+=x x x f π3、己知随机变量Y X ,相互独立且都服从正态分布)4 ,2(N , 则( B ) . A :)4 ,4(~N Y X +; B :)8 ,4(~N Y X + ; C :)4 ,0(~N Y X -; D :Y X -不服从正态分布.4、己知随机变量X 服从二项分布)2.0 ,10(B , 则方差=)(X D ( D ). A :1; B :0.5; C :0.8; D :1.6.5、己知随机变量X 的期望5)(=X E , 方差4)(=X D , 则( A ). A :98}65-X {≥<P ; B :98}65-X {≤<P ; C :98}65-X {≥≥P ; D :98}65-X {≤≥P .6、设4321,,,X X X X 是来自正态总体) ,(2σμN 的简单随机样本,下列四个μ的无偏估计量中,最有效的是( D ). A :)(313211X X X ++=μ; B :)2(413214X X X ++=μ; C :)32(613213X X X ++=μ; D :)(4143212X X X X +++=μ.二、填空题(将答案直接填入栝号内,本题共六小题,每小题3分,共18分)1、设B A 与为随机事件,3.0)(,5.0)(==AB P A P ,则条件概率=)(A B P ( 0.6 )2、已知随机变量X 服从区间,10]2[内的均匀分布,X 的概率分布函数为),(x F 则=)4(F ( 0.25 )。

3《概率论与数理统计》期末考试试题 B卷答案

3《概率论与数理统计》期末考试试题 B卷答案

华中农业大学本科课程考试 参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。

答案错选或未选者,该题不得分。

每小题2分,共10分。

) 1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π. 2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n)3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。

答案错选或未选者,该题不得分。

每小题2分,共10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B 卷 第 1页 共2页华侨大学07~08学年第一学期《概率统计》期末考试试卷(B 卷) 考试日期:2008年 月 日上午8:30-10:30一、填空题(每空3分,共30分)1. 已知随机事件A ,B 有概率7.0)(=A P ,8.0)(=B P ,条件概率6.0)|(=A B P ,则=⋃)(B A P .2. 社会上定期发行某中奖劵,中奖率为p .某人每次购买一张,若没有中奖,接着再买一张,直到中奖为止,X 为总共购买的奖券张数,则对1,2,k = ,==)(k X P ,EX = .3. 已知随机变量),(Y X 的联合分布密度函数如下, 则常数=K=),(y x f ⎩⎨⎧≤≤≤≤-其它。

,0;0,10),1(x y x x y K 4. 设随机变量Y X ,满足 ()4,()1,D X D Y ==28)23(=-Y X D ,则XY ρ= . 5. 设X 为总体)4,3(~N X 中抽取的样本(4321,,,X X X X )的均值, 则)51(<<-X P = .6. 设321,,X X X 是取自N (,)μ1的样本,3211)22(3ˆX k X kX -++=μ是μ的无偏 估计量,则常数=k .7. 设随机变量()~0,2X U ,则2X Y =的概率密度函数为 . 8. 设某种保险丝熔化时间),(~2σμN X (单位:秒),取16=n 的样本,得 样本均值和方差分别为36.0,152==S X ,则μ的置信度为95%的单侧 置信区间上限为 .9. 原假设0H 为真时,作出拒绝0H 的决策,称为犯第 类错误.B 卷 第 2页 共2页二、(10分) 已知一批产品中96 %是合格品. 检查产品时,一件合格品被误认为是次品的概率是0.02;一件次品被误认为是合格品的概率是0.05.求在被检查后认为是合格品的产品确实是合格品的概率.三、(10分) 学校某课程的考试,成绩分优秀,合格,不合格三种,优秀者得3分,合格者得2分,不合格者得1分.根据以往的统计,每批参加考试的学生中考得优秀、合格、不合格的,各占10%、70%、20%.现有100位学生参加考试,试用中心极限定理估计100位学生考试的总分在180至200分之间的概率.四、(15分) 设二维随机变量( X , Y )的联合密度函数为:⎩⎨⎧+∞<<<<=+-.,0,0,10,),()(他其y x be y x f y x试求(1)常数b ; (2) X 和Y 各自的边缘密度函数;(3)函数),max(Y X U =的分布函数.五、(15分) 设总体X 的概率密度为(1),(0,1),(,)0,(0,1),x x f x x θθθ⎧+∈=⎨∉⎩ 其中1θ>-为未知参数.已知12,,,n X X X 是取自总体X 的一个样本.求:(1)未知参数θ的矩估计量;(2)未知参数θ的最大似然估计量;(3))(X E 的最大似然估计量.六、(10分)国际市场每年对我国某种出口商品的需求量X 是一个随机变量,它在区间[2000,4000](单位:吨)上服从均匀分布,若每出售一吨,可得外汇3万美元,如销售不出而积压,则每吨需保养费1万美元,问应组织多少货源,才能使平均收益最大?七、(10分) 某电子产品的一个指标服从正态分布,从某天生产的产品中抽取15个产品,测得该指标的样本均值为2.60,样本标准差为1.20.(1) 取显著性水平α =0.05,问是否可以认为该指标的平均值显著地不等于2? (2) 求该指标的方差的置信水平为0.95的置信区间.附常用分布的分布表值:(2)0.9772Φ= 9680.0)856.1(=Φ 0.0250.05 1.96, 1.645z z ==1448.2)14(025.0=t , ()0.0515 1.7531t = 629.5)14(,119.26)14(2975.02025.0==χχB 卷 第 3页 共2页华侨大学07-08第一学期 概率统计期末考试(B 卷)答案一、填空题:(每空3分,共30分)1.62.0; 2.()11k p p --⋅,1p; 3.24; 4.0.5; 5.0.9544; 6.4;7.⎩⎨⎧<<=;他其)(0,)40(/25.0)(y yy f 8.上限为 15.2630; 9.一.二、【10分】设A 为被查后认为是合格品的事件,B 为抽查的产品为合格品的事件. …………… 2分9428.005.004.098.096.0)()()()()(=⨯+⨯=+=B A P B P B A P B P A P ,…………… 4分.998.09428.0/9408.0)(/)()()(===A P B A P B P A B P…………… 4分三、【10分】 设i X 为第i 位学生的得分)100,2,1( =i ,则总得分∑==1001i i X X ,且9.1)(=i X E29.0)(=i X D 199.1100)(=⨯=X E29.0100)(⨯=X D …………… 6分由中心极限定理,)29190180()29190200()200180(-Φ--Φ=<<X P 936.01)856.1(2=-Φ= ……… 4分四、【15分】(本大题(1)-(2)小题各6分,(3)小题3分)(1)()()101,x y f x y dxdy dx bedy+∞+∞-+-∞==⎰⎰⎰()1101x y b e dx e dy b e +∞---==-⎰⎰,故111b e-=-(2)()()10,01,10,xx y X e be dy x f x e-+∞-+-⎧= <<⎪=-⎨⎪ ⎩⎰其它,B 卷 第 4页 共2页()()10,0,0,x y y Y bedx e y f y -+-⎧= <⎪=⎨⎪ ⎩⎰其它.(3) 由于()()(),X Y f x y f x f y =⋅,因此X 和Y 相互独立,故()()()()()()(),U X Y F u P U u P X u Y u P X u P Y u f u f u =≤=≤≤=≤≤=⋅从而当u <时,()0U F u =.当01u ≤<时,()()()()211.1u uuU X Y e F u f x dx f y dy e---==-⎰⎰当1u ≥时,()()()101uuU X Y F u f x dx f y dy e -==-⎰⎰,综上()()210,0,1,1,11,.u U u u e F u u e e u --- <⎧⎪-⎪= 0≤<⎨-⎪⎪- 1≤⎩X 与Y相互独立,因为)()(),(y f x f y x f Y X =. …………… 本大题每小题各5分五、【15分】(1) 矩估计量12ˆ1XX θ-=- …………… 6分 (2)极大似然估计量11ˆ11ln ni i X n θ==--∑…………… 6分 (3))(X E 的极大似然估计量∑=-=++=ni in X X E 11ln 112ˆ1ˆ)(ˆθθ …………… 3分六、【10分】B 卷 第 5页 共2页设组织t 吨货源时,收益为()()3,,3,,3,4,.t t X t t X t W X X t X X t X t X t >⎧ >⎧⎪==⎨⎨-- ≤- ≤⎪⎩⎩又()~2000,4000X U ,则()1,20020000,.X x f x ⎧ <<⎪=⎨⎪ ⎩其它 …………… 4分从而()()()()2400020004374000200020001000tt t X t x t t t E W X W x f x dx dx dx t +∞-∞-==+=-+-⎰⎰⎰,易知当()()70500t dE W X tdt=-=即3500t =时,平均收益最大.故应组织3500吨货源. ……… 6分七、【10分】(1)设2:,2:10≠=μμH H,则(14)X Y t =,且拒绝域D 为:1448.2)14(15/2025.0=>-=t S X T1.93652.1448X =≈<, 因此不能拒绝0H ,不可以认为该指标的平均值显著地不等于2; …………… 5分 (2)因为222(1)(14)n S χσ- ,令2220.9750.0252(1)(14)(14)n S χχσ-<<则该指标的方差的置信水平为0.95 的置信区间为22220.0250.975(1)(1),(0.7719,3.5815)(14)(14)n S n S χχ⎛⎫--= ⎪⎝⎭. …………… 5分。

相关文档
最新文档