引物设计的一般原则
引物设计原则(必看)

mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。
3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。
6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。
引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
引物设计的原则

引物设计的原则引物设计有3 条基本原则:首先引物与模板的序列要紧密互补,其次引物与引物之间避免形成稳定的二聚体或发夹结构,再次引物不能在模板的非目的位点引发DNA 聚合反应(即错配)。
具体实现这3 条基本原则需要考虑到诸多因素,如引物长度(primer length),产物长度(product length),序列Tm 值(melting temperature),引物与模板形成双链的内部稳定性(internal stability, 用?G 值反映),形成引物二聚体(primer dimer)及发夹结构(duplex formation and hairpin)的能值,在错配位点(false priming site)的引发效率,引物及产物的GC 含量(composition),等等。
必要时还需对引物进行修饰,如增加限制性内切酶位点,引进突变等。
根据有关参考资料和笔者在实践中的总结,引物设计应注意如下要点:1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应[2]。
2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。
引物3’端出现3 个以上的连续碱基,如GGG 或CCC,也会使错误引发机率增加[2]。
3. 引物3’端的末位碱基对Taq 酶的DNA 合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A 的错配效率明显高于其他3 个碱基,因此应当避免在引物的3’端使用碱基A[3][4]。
另外,引物二聚体或发夹结构也可能导致PCR 反应失败。
5’端序列对PCR 影响不太大,因此常用来引进修饰位点或标记物[2]。
4. 引物序列的GC 含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大[2][5]。
5. 引物所对应模板位置序列的Tm 值在72℃左右可使复性条件最佳。
引物设计原则[必看]
![引物设计原则[必看]](https://img.taocdn.com/s3/m/08b054b179563c1ec5da71c2.png)
mi引物设计原则1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74C,不适于Taq DNA聚合酶进行反应。
2. 引物序列在模板内应当没有相似性较高,尤其是3'端相似性较高的序列,否则容易导致错配。
引物3'端出现3个以上的连续碱基,如GG(或CCC也会使错误引发机率增加。
3. 引物3'端的末位碱基对Taq酶的DNA合成效率有较大的影响。
不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3'端使用碱基A。
另外,引物二聚体或发夹结构也可能导致PCR反应失败。
5'端序列对PCF影响不太大,因此常用来引进修饰位点或标记物。
4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。
上下游引物的GC含量不能相差太大。
5. 引物所对应模板位置序列的Tm值在72E左右可使复性条件最佳。
Tm值的计算有多种方法,如按公式Tm= 4(G+C)+ 2(A+T),在Oligo软件中使用的是最邻近法(the n earest n eighbor method) 。
6. AG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。
应当选用3'端4G值较低(绝对值不超过9),而5'端和中间△ G值相对较高的引物。
引物的3'端的4G值过高,容易在错配位点形成双链结构并引发DNA聚合反应。
7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol )易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。
8. 对引物的修饰一般是在5'端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。
引物序列应该都是写成5-3方向的,Tm之间的差异最好控制在1度之内,另外我觉得扩增长度大一些比较好,500bp左右。
引物设计原则

引物设计原则
1.合适的引物长度:引物长度通常在18-30个碱基对之间,过长或过
短的引物都不利于PCR扩增的稳定性。
2.适当的引物GC含量:引物的GC含量应在40%-60%之间,过高或过
低的GC含量都会影响引物和模板DNA的特异性结合。
3.引物特异性:引物应具有高度特异性,可以通过引物序列在数据库
中进行BLAST分析来评估引物的特异性。
4.避免引物自身的二聚体和结构性:引物序列中要避免出现自身二聚
体和结构性,这会干扰PCR扩增的效果。
5.选择高峰结构引物:在引物设计时,优先选择会形成高峰结构的引物,这有助于提高扩增效率。
6.引物末端碱基的特异性:在引物末端碱基选择时,尽量使用能够增
强特异性和避免非特异性扩增的碱基。
7.引物的熔解温度(Tm):引物的熔解温度直接影响PCR扩增反应的
特异性和效率,应根据目标DNA的长度和序列来确定引物的Tm。
8.避免引物之间的交叉杂交:在多引物PCR反应中,引物之间的交叉
杂交会干扰扩增效果,可以通过软件模拟或实验确认引物之间没有相互杂交。
9.引物序列中避免多个重复碱基:引物序列中的多个重复碱基可能导
致非特异性扩增,应避免在引物序列中出现连续的多个重复碱基。
10.引物设计的可操作性和经济性:引物设计时,要考虑到引物合成
的成本和操作的方便性,选择价格适中的合成方法,并确保引物容易操作。
以上是引物设计的原则和考虑因素,通过合理设计和优化引物序列,可以提高PCR扩增实验的特异性、敏感性和效率,从而获得准确和稳定的实验结果。
引物设计一般原则

引物设计一般原则引物是一篇文章的开头部分,起着引导读者进入文章内容的作用。
设计出一个吸引人的引物,可以让读者对全文产生兴趣,从而增加文章的阅读率和影响力。
以下是设计引物的一般原则:1.引人入胜:一个好的引物应该从一开始就吸引读者的注意力。
可以使用一个有趣的事实、引人瞩目的问题、或者一个令人震惊的观点,引起读者的好奇心和注意力。
例如,一篇关于环保的文章可以这样开头:"你知道每年全球有多少塑料袋被丢弃在海洋中吗?让我们想象一下,如果塑料袋能够排成一排,能围绕地球多少次呢?"例如,一篇关于教育问题的文章可以这样开头:"教育是改变社会的关键。
我们如何培养出具有创新精神和社会责任感的下一代?本文将探讨教育系统中存在的问题,并提出一些解决方案。
"3.引用名言:一个有启发性的引言可以吸引读者的注意力,并激发他们对文章内容的思考。
这种引物可以是一个名人的名言、一句格言或者一句普遍认同的观点。
例如,一篇关于成功的文章可以这样开头:"爱因斯坦曾经说过,成功不是偶然发生的,而是由采取正确行动的结果。
本文将探讨一些成功的秘诀,并帮助你实现自己的目标。
"例如,一篇关于健康饮食的文章可以这样开头:"在现代社会中,我们很容易陷入不健康的饮食习惯中。
但是,我们应该意识到食物对我们的健康有着巨大的影响。
本文将分享一些健康饮食的技巧,让你拥有一个健康的生活方式。
"6.语言生动:一个好的引物应该通过使用生动的语言和形象的描述,给读者留下深刻的印象。
这样可以增加读者的情感共鸣,让他们更容易被文章吸引和影响。
例如,一篇关于环保的文章可以这样开头:"在一个炎热的夏天,当你走近那片被绿意覆盖的公园时,你能感受到清新的空气和树木的阴凉。
但是,你是否想过背后那些无声的英雄们,他们为了保护这片绿洲付出了多少努力?"总结来说,一个好的引物应该具有引人入胜、提出观点、引用名言、切入主题、简洁明了和语言生动等特点。
引物设计原则

引物设计原则:引物的3’端决定着PCR反应产物的特异性,而5’端限定着PCR产物的长度。
(1)引物序列应位于基因组DNA的高度保守区,且与非扩增区无同源序列。
这样可以减少引物与基因组的非特异结合,提高反应的特异性。
在模板内最好具有单一性,也就是说在模板内部没有错配,特别是3’端,一定要避免连续4个以上的碱基互补错配。
(2)引物的长度一般为15-30 bp,最好在18~24 bp,因为太短易形成错配,降低特异性,而太长也会降低特异性,并且影响PCR反应效率。
引物之间也不能有互补性,一般一对引物间不应多于4个连续碱基的互补。
(3)引物的碱基应尽可能随机分布,避免出现数个嘌呤或嘧啶的连续排列,G+C含量在40%~75%之间,且上下游引物序列GC含量的差异不要太大,3’端最后5个碱基最好不要富含GC,特别是连续3个的G或C。
DNA双链形成所需的自由能AG,应该以5’端向3’端递减(4)引物的内部应避免形成稳定的引物二聚体和发夹结构,特别是引物的末端应无回文结构。
上下游引物不应有互补序列,特别是3’端应避免互补,以免形成引物二聚体。
(5)如果以DNA为模板设计引物,产物长度在100—600 bp比较理想。
而以mRNA为模板设计引物时,产物长度在150—300 bp比较理想。
(6)5’ 端对PCR影响不太大,可以引进修饰位点和标记物。
(7)引物3’端的头1~2个碱基会影响T aqDNA聚合酶的延伸效率,从而影响PCR反应的扩增效率及特异性。
一般的PCR反应中,引物3’末端的碱基最好选T、C、G而不选A,A错配时会影响合成效率。
(8)引物3’端应为保守氨基酸序列,即采用简并密码子少的氨基酸如Met、Trp,且避免三联体密码第三个碱基的摆动未知位于引物的3’端。
3’端不应终止于密码子的简并碱基。
十条PCR引物的设计原则:①引物应用核酸系列保守区内设计并具有特异性。
②产物不能形成二级结构。
③引物长度一般在15~30碱基之间。
引物设计的一般原则

04
引物设计的步骤
确定目标序列
目标序列
确定需要扩增的目标DNA或RNA序列,确保其准 确性。
序列长度
根据扩增需求,确定目标序列的长度,通常在 100bp至数千bp之间。
序列质量
确保目标序列的质量,避免存在突变、插入或缺 失等变异。
选择合适的引物位置
引物长度
通常选择15-30bp的引物长度,以保证引物的特异性 和扩增效率。
引物位置
选择目标序列中具有足够保守性的区域作为引物结合 位点,以提高引物的通用性。
避免二级结构
确保引物结合位点周围序列的构象简单,避免存在影 响引物结合的二级结构。
设计正向和反向引物
01
正向引物
与目标序列的5'端结合,用于启 动DNA聚合酶的合成。
反向引物
02
03
引物配对
与目标序列的3'端结合,用于引 导DNA聚合酶完成全长扩增。
引物设计
根据已知目的基因的序列,设计出两条互补的寡核苷酸序列 ,作为合成DNA的起始点。
引物的重要性
1
引物是PCR技术的关键因素之一,其质量直接影 响到PCR产物的产量和质量。
2
引物的特异性决定了PCR产物的特异性,因此需 要确保引物与目的基因的高度特异性结合。
3
引物的长度、GC含量、Tm值等参数也会影响 PCR反应的效率和产物质量。
引物设计的一般原则
目 录
• 引物设计的概述 • 引物设计的原则 • 引物设计的方法 • 引物设计的步骤 • 引物设计的注意事项
01
引物设计的概述
引物的定义
引物
在PCR(聚合酶链式反应)技术中,引物是人工合成的两段寡 核苷酸序列,一个引物与目的基因一端的一条DNA模板链互补, 另一个引物与目的基因另一端的另一条DNA模板链互补。
PCR引物设计的基本原则

PCR引物设计的基本原则1. 引物的长度一般取15-30bp,常用18-27bp,但不能大于38bp,因为引物过长会导致其延伸温度大于74℃。
2. 引物3’端的序列要比5’端重要。
引物3’端的碱基一般不用A(3’端碱基序列最好是G、C、CG、GC),因为A在错误引发位点的引发效率相对比较高。
另引物间3’端的互补、二聚体或发夹结构也很可能导致PCR反应失败。
5’端序列对PCR 影响不太大,因此常用来引进修饰位点或标记物。
3. 引物的GC含量一般为40-60%,以45-55%为宜,过高或过低都不利于引发反应。
有一些模板本身的GC 含量偏低或偏高,导致引物的GC含量不能在上述范围内,这时应尽量使上下游引物的GC 含量以及Tm 值保持接近(上下游引物的GC含量不能相差太大),以有利于退火温度的选择。
如果G-C比例超出,则在引物的5’端增加As或Ts;而如果A-T比例过高,则同样在5’端增加Gs或Cs。
4. 引物所对应模板序列的Tm 值最好处于72℃左右。
(Tm 值曲线以选取72 度附近为佳,5’到3’的下降形状也有利于引物引发聚合反应),至少要在55-80℃之间5. ΔG值(自由能)反映了引物与模板结合的强弱程度。
一般情况下,引物的ΔG值最好呈正弦曲线,即5’端和中间ΔG值较高,而3’端ΔG值相对较低,且不要超过9(ΔG值为负值,这里取绝对值),如此可防止错误引发。
3′末端双链的ΔG是0~-2 kcal/mol时,PCR产量几乎到百分之百,随着其绝对值的增加产量逐渐下降,在-6时只有40%、到-8时少于20%、而-10时接近于0。
6.错配率一般不要超过100,否则会出现非目的条带。
但是对于某些特定的模板序列,还应结合比较其在正确位点引发效率。
如果两者相差很大,比如在正确位点的引发效率为340以上,而在错误位点的引发效率为110,并且不好找到其他更合适的引物,那么这对引物是可以接受的;7. Frq 曲线为Oligo6新引进的一个指标,揭示了序列片断存在的重复机率大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整理ppt
3‘端碱基要求
整理ppt
5’端碱基要求
• 5’端序列对PCR 影响不太大,因此常用 来引进修饰位点或标记物。
整理ppt
∆G 值
• ∆G 值是指DNA 双链形成所需的自由能,该值反映了双链结构 内部碱基对的相对稳定性。应当选用3’端∆G 值较低(绝对值不 超过9),而5’端和中间∆G 值相对较高的引物。引物的3’端的 ∆G 值过高,容易在错配位点形成双链结构并引发DNA 聚合反 应。(能值越高越容易结合)
• ∆G高于4.5时易引发产生引物二聚体和发夹结构
整理ppt
发卡结构
• Hairpin • 一条引物自身碱基之间发生配对
整理ppt
二聚体
• Dimer • 同一条引物的两条连之间发生碱基互补配对
整理ppt
错配
• Fals priming • 引物与模板的发生配对的位置不止一个。尽管
只有某一处可以与引物完全配对吻合,但是其 它位置也可与引物之间发生不完全配对,影响 延伸。
PCR退火温度一般是55°,变性温度94°, Tm一般在58-70 °之间比较合适。
• 两个引物之间的Tm值应尽可能接近,不应超过4°
整理ppt
3‘端碱基要求
• 引物3’端的末位碱基对Taq 酶的DNA 合成效率有较大的影响。 不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A 的错配效率明显高于其他3 个碱基,因此应当避免在引物的3’端 使用碱基A。
• 引物过短又同时会引起错配现象,一般来说引物长度大于 16bp是必要的(不容易引起错配)。
• 例如:一个长度为12bp的引物在人类基因组上存在200个潜 在的退火位点(3 x 109/412=200 ).而一个长度为20bp的引 物在人基因组上存在的退火位点只有1/400个.
• 较长的引物(28-35bp) • 一般是用来区分同源性较高的模板序列或者使用于产生一些
突变位点
整理ppt
GC%
• 引物序列的GC 含量一般为40-60%, 过高或过低都不利于引发反应。上下 游引物的GC含量不能相差太大。
整理ppt
Байду номын сангаас
Tm值
• Tm DNA溶解温度,即DNA的双链失去一半时的温度。 • Tm 值计算的经验公式 • Tm = 4 (G+C) + 2(A+T) • 退火温度一般低于Tm,退火温度越高,特异性越高,但杂交率越低。
引物设计的一般原则
郭大伟
整理ppt
引物设计的一般原则
1. 1.引物长度 2. 2.GC% 3. 3.Tm值 4. 4.3‘端碱基要求 5. 5.5’端碱基要求 6. 6.∆G 值
7.发卡结构 8.二聚体 9.错配
10.交叉二聚体 11.产物长度
12.评分
整理ppt
引物长度
• 引物的长度一般为15-30 bp,常用的是18-24 bp,但不应大 于38。
整理ppt
交叉二聚体
• Cross dimer • 两条引物之间发生碱基配对
整理ppt
产物长度
• Product • 根据自己需要决定,但应尽可能长,这
样有利于保持其特异性。
整理ppt
评分
• Rating • 单链评分 • 双链综合评分
整理ppt
谢谢各位!
整理ppt