热电阻的测温电路

合集下载

热电阻测温原理是什么

热电阻测温原理是什么

热电阻测温原理是什么
热电阻测温原理是利用材料在温度变化时产生的电阻变化来测量温度的一种方法。

热电阻一般采用铂、镍、铜等材料,当温度发生变化时,热电阻的电阻值也会发生变化。

热电阻的电阻值与温度之间存在着一定的函数关系,通常可以通过校准曲线将电阻值转换为对应的温度值。

热电阻测温原理起源于热电效应,热电效应是指当材料的两个接触点处于不同温度时,会产生一个电势差。

根据这一原理,热电阻测温的过程大致分为以下几个步骤:
1. 将热电阻安装在需要测量温度的物体表面或内部,并通过导线与测温设备连接。

2. 当待测物体的温度发生变化时,导致热电阻的电阻值发生变化。

这是由于温度变化引起导电材料内部电子的热运动和碰撞,从而改变了电子的自由运动能力,影响了电阻的大小。

3. 测温设备通过测量热电阻的电阻值来反推温度的变化。

在这个过程中需要根据热电阻的特性和校准曲线,将电阻值转换为相应的温度值。

4. 通过记录和处理温度数据,可以实时监测物体的温度变化,以及进行进一步的分析和控制。

总的来说,热电阻测温原理是基于材料在温度变化下产生的电阻变化来实现温度测量,通过将电阻值转换为温度值,可以实现对物体温度的监测和控制。

热电阻法测温

热电阻法测温

非接触、便携、快速、直观、可记录存储
响应速度快 灵敏度高 测温范围宽广 适用于多种目标
在机电行业中,红外测温主要用于机械、电气控制 设备的状态监测及故障检查。
(一)红外点温仪 红外点温仪是以黑体辐射定律为理论依据,通过 被测目标红外辐射能量进行测量,经黑体标定后 确定被测目标温度的仪器。
5.性能稳定,重复性好,有利互换;测量电路简单
2.非接触式测量
在工业领域中有许多温度测量问题用接触式测 量方法无法解决,如高压输电线接点处的温度 监测,炼钢高炉以及热轧钢板等运动物体的温 度监测等。
一、辐射测温的基本原理 物体因受热使其内部原子或分子获得能量而从低 能级跃迁到高能级,当它们向下跃迁时,就会发 射出辐射能,这类辐射称为热辐射。
4.1.4温度诊断技术
1接触式测温方法
在机电设备的故障诊断与监测领域,根据测量 时测温传感器是否与被测对象接触可将测温方 式分为接触式测温和非接触式测温两大类。
常用的接触测量法
热电阻法 热电偶法
集成温度传感法
一、热电阻法测温 热电阻法测温使用的仪器是电阻式温度计,它是 根据几乎所有导体的电阻都会随着温度的改变而 变化这一原理制成的。测温时,温度计上感温元 件的电阻随着温度的改变而变化,电阻的这种变 化通过测量回路的转换在显示器上显示出温度值。
红外点温仪通常由光学系统、红外探测器、电信 号处理器、温度指示器及附属的瞄准器、电源、 机械结构等组成。
常用的红外点温仪按其工作原理及其检测波段 的不同,分为以下3类:
1.辐射感温器
2.单色测温仪
3.比色测温仪
ቤተ መጻሕፍቲ ባይዱ
非接触式测量方法就是通过检测被测物体所发射 的辐射能中不同波长的光,来实现温度检测的。

热电阻测温原理

热电阻测温原理

热电阻测温原理
热电阻测温原理是基于材料的电阻与温度之间的关系。

热电阻一般采用铂、镍或铜等材料制成,具有较高的电阻温度系数。

当热电阻处于不同温度下时,其电阻值会发生变化。

根据测得的电阻值,可以通过查表或使用特定算法来计算出温度值。

热电阻测温原理的关键在于热电阻材料的电阻-温度特性。

一般来说,热电阻的电阻值与温度呈线性关系,即电阻值随温度的升高而增加。

通过测量热电阻的电阻值,可以反推出温度的大小。

为了确保测量的准确性,热电阻通常会与一个稳定的电流源相连接,以保持热电阻中的电流保持恒定。

此外,还需要提供一个精确的电压源来测量热电阻上的电压。

在实际测量中,可以将热电阻连接到一个测量电路中,该电路通过读取并分析热电阻上的电压来计算出温度值。

这可以通过使用万用表或其他测量设备来完成。

需要注意的是,由于不同材料的热敏特性不同,不同类型的热电阻在不同温度范围内的精度和适用性也会有所差异。

因此,在选择适合的热电阻时,要考虑所需测量的温度范围和精度要求。

总之,热电阻测温原理基于材料的电阻与温度之间的关系,通
过测量热电阻的电阻值来推算出温度值。

它是一种常用的温度测量方法,广泛应用于工业自动化、实验室研究等领域。

pt100热电阻接线图

pt100热电阻接线图

pt100 热电阻接线图pt100 热电阻二线制接法如下图。

变送器通过导线L1、L2 给热电阻施加激励电流I,测得电势V1、V2。

计算得Rt:由于连接导线的电阻RL1、RL2 无法测得而被计入到热电阻的电阻值中,使测量结果产生附加误差。

如在100℃时Pt100 热电阻的热电阻率为0.379Ω/℃,这时若导线的电阻值为2Ω,则会引起的测量误差为5.3 ℃。

pt100 热电阻三线制接法PT100 铂电阻传感器有三条引线,可用A、B、C(或黑、红、黄)来代表三根线,三根线之间有如下规律:A 与B 或C 之间的阻值常温下在110 欧左右,B 与C 之间为0 欧,B 与C 在内部是直通的,原则上B 与C 没什幺区别。

仪表上接传感器的固定端子有三个:A 线接在仪表上接传感器的一个固定的端子,B 和C 接在仪表上的另外两个固定端子,B 和C 线的位置可以互换,但都得接上,如果中间接有加长线,三条导线的规格和长度要相同。

热电阻的3 线和4 线接法:是采用2 线、3 线、4 线,主要由使用的二次仪表来决定。

一般显示仪表提供三线接法,PT100 一端出一颗线,另一端出两颗线,都接仪表,仪表内部通过桥抵消导线电阻。

一般PLC 为四线,每端出两颗线,两颗接PLC 输出恒流源,PLC 通过另两颗测量PT100 上的电压,也是为了抵消导线电阻,四线精确度最高,三线也可以,两线最低,具体用法要考虑精度要求和成本。

pt100 三线制接线方式原因PT100 热电阻0℃时电阻值为100Ω,电阻变化率为0.3851Ω/℃。

由于其电阻值小,灵敏度高,所以引线的阻值不能忽略不计,采用热电阻三线式接法可消除引线线路电阻带来的测量误差,原理如下:PT100 热电阻引出的三根导线截面积和长度均相同(即r1=r2=r3),测量铂电阻的电路一般是不平衡电桥,铂电阻(Rpt100)作为电桥的一个桥臂电阻,将导线一根(r1)接到电桥的电源端,其余两根(r2、r3)分别接到铂电阻所在的桥臂及与其相邻的桥臂上,这样两桥臂都引入了相同阻值的引线电阻,电桥处于平衡状态,引线线电阻的变化对测量结果没有任何影响。

热电阻测温原理及常见故障

热电阻测温原理及常见故障

热电阻及其测温原理在工业应用中,热电偶一般适用于测量500℃以上的较高温度。

对于500℃以下的中、低温度,热电偶的输出的热电势很小,这对二次仪表的放大器、抗干扰措施等的要求就很高,否则难以实现精确测量;而且,在较低温区域,冷端温度的变化所引起的相对误差也非常突出。

所以测量中、低温度一般使用热电阻温度测量仪表较为合适。

1、热电阻的测温原理与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。

因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。

目前主要有金属热电阻和半导体热敏电阻两类。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即R t=R t0[1+α(t-t0)]式中,R t为温度t时的阻值;R t0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为R t=Ae B/t式中R t为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。

金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。

2、工业上常用金属热电阻从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器的尺寸)、在使用的温度范围内具有稳定的化学物理性能、材料的复制性好、电阻值随温度变化要有间值函数关系(最好呈线性关系)。

目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。

基于Pt100_热电阻的简易温度测量系统毕业设计论文1 精品

基于Pt100_热电阻的简易温度测量系统毕业设计论文1 精品

基于PT100热电阻的简易温度测量仪摘要:本文首先简要介绍了铂电阻PT100的特性以及测温的方法,在此基础上阐述了基于PT100的温度测量系统设计。

在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D转换器进行温度信号的采集。

通过对电路的设计,减小了测量电路及PT100自身的误差,使温控精度在0℃~100℃范围内达到±0.1℃。

本文采用STC89C52RC单片机,TLC2543 A/D转换器,AD620放大器,铂电阻PT100及液晶系统,编写了相应的软件程序,使其实现温度及温度曲线的实时显示。

该系统的特点是:使用简便;测量精确、稳定、可靠;测量范围大;使用对象广。

关键词:PT100 单片机温度测量 AD620 TL431AbstractThis article briefly describes the characteristics of PT100 platinum resistance and temperature measurement method, on the basis it describes the design of temperature measurement system based on PT100. In this design, it is use a PT100 platinum resistance as temperature sensor, in order to acquisition the temperature signal, it use of constant-current temperature measurement method and use single-chip control, Amplifier, A / D converter. It can still improve the perform used two-wire temperature circuit and reduce the measurement eror. The temperature precision is reached ±0.1℃ between 0℃~100℃.The system contains SCM(STC89C52), analog to digital convert department (TLC2543), AD620 amplifier, PT100 platinum, LCD12864, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range. Keywords:PT100 MCU Temperature Measures AD620 TL431目录前言 (4)第一章方案设计与论证 (6)1.1 传感器的选择 (6)1.2 方案论证 (7)1.3 系统的工作原理 (8)1.4 系统框图 (9)第二章硬件设计 (9)2.1 PT100传感器特性和测温原理 (9)2.2 硬件框图以及简要原理概述 (11)2.3 恒流源模块测温模块设计方案 (11)2.4 信号放大模块 (12)2.5 A/D转换模块 (15)2.6 单片机控制电路 (18)2.7 显示模块 (19)第三章软件设计 (19)3.1系统总流程的设计 (19)3.2 主函数的设计 (20)3.3 温度转换流程图的设计 (21)3.4 显示流程图 (21)3.5 按键流程的设计 (22)第四章数据处理与性能分析 (23)4.1采集的数据及数据处理 (23)4.2 性能测试分析 (23)第五章结论与心得 (24)1 结论 (24)2 心得 (24)附录1 原理图 (25)附录2 元器件清单 (26)附录3 程序清单 (27)前言随着科技的发展和“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。

实用低成本PT100测温电路两例_V1.0

实用低成本PT100测温电路两例_V1.0

实用PT100测温电路两例概述PT100铂热电阻是一种常用的温度传感器。

其测温原理是利用了金属铂自身电阻随着温度近乎线性变化的特点。

相较于其他测温元件(热电偶和热敏电阻),PT100铂热电阻的热稳定性好、精度高、漂移小,通常用在-200℃~600℃范围内的精密测温系统中。

PT100测温探头一般有2线、3线和4线这几种引线方式。

3线和4线的引线方式,主要是为了后面的调理电路能修正引线电阻带来的影响。

当然,引线越多,探头价格越贵。

PT100铂热电阻在0℃时是100Ω,当温度每变化1℃,电阻变化约0.385Ω。

如果引线电阻1Ω,那么会引入大约2.56℃的误差。

所以设计时应根据实际情况,选用不同的引线方式。

对于要求不高,引线不长(<0.5米)的系统,此时引线电阻很小,一般几十毫欧,引线电阻引入的误差可以忽略,推荐使用2线方式。

对于引线比较长的系统,引线电阻比较大,而且阻值不可预测,则应使用3线或4线方式。

根据IEC60751标准,PT100铂热电阻的阻值与温度之间关系如下:其中:下表是PT100铂热电阻的温度-电阻速查表:温度℃电阻值Ω温度℃电阻值Ω温度℃电阻值Ω温度℃电阻值Ω-20018.5220107.79240190.47460267.56-18027.1040115.54260197.71480274.29-16035.5460123.24280204.90500280.98-14043.8880130.90300212.05520287.62-12052.11100138.51320219.15540294.21-10060.26120146.07340226.21560300.75-8068.33140153.58360233.21580307.25-6076.33160161.05380240.18600313.71-4084.27180168.48400247.09620320.12-2092.16200175.86420253.96640326.480100.00220183.19440260.78660332.79表1PT100温度-电阻速查表PT100铂热电阻温度采集系统主要有两种实现方式:1.恒流方式,2.电桥方式。

热电阻测温原理

热电阻测温原理

热电阻测温原理热电阻传感器是一种常用的测温设备,利用的是物质受热影响的电阻变化特性来测量温度,其工作原理是基于热电效应及电阻温度特性原理。

热电效应是指在两种不同金属或半导体材料之间,当它们的一端热量有差异时,就会产生电动势的现象。

这个现象被称之为“热电效应”,其中最常见的有“塞贝克效应”、“汤姆逊效应”和“皮尔逊效应”。

热电阻就是利用其中的“塞贝克效应”。

把一根金属钏子或铜丝,卷成几圈或绕成U形,形成一个具有一定电阻的电路。

当电路的一端加热时,该端就会产生电动势,这个电动势随着温度的变化而发生变化。

因为电动势很小,在其他不受热影响的电路元件的作用下,无法直接测量,所以需要将热电阻放入到一个电桥电路中,利用电桥平衡来间接测量电动势。

电桥电路是由四个电阻组成的电路,由一个电源和一个测量器构成,它们的连接形成一个“桥”。

一般情况下,电桥四角中有三个电阻的电阻值已知,只有一个电阻值未知,当热电阻的电阻值变化时影响到电桥平衡状态时,通过调节一个可变电阻的值来使电桥恢复平衡,从而推算出热电阻的电阻值,再通过根据已知的电阻值和温度关系,就能够计算出温度的值。

根据热电阻的材料不同,它们的电阻温度特性也不同。

一般来说,随着温度的升高,热电阻的电阻值也会随之升高。

同时还存在一些非线性特性,随着温度升高,电阻值的变化也越来越大。

而且,不同的热电阻材料适用于不同的温度范围。

因此,在选择热电阻时要根据需要测量的温度范围来选择合适的材料。

总的来说,热电阻传感器的原理是通过热电效应和电阻温度特性,将温度的变化转换成电阻值的变化,并利用电桥电路间接测量电动势,然后推算出温度值。

在实际应用中,要注意热电阻的选型、安装和使用条件,以免影响测量精度和寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pt100热电阻的测温电路[摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。

在温度检测精度要求比较高的场合,这种传感器比较适用。

目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。

用于测量-200℃~+500℃范围内的温度。

温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。

从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。

才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。

[关键字] 传感器 Pt100热电阻温度测量目录1 前言 (4)1.1 传感器概况 (4)1.2 设计目的 (7)2 设计要求 (8)2.1 设计内容 (8)2.2 设计要求 (9)3 原器件清单 (10)4 Pt100热电阻的测温电路 (11)4.1 总体电路图 (11)4.2 工作原理 (11)5 Pt100热电阻测温电路的原理及实现 (12)5.1 测温电路的工作原理 (12)5.2 测温电路的实现 (14)5.3 测量结果及结果分析 (15)6 制作过程及注意事项 (16)6.1 制作过程 (16)6.2 注意事项 (17)7 总结 (18)8 致谢 (19)参考文献 (20)1 前言1.1传感器概况传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。

国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

“传感器”在新韦式大词典中定义为:“从一个系统接受功率,通常以另一种形式将功率送到第二个系统中的器件”。

根据这个定义,传感器的作用是将一种能量转换成另一种能量形式,所以不少学者也用“换能器-Transducer”来称谓“传感器-Sensor”。

传感器的作用人们为了从外界获取信息,必须借助于感觉器官。

而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。

为适应这种情况,就需要传感器。

因此可以说,传感器是人类五官的延长,又称之为电五官。

新技术革命的到来,世界开始进入信息时代。

在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。

在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。

因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。

在基础学科研究中,传感器更具有突出的地位。

现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到 cm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。

此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁砀等等。

显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。

许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。

一些传感器的发展,往往是一些边缘学科开发的先驱。

传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。

可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。

由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。

世界各国都十分重视这一领域的发展。

相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。

传感器的原理传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。

被测信号量的微小变化都将转换成电信号。

化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。

当弹性轴受扭时,应变桥检测得到的mV 级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。

由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。

有些传感器既不能划分到物理类,也不能划分为化学类。

大多数传感器是以物理原理为基础运作的。

化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。

1.2设计目的1.通过对铂电阻测温的研究,采用以运算放大器电路为基础的校正补偿方法,结合算法简单、校正精度高的线性插值"软校正"方法,有效地解决铂电阻测温电路的非线性误差问题,提高了测量精度。

完成PT100电阻测温电路的设计到完工的全过程。

2.通过本次课程设计,提高我们的动手能力,并且让我们深刻了解到一个电路板从设计到完工的全部过程。

提高我们的合作能力与团结互助精神。

为我们以后的学习和工作打下坚实的基础。

3.掌握控制系统的基本概念、基本理论,熟悉控制系统的安装,调试与运行的基本知识。

4.在学习过程中,学会运用观察、实验、查阅资料等多种手段获取信息,并运用比较、分类、归纳、概括等方法对信息进行加工。

5.能对自已的学习过程进行计划、反思、评价和调控,提高自主学习的能力。

6.通过理论实践一体化的学习过程,深入了解实践与理论之间的相互关系。

7.通过各种实践活动,思考优化实践的过程和方法,并尝试改进,尝试运用技术和研究方法解决一些工程实践问题。

8.通过实践活动,培养质疑意识,具有分析、解决问题的能力。

2 设计要求2.1 设计内容铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高,测量范围大,复现性和稳定性好,被广泛应用于中温(-200℃-650℃)范围的温度测量中。

PT100是一种广泛应用的测温元件,在-50℃-600℃范围内具有其他任何传感器无可比拟的优势,包括高精度,稳定性好,抗干扰能力强等。

由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。

常用的PT电阻接法有两种,分别为三线制和两线制,本次课程实际采用两线制。

常用的采样电路有两种:一为桥式测温电路;一为恒流源式测温电路。

本次课程设计采用桥式测温电路。

2.2 设计要求1.按照实验原理:以获得被测量温度的两线制铂热电阻、一运算放大电路及一调零电阻;所述两线制铂热电阻包括一正端子、一负端子,其特征在于,所述恒流源连接所述两线制铂热电阻的正端子,所述运算放大电路的输入端接所述两线制铂热电阻的正端子,所述调零电阻的一端连接所述两线制铂热电阻的负端子,其另一端接入电路中;该放大器的输出电压和热电阻的电阻变化值成线性关系。

2.要求学生掌握原理后,自己设计出电路图并将电路刻在板子上,经过一系列的刷漆,浸泡,焊接等过程完成PT100电阻测温电路的实现。

4 Pt100热电阻的测温电路4.1 总体电路图图1 两线制接法桥式测温电路4.2 工作原理测温原理:二线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。

电流回路和电压测量回路合二为1。

电路采用TL431和电位器VR1调节产生4.096∨的参考电源:采用R1,R2,VR2,PT100构成测量电桥(其中R1=R2,VR2为100Ω精密电阻),当PT100的电阻值和VR2的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。

差动放大电路中R3=R4,R5=R6,放大倍数=R5/R3.运放采用单一5V供电。

5 Pt100热电阻的测温电路的原理及实现5.1 测温电路的工作原理1.工作原理与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。

因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。

目前主要有金属热电阻和半导体热敏电阻两类。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为Rt=AeB/t式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。

金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。

2.热电阻的信号连接方式热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。

工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。

相关文档
最新文档