热电阻测温原理及常见故障

合集下载

热电阻测温原理是什么

热电阻测温原理是什么

热电阻测温原理是什么
热电阻测温原理是利用材料在温度变化时产生的电阻变化来测量温度的一种方法。

热电阻一般采用铂、镍、铜等材料,当温度发生变化时,热电阻的电阻值也会发生变化。

热电阻的电阻值与温度之间存在着一定的函数关系,通常可以通过校准曲线将电阻值转换为对应的温度值。

热电阻测温原理起源于热电效应,热电效应是指当材料的两个接触点处于不同温度时,会产生一个电势差。

根据这一原理,热电阻测温的过程大致分为以下几个步骤:
1. 将热电阻安装在需要测量温度的物体表面或内部,并通过导线与测温设备连接。

2. 当待测物体的温度发生变化时,导致热电阻的电阻值发生变化。

这是由于温度变化引起导电材料内部电子的热运动和碰撞,从而改变了电子的自由运动能力,影响了电阻的大小。

3. 测温设备通过测量热电阻的电阻值来反推温度的变化。

在这个过程中需要根据热电阻的特性和校准曲线,将电阻值转换为相应的温度值。

4. 通过记录和处理温度数据,可以实时监测物体的温度变化,以及进行进一步的分析和控制。

总的来说,热电阻测温原理是基于材料在温度变化下产生的电阻变化来实现温度测量,通过将电阻值转换为温度值,可以实现对物体温度的监测和控制。

热电阻

热电阻

热电阻基本知识—热电阻测温原理及材料热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

一、热电阻测温原理及材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。

1、铂热电阻的温度特性(1)在0~850℃范围内:(2)在-200~0℃范围内:式中A、B、C的系数各为:A=3.90802×10-3C-1;B=-5.802×10-7C-2 C=-4.27350×10-12C-4铂电阻阻值与温度的分度关系由止两式决定。

2、铜热电阻的温度特性在-50~150℃范围内:式中A=4.28899×10-3C-1;B=-2.133×10-7C-2;C=1.233×10-9C-3铜电阻和温度的分度关系由上式决定,铂热电阻和铜热电阻的技术性能见表1-1表1-1常用热电阻的技术性能热电阻基本知识—热电阻测温系统及故障处理二、热电阻测温系统的组成热电阻测温系统一般由热电阻、连接导线和显示仪表等组成。

必须注意以下两点:1、热电阻和显示仪表的分度号必须一致2、为了消除连接导线电阻变化的影响,必须采用三线制接法。

三、热电阻故障原因及处理方法热电阻的常见故障是热电阻的短路和断路。

一般断路更常见,这是因为热电阻丝较细所致。

断路和短路是很容易判断的,可用万用表的"×1Ω"档,如测得的阻值小于R0,则可能有短路的地方;若万用表指示为无穷大,则可断定电阻体已断路。

电阻体短路一般较易处理,只要不影响电阻丝的长短和粗细,找到短路处进行吹干,加强绝缘即可。

电阻体的断路修理必然要改变电阻丝的长短而影响电阻值,为此更换新的电阻体为好,若采用焊接修理,焊后要校验合格后才能使用。

热电阻温度测量原理

热电阻温度测量原理

热电阻温度测量原理
热电阻温度测量原理是基于热电效应的原理进行的。

热电效应是指当两种不同金属连接形成闭合回路时,如果两个连接点的温度不同,会产生电势差。

热电阻温度测量利用了这个原理,将热敏电阻(PT100)作为测温元件。

热电阻的工作原理是通过测量电阻随温度变化的关系来确定温度。

PT100是一种白金电阻,其电阻值随温度的变化服从国际标准的“Pt100”温度-电阻转换关系。

该关系表明,当温度升高时,PT100的电阻值也会增加。

这种关系是稳定和可重复的,使得PT100成为常用的热敏电阻元件。

具体的测量方法是将PT100连接到电路中,形成一个闭合电路。

当电路中有电流通过时,根据热电效应,PT100的两个端点会产生一个电势差。

这个电势差可以通过测量电路中的电压来确定。

由于PT100的电阻值与温度成正比关系,根据测得的电势差和PT100的温度-电阻转换关系,就可以准确地确定温度。

为了提高测量的精确度,常常采用一些校准方法,例如使用冰点温度或沸点温度来进行校准。

这样可以确保测量结果的准确性。

总的来说,热电阻温度测量原理是基于热电效应的原理,通过测量电势差和温度-电阻转换关系来确定温度。

热敏电阻
PT100作为测温元件,可以提供稳定和可靠的温度测量结果。

热电阻测温原理及常见故障

热电阻测温原理及常见故障

热电阻及其测温原理在工业应用中,热电偶一般适用于测量500℃以上的较高温度。

对于500℃以下的中、低温度,热电偶的输出的热电势很小,这对二次仪表的放大器、抗干扰措施等的要求就很高,否则难以实现精确测量;而且,在较低温区域,冷端温度的变化所引起的相对误差也非常突出。

所以测量中、低温度一般使用热电阻温度测量仪表较为合适。

1、热电阻的测温原理与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。

因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。

目前主要有金属热电阻和半导体热敏电阻两类。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即R t=R t0[1+α(t-t0)]式中,R t为温度t时的阻值;R t0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为R t=Ae B/t式中R t为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。

金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。

2、工业上常用金属热电阻从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器的尺寸)、在使用的温度范围内具有稳定的化学物理性能、材料的复制性好、电阻值随温度变化要有间值函数关系(最好呈线性关系)。

目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。

热电阻的测温原理

热电阻的测温原理

热电阻的测温原理热电阻是一种利用物质的电阻随温度变化而变化的特性来测量温度的传感器。

它广泛应用于工业自动化、生活电器、医疗设备等领域。

热电阻测温原理是基于材料的电阻随温度的变化而变化的特性,通过测量电阻值的变化来确定温度变化的过程。

下面将从热电阻的工作原理、特性及测温原理等几个方面来详细介绍。

1. 热电阻的工作原理。

热电阻的工作原理是基于金属、半导体或陶瓷等材料的电阻随温度的变化而变化。

通常情况下,随着温度的升高,金属的电阻值会增大,而半导体和陶瓷的电阻值则会减小。

这种特性使得热电阻能够通过测量电阻值的变化来确定温度的变化。

2. 热电阻的特性。

热电阻的主要特性包括温度系数、线性度、灵敏度和稳定性等。

温度系数是指热电阻电阻值随温度变化的比例关系,通常用ppm/℃(百万分之一/摄氏度)来表示。

线性度是指热电阻电阻值随温度变化的关系是否呈线性,即是否符合一定的数学关系。

灵敏度是指热电阻对温度变化的响应能力,一般来说,灵敏度越高,测温精度越高。

稳定性是指热电阻在长期使用过程中,其性能是否能够保持稳定。

3. 热电阻的测温原理。

热电阻的测温原理是基于热电阻材料的电阻随温度变化而变化的特性。

当热电阻与被测温度接触后,其温度也会随之变化,从而导致电阻值的变化。

通过测量热电阻的电阻值,再根据预先建立的温度-电阻关系曲线,就可以确定被测温度的数值。

热电阻的测温原理可以简单归纳为,通过测量热电阻的电阻值来确定被测温度的变化。

在实际应用中,通常会采用桥式电路或数字温度传感器等方式来测量热电阻的电阻值,以实现对温度变化的精确测量。

总结。

热电阻作为一种常用的温度传感器,在工业自动化、生活电器、医疗设备等领域有着广泛的应用。

其测温原理是基于材料的电阻随温度的变化而变化的特性,通过测量电阻值的变化来确定温度变化的过程。

因此,在实际应用中,需要根据热电阻的特性和工作原理,合理选择和使用热电阻,以确保温度测量的准确性和稳定性。

热电阻测温仪工作原理

热电阻测温仪工作原理

热电阻测温仪工作原理引言热电阻测温仪是一种常见的温度测量设备,利用热电阻材料的特性来测量温度。

本文将详细介绍热电阻测温仪的工作原理,包括热电阻的基本原理、工作机制以及应用领域等。

一、热电阻的基本原理热电阻是一种利用材料电阻随温度变化的特性来测量温度的装置。

它的工作原理基于电阻与温度之间的线性关系。

通常使用的热电阻材料是铂金(Pt100)或镍铬合金(Ni100),它们的电阻值都随温度的升高而增加。

二、热电阻测温仪的工作机制热电阻测温仪的工作机制包括温度传感器、测量电路和显示装置三部分。

2.1 温度传感器温度传感器是热电阻测温仪中最关键的组件,它采用热电阻材料作为温度敏感元件。

当温度发生变化时,热电阻材料的电阻值也会随之变化。

温度传感器将温度变化转换为电阻变化,并传递给测量电路。

2.2 测量电路测量电路是热电阻测温仪中处理电阻值并将其转换为温度读数的部分。

它通过测量温度传感器两端的电位差来计算温度值。

测量电路中通常包括一个电桥电路,用于测量热电阻材料的电阻值。

电桥电路由几个电阻和一个电源组成,其中一个电阻是待测热电阻材料,其他电阻是已知值的参考电阻。

当热电阻材料的电阻值发生变化时,电桥电路中的电位差也会发生变化。

测量电路还包括一个放大器和一个模数转换器(ADC),用于将电阻变化信号放大并转换为数字形式。

放大器的作用是增加电桥电路输出信号的幅度,确保信号的准确性和稳定性。

模数转换器将放大后的信号转换为数字形式,以便后续的处理和显示。

2.3 显示装置显示装置是热电阻测温仪中用于显示温度值的部分,通常为液晶显示屏或数码显示器。

显示装置接收到来自测量电路的数字信号,将其转换为温度读数并显示在屏幕上。

三、热电阻测温仪的应用领域热电阻测温仪具有广泛的应用领域,主要用于以下领域:3.1 工业自动化热电阻测温仪广泛应用于工业自动化领域,用于测量和控制各种工业设备的温度。

例如,在化工厂中,热电阻测温仪可用于监测反应器的温度变化,以确保反应过程的安全和稳定。

简述热电阻测温原理

简述热电阻测温原理

简述热电阻测温原理
热电阻测温原理是利用热电阻材料的电阻值随温度的变化来实现温度测量的原理。

具体来说,热电阻材料的电阻值随温度变化的规律可以通过它的温度系数来描述。

当热电阻材料的温度发生变化时,其内部电阻值也会随之改变。

这是因为温度的变化会导致热电阻材料的电阻材料中的自由电子的运动状态发生改变,从而影响电流通过热电阻材料的难易程度。

一般来说,随着温度的升高,电阻值也会增加。

在测量温度时,通常会将热电阻材料作为电路的一部分,将其与一个已知电阻值的电阻器连接成电桥电路,并施加一个恒定电流。

通过测量电桥电路中的电压差,可以计算出电阻值的变化,从而间接测量出温度的变化。

热电阻测温原理的优点是线性度好、稳定性高,测量范围广,适用于较高温度范围。

然而,由于热电阻材料的电阻值变化较小,因此对测量电路的精度要求较高,且需要校准和补偿电阻材料的温度系数,以保证测量的准确性。

热电阻ppt课件

热电阻ppt课件
.
二、铂热电阻
3
铂热电阻,简称为:铂电阻,它的阻值会随着温度 的变化而改变。它有PT100和 PT1000等等系列产品。 PT后的100即表示它在0℃时阻值为100欧姆,在100℃ 时它的阻值约为138.5欧姆。它的工业原理:当PT100 在0摄氏度的时候他的阻值为100欧姆,它的的阻值会 随着温度上升它的阻值是成匀速增涨的。
常用温度-200~6,一般将电阻丝统在云母、石 英、陶瓷、塑料等绝缘骨架上,经过固定,外面再加 上保护套管。但骨架性能的好坏,影响其测量精度、 体积大小和使用寿命。
.
普通(装配式)铂电阻
5
感温元件结构
.
铠装式铂电阻
6
铠装式铂电阻比装配式铂电阻 直径小,易弯曲,抗震性好, 适宜安装在装配式铂电阻无法 安装的场合。
热电阻
1
热电阻的测温原理 常用热电阻 热电阻的结构及连接方式 热电阻常见故障及处理方法
.
一、热电阻的测温原理
2
热电阻是中低温区常用的一种测温元件。 测温原理:热电阻利用物质在温度变化时本身电阻也
随着发生变化的特性来测量温度的。 热电阻的受热部分(感温元件)是用细金属丝均匀的
缠绕在绝缘材料制成的骨架上,当被测介质中有温度 梯度存在时,所测得的温度是感温元件所在范围内介 质层中的平均温度。 它的主要特点是测量精度高,性能稳定。其中铂热电 阻的测量精确度最高。
.
13
.
14
.
15
.
目前热电阻的引线主要有三种方式
.
8
A、二线制:在热电阻的两端各连接一根导线来引出 电阻信号的方式叫二线制。这种引线方式很简单,但 由于连接导线必然存在引线电阻r,r的大小与导线的 材质和长度的因素有关,因此这种引线方式只适用于 测量精度较低的场合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电阻及其测温原理
在工业应用中,热电偶一般适用于测量500℃以上的较高温度。

对于500℃以下的中、低温度,热电偶的输出的热电势很小,这对二次仪表的放大器、抗干扰措施等的要求就很高,否则难以实现精确测量;而且,在较低温区域,冷端温度的变化所引起的相对误差也非常突出。

所以测量中、低温度一般使用热电阻温度测量仪表较为合适。

1、热电阻的测温原理
与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。

因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。

目前主要有金属热电阻和半导体热敏电阻两类。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即
R t=R t0[1+α(t-t0)]
式中,R t为温度t时的阻值;R t0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为
R t=Ae B/t
式中R t为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。

金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。

2、工业上常用金属热电阻
从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器的尺寸)、在使用的温度范围内具有稳定的化学物理性能、材料的复制性好、电阻值随温度变化要有间值函数关系(最好呈线性关系)。

目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。

中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。

其中Pt100和Cu5 0的应用最为广泛。

3、热电阻的信号连接方式
热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。

工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。

目前热电阻的引线主要有三种方式
1二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合
2三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的引线电阻。

(热电阻采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。


3四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。

可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。

4、热电阻的结构形式
和热电偶温度传感器相类似,工业上常用的热电阻主要有普通装配式热电阻和铠装热电阻两种型式。

普通通装配式热电阻是由感温体、有锈钢外保护管、接线盒以及各种用途的固定装置级成,安装固定装置有固定外螺纹、活动法兰盘、固定法兰和带固定螺栓锥形保护管等形式。

铠装热电阻外保护套管采用不锈钢,内充高密度氧化物绝缘体,具有很强的抗污染性能和优良的机械强度。

与前者相比,铠装热电阻具有直径小、易弯曲、抗震性好、热响应时间快、使用寿命长的优点。

对于一些特殊的测温场合,还可以选用一些专业型热电阻,如,测量固体表面温度可以选用端面热电阻,在易燃易爆场合可以选用防爆型热电阻,测量震动设备上的温度可以选用带有防震结构的热电阻等
2线、3线、4线热电阻测温原理有何区别
与热电阻连接的检测设备(温控表、PLC输入等)都有四个接线端子。

I+、I-、V+、V-。

其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。

4线就是从热电阻两端引出4线,和4个端子连接。

3线就是引出3线,这需要检测设备方的I-\V-短接。

2线就使引出2线,这需要检测设备方的I-\V-、I+/V+短接。

测温原理都一样,只是接线区别
测温原理都一样,只是接线区别。

应该说,电流回路和电压测量回路是否分开接线的问题。

2线,电流回路和电压测量回路合二为1,精度差。

3线,电流回路的参考位和电压测量回路的参考位为一条线。

精度稍好。

4线,电路回路和电压测量回路独立分开,精度高,但费线。

热电阻基本知识—热电阻测温原理及材料
热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

一、热电阻测温原理及材料
热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。

1、铂热电阻的温度特性
(1)在0~850℃范围内:
(2)在-200~0℃范围内:
式中A、B、C的系数各为:A=×10-3C-1;B=×10-7C-2 C=×10-12C-4
铂电阻阻值与温度的分度关系由止两式决定。

2、铜热电阻的温度特性
在-50~150℃范围内:
式中A=×10-3C-1;B=×10-7C-2;C=×10-9C-3
铜电阻和温度的分度关系由上式决定,铂热电阻和铜热电阻的技术性能见表1-1
表1-1常用热电阻的技术性能
2 #2
二、热电阻测温系统的组成
热电阻测温系统一般由热电阻、连接导线和显示仪表等组成。

必须注意以下两点:
1、热电阻和显示仪表的分度号必须一致
2、为了消除连接导线电阻变化的影响,必须采用三线制接法。

三、热电阻故障原因及处理方法
热电阻的常见故障是热电阻的短路和断路。

一般断路更常见,这是因为热电阻丝较细所致。

断路和短路是很容易判断的,可用万用表的"×1Ω"档,如测得的阻值小于R0,则可能有短路的地方;若万用表指示为无穷大,则可断定电阻体已断路。

电阻体短路一般较易处理,只要不影响电阻丝的长短和粗细,找到短路处进行吹干,加强绝缘即可。

电阻体的断路修理必然要改变电阻丝的长短而影响电阻值,为此更换新的电阻体为好,若采用焊接修理,焊后要校验合格后才能使用。

热电阻测温系统在运行中常见故障及处理方法见表3-1。

表3-1热电阻测温系统常见故障及处理方法。

相关文档
最新文档