平行线与三角形内角和的综合应用每日一题及答案

合集下载

最新平行线与三角形内角和的综合应用每日一题目及答案

最新平行线与三角形内角和的综合应用每日一题目及答案

平行线与三角形内角和的综合应用每日一题目及答案平行线与三角形内角和的综合应用(每日一题)1. 如图,在△ABC 中,D 为BC 边上一点, DF ⊥AB 于F ,ED ∥AC ,∠A =∠B .求证:∠EDF =∠BDF .F E DCA2. 已知:如图,AD ⊥BC ,EF ⊥BC ,∠1=∠2.求证:AB ∥DG .21GF E DCBA3. 在△ABC 中,∠ACB =90°, E 是BC 边上的一点,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC ,交CF 的延长线于D .若∠EAC =25°,求∠D 的度数.FEDCBA4. 已知:如图,AC 、EF 相交于点O ,∠E =∠F ,∠1=∠2.求证:AB ∥DG .O21CGDFEBA5. 已知:如图,AD ∥EF ,BF ∥DG ,∠A =∠B =∠G =35°.求∠EFG 的度数.GFDCBA【参考答案】1.证明:如图,∵DE ∥AC ( 已知 )∴∠A =∠FED ( 两直线平行,同位角相等 ) ∵∠A =∠B ( 已知 )∴∠B =∠FED( 等量代换 ) ∵DF ⊥AB ( 已知 )∴∠FED +∠EDF =∠B +∠BDF =90°( 直角三角形两锐角互余 ) ∴∠EDF =∠BDF ( 等角的余角相等 ) 2.证明:如图,∵EF ⊥BC ( 已知 )∴∠B +∠1=90° ( 直角三角形两锐角互余 ) ∵AD ⊥BC ( 已知 ) ∴∠2+∠CDG =90° ( 垂直的性质 ) ∵∠1=∠2 ( 已知 ) ∴∠B =∠CDG ( 等角的余角相等 ) ∴AB ∥DG ( 同位角相等,两直线平行 )3.解:如图,∵CF⊥AE(已知)∴∠EAC +∠ACD=90°(直角三角形两锐角互余)∵∠ACB=90°即∠DCB+∠ACD=90°(已知)∴∠DCB=∠EAC(等角的余角相等)∵∠EAC=25°(已知)∴∠DCB = 25°(等量代换)∵BD⊥BC(已知)∴∠D+∠DCB=90°(直角三角形两锐角互余)∴∠D=90°-∠DCB=90°-25°= 65°(等式性质)4.证明:如图,∵∠E=∠F (已知)∴AE∥FC (内错角相等,两直线平行)∴∠CAE =∠FCA (两直线平行,内错角相等)∵∠1=∠2 (已知)∴∠1+∠CAE =∠2+∠FCA即:∠CAB=∠DCA(等式性质)∴AB∥DG (内错角相等,两直线平行)5.证明:如图,∵∠A=∠B=35°(已知)∴∠ACB=180°-∠A-∠B=180°-35°-35°=110°(三角形的三个内角的和等于180°)∵∠DCF=∠ACB (对顶角相等)∴∠DCF=110°(等量代换)∵BF∥DG(已知)∴∠D+∠DCF=180°(两直线平行,同旁内角互补)∴∠D=70°(等式性质)∵AD∥EF (已知)∴∠D=∠FEG (两直线平行,同位角相等)∴∠FEG=70°(等量代换)∵∠G=35°(已知)∴∠EFG=180°-∠FEG-∠G=180°-70°-35°=75°(三角形的三个内角的和等于180°)。

八年级数学上册平行线与三角形内角和的综合应用(习题及答案)(人教版)

八年级数学上册平行线与三角形内角和的综合应用(习题及答案)(人教版)


在△ ACD中,∠ 1=30°,∠ ACB=85°
∴∠ EDP=180°- ∠1- ∠ACB
=180°- 30°- 85°
=65°
( __________________________)_
∵PE⊥ AD
( __________________________)_
∴∠ EPD=90°
( __________________________)_
证自明的“基本事实” ,可以当做已知的大前提来进行使用.而其中的三条,
是我们在几何证明中不经意间多次用到的,下面对它们来进行简单的解释.
当我们证明时,会遇到如下的推理:
∵a=b,b=c
∴a=c
在这个推理过程中,我们很容易就理解它的正确性,但往往不知道它的依据
是什么.其实,它的依据就是欧几里得公理体系中 5 条公理中的第一条:“(1)
∴∠ A+∠ C=90°(等量代换)
这里推理的依据就是第一条公理, 我们把它简记为 “等量代换”.“等量代换”
第5页 共7页
A
D
B
C
第3页 共7页
6. 已知:如图, AB∥CD,∠ BAE=∠DCE=45°. 求证:∠ E=90°.
A
B
1 E
Байду номын сангаас
2
C
D
7. 已知:如图, EF⊥BC, DE⊥AB,∠ B=∠ADE. 求证: AD∥EF. A
E
B
F
D
C
第4页 共7页
思考小结
1. 在证明过程中: (1)由平行可以想 ________相等、 __________相等、 ________互补;
=180°- 30°- 85°

平行线与三角形内角和的综合应用(讲义)

平行线与三角形内角和的综合应用(讲义)

平行线与三角形内角和的综合应用(讲义)➢ 课前预习1. 如图,在△ABC 中,如果∠C =90°,∠A =30°,那么∠B =_____,∠A +∠B =_______,也就是∠A 与∠B ________(填“互余”、“互补”).ABC2. 如图,已知∠AOC =∠BOD =90°,求证:∠AOD =∠BOC .DCB OA证明:如图,∵∠AOC =∠BOD =90° (_______________________) ∴∠AOD =∠BOC (_______________________)➢ 知识点睛1. 三角形的内角和等于__________.已知:如图,△ABC .求证:∠BAC +∠B +∠C =180°.A MBC12N证明:_______,___________________________. ∵MN ∥BC ( 已作 ) ∴∠B =∠1,∠C =∠2(_______________________)∵∠BAC+∠1+∠2=180°(_______________________) ∴∠BAC +∠B +∠C =180°(_______________________)2. 直角三角形两锐角___________.➢ 精讲精练1. 如图,在△ABC 中,∠A =50°,∠C =72°,BD 是△ABC 的一条角平分线,则∠ABD=__________.DAC FED C BA第1题图 第2题图2. 如图,在△ABC 中,∠B =∠C ,E 是AC 上一点,ED ⊥BC ,DF ⊥AB ,垂足分别为D ,F .若∠AED =140°,则∠C =_____,∠BDF =______,∠A =______.3. 如图,AE ∥BD ,∠1=110°,∠2=30°,则∠C =______.21EDCB A FDAEB第3题图 第4题图4. 如图,AD ∥BC ,AB ∥CD ,E 在CB 的延长线上,EF 经过点A ,∠C =50°,∠FAD =60°,则∠EAB =_______.5. 如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E .若∠A =75°,∠ADE =35°,则 ∠EDC =_________.6. 如图,在△ABC 中,∠B =40°,∠BAC =68°,AD ⊥BC 于点D ,求∠DAC 的度数.解:如图,在△ABC 中,∠B =40°,∠BAC =68°(已知) ∴∠C =180°-______-______ =180°-_____-_____=______(_______________________) ∵AD ⊥BC (已知)∴∠ADC =90°(垂直的定义) ∴∠C +_____=90°(直角三角形两锐角互余)∴∠DAC =90°-______=90°-______=______(_______________________)7. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .求证:∠A =∠BCD .证明:如图, ∵∠ACB =90°(已知)∴∠A +_____=90°(直角三角形两锐角互余) ∵CD ⊥AB (已知)ABDABCDEDCBA∴∠CDB =90°(垂直的定义)∴_____+∠B =90°(______________________) ∴∠A =∠BCD (______________________)8. 如图,在△ABC 中,∠C =90°,点D 是边AC 上一点,DE ∥BC ,∠1=60°,求∠A 的度数.ADE1BC9. 如图,BD ∥AE 交△ABC 的边AC 于点F ,∠CAE =95°,∠CBD =30°,求∠C 的度数.AB CDEF10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于点E,交BC于点F.求证:∠1=∠2.【参考答案】➢课前预习1.60°,90°,互余2.已知,同角的余角相等➢知识点睛1.180°如图,过点A作MN∥BC两直线平行,内错角相等平角的定义等量代换2.互余➢精讲精练1.29°21FEDCB A2.50°,40°,80°3.40°4.70°5.35°6.解:如图,在△ABC中,∠B=40°,∠BAC=68°(已知)∴∠C=180°-∠B-∠BAC=180°-40°-68°=72°(三角形的内角和等于180°)∵AD⊥BC(已知)∴∠ADC=90°(垂直的定义)∴∠C+∠DAC=90°(直角三角形两锐角互余)∴∠DAC=90°-∠C=90°-72°=18°(等式的性质)7.证明:如图,∵∠ACB=90°(已知)∴∠A+∠B=90°(直角三角形两锐角互余)∵CD⊥AB(已知)∴∠CDB=90°(垂直的定义)∴∠BCD+∠B=90°(直角三角形两锐角互余)∴∠A=∠BCD(同角的余角相等)8.解:如图,∵DE∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∵∠1=60°(已知)∴∠B=60°(等量代换)∵∠C=90°(已知)∴∠A+∠B=90°(直角三角形两锐角互余)∴∠A=90°-∠B=90°-60°=30°(等式的性质)9.解:如图,∵BD∥AE(已知)∴∠CFD=∠CAE(两直线平行,同位角相等)∵∠CAE=95°(已知)∴∠CFD=95°(等量代换)∴∠CFB =180°-∠CFD=180°-95°=85°(平角的定义)在△CBF 中,∠CBD =30°,∠CFB =85°(已知) ∴∠C =180°-∠CBD -∠CFB =180°-30°-85°=65°(三角形的内角和等于180°) 10. 证明:如图,∵∠ACB =90°(已知)∴∠CAF +∠2=90°(直角三角形两锐角互余) ∵CD ⊥AB (已知)∴∠EDA =90°(垂直的定义)∴∠DAE +∠AED =90°(直角三角形两锐角互余) ∵AF 平分∠CAB (已知)∴∠CAF =∠DAE (角平分线的定义) ∴∠2=∠AED (等角的余角相等) ∵∠1=∠AED (对顶角相等) ∴∠1=∠2(等量代换)平行线与三角形内角和的综合应用(随堂测试)1. 已知:如图,AB ∥CD ,∠ABF =120°,CE ⊥BF ,垂足为E ,则∠ECF =___________.ABC D EF2. 已知:如图,在△ABC 中,∠B =40°,AD 平分∠BAC 交BC 于点D ,DE ∥BA 交AC 于点E ,∠ADE =40°,求∠C 的度数.EDC BA【参考答案】1.30°2.解:如图,∵DE∥BA(已知)∴∠BAD=∠ADE(两直线平行,内错角相等)∵∠ADE=40°(已知)∴∠BAD=40°(等量代换)∵AD平分∠BAC(已知)∴∠BAC=2∠BAD=2×40°=80°(角平分线的定义)在△ABC中,∠B=40°,∠BAC=80°(已知)∴∠C=180°-∠B-∠BAC=180°-40°-80°=60°(三角形的内角和等于180°)。

平行线与三角形内角和的综合应用作业及答案

平行线与三角形内角和的综合应用作业及答案

平行线与三角形内角和地综合应用(作业)1. 如图,三条直线 AB , CD , EF 相交于点 O ,/ A0F=3 / FOB ,/ AOC=90,则/ EOC= .2. 如图,在△ ABC 中,DE // BC ,/ ADE=55°,/ 1=25 °贝DBE= __________ .3. 如图,/ 1 + / 2=180 ° / 3=90 ° 则/ 4= ____ .5.已知:如图,△ ABC .求证:/ A+ / B+ / ACB=180C 第2题图4.如图, D 是厶ABC 边BC 上地一点,/ J 1 = / B ,若/ ADC=60°,贝U / BAC= .解:•• •/ B+ / C +/ BAC=180 ()/ 1 + / C +/ ADC=180 ()■/ 1 = / B ( )• / BAC= / ADC ( 等式地性质 )/ ADC=60 ( )• / BAC= ( )第1题图证明:作 BC 地延长线 CE ,过点C 作CD // AB ,•/ CD // AB•••/ A= / 1 / B= / 2 •••/ 1 + Z 2+ / 3=180° •••/ A+ / B+ / ACB=180 ( ( )(( ))) 第5题6.已知 如图, AB // CD ,/ BAE= / DCE=45° ./ E=90° . •/ AB // CD ( )+ =180 ( )•••/ BAE= 7 D C E=45 ( )• 7 1+45°+ 7 2+45° =即7 1 + 7 2= ( )•••/ E=180° - (/ 1+ / 2)=180 °-90 °=90 ° ( )7.已知:如图,/ 1 = / ACB ,/ 2=7 3.求证:CD // HF.证明:•••7 1= 7 ACB ( )• // ( )• 7 2=• 7 2=7 3 ( )'• 7 3= ( )•• // ( )【参考答案】1. 45°2. 30°3. 90°4. 60 °三角形三个内角地和是 180。

最新平行线与三角形内角和(计算(人教版

最新平行线与三角形内角和(计算(人教版

平行线与三角形内角和(计算)(人教版)平行线与三角形内角和(计算)(人教版)一、单选题(共10道,每道10分)1.如图,在△ABC中,AD平分∠BAC,且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数为( )A.80°B.90°C.100°D.110°2.已知在△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A的度数为( )A.30°B.40°C.60°D.80°3.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF=( )A.42°B.44°C.68°D.79°4.如图,在△ABC中,AE平分∠BAC,AD⊥BC,垂足为D,若∠BAC=128°,∠C=36°,则∠DAE的度数为( )A.10°B.12°C.15°D.18°5.如图,在△ABC中,∠BAC=4∠1=4∠C,BD⊥CA于点D,则∠DBA=( )A.20°B.60°C.45°D.30°6.如图,直线BD∥EF,AE与BD交于点C,若∠B=30°,∠A=75°,则∠CEF 的度数为( )A.60°B.75°C.90°D.105°7.如图,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,则∠EDC的度数为( )A.42°B.60°C.78°D.80°8.如图,直线AB∥CD,∠EFA=28°,∠EHC=50°,则∠E=( )A.28°B.22°C.32°D.38°9.如图,AB∥CD,AE平分∠CAB,CE平分∠ACD,则∠E=( )A.60°B.75°C.90°D.105°10.将一副直角三角板如图放置,已知AE∥BC,则∠AFE的度数为( )A.95°B.100°C.110°D.105°。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

...三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.3.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB= _________ ,∠XBC+∠XCB= _________ .(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E 在AB 上,CE ,DE 分别平分∠BCD ,∠ADC ,∠1+∠2=90°,∠B=75°,求∠A 的度数.10.如图,∠AOB=90°,点C 、D 分别在射线OA 、OB 上,CE 是∠ACD 的平分线,CE 的反向延长线与∠CDO 的平分线交于点F. (1)当∠OCD=50°(图1),试求∠F .(2)当C 、D 在射线OA 、OB 上任意移动时(不与点O 重合)(图2),∠F 的大小是否变化?若变化,请说明理由;若不变化,求出∠F .11.如图,△ABC 中,AE 、BF 是角平分线,它们相交于点O .(∠ABC >∠C ), (1)试说明∠BOA=90°+∠C;(2)当AD 是高,判断∠DAE 与∠C 、∠ABC 的关系,并说明理由.12.已知△ABC 中,∠BAC=100°.(1)若∠ABC 和∠ACB 的角平分线交于点O ,如图1所示,试求∠BOC 的大小;(2)若∠ABC 和∠ACB 的三等分线(即将一个角平均分成三等分的射线)相交于O ,O 1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC 和∠ACB 的n 等分线自下而上依次相交于O ,O 1,O 2…,如图3所示,试探求∠BOC 的大小与n 的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

八年级平行线、三角形内角和答案

八年级平行线、三角形内角和答案

B EAC F平行线、三角形内角和定理一、基本知识1.平行线性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

平行线判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

3.三角形内角和定理:三角形三个内角的和等于180°。

直角三角形两锐角互余;四边形的内角和等于360°。

三角形的一个外角等于和它不相邻的两个内角的和;三角形的外角大于和它不相邻的任何一个内角。

二、训练题1.下列说话正确的是( B )A 、互补的两个角一定是邻补角B 、同一平面内,b // a, c // a,则b//cC 、同一平面内,,,.a c b c a b ⊥⊥⊥则D 相等的角一定是对顶角。

2.如图1,∠1=∠2,则有( A )A 、 EB//CF,B 、 AB//CF,C 、 EB//CD,D 、 AB//CD,3.如图2,已知∠1=80°, m//n, 则∠4=( A ) A 、100°, B 、70° C 、80°, D 、60°,4.如图3,AB//EF,BC//DE, ∠B=40°,则∠E=( C )A 、90°,B 、120°C 、140°,D 、360°,5.如图4,点E 在AC 的延长线上,下列条件中能判断AB//CD 的是( A ) A 、∠1=∠2, B 、∠3=∠4 C 、∠D=∠DCE D ∠D+∠ACD=180°6.如图5,AB//CD//EF, ∠ABE=38°,∠ECD=100°,则∠BEC=( A ) A 、42°, B 、32° C 、62°, D 、38°,7.如图6,AE//CD, DE 平分∠ADC ,∠EAD=50°则∠DEA= 65° 。

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选(含答案)

三角形内角和综合习题精选一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?2.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?3.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.4.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.5.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_________,∠XBC+∠XCB=_________.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.6.如图1,△ABC中,∠A=50°,点P是∠ABC与∠ACB平分线的交点.(1)求∠P的度数;(2)猜想∠P与∠A有怎样的大小关系?(3)若点P是∠CBD与∠BCE平分线的交点,∠P与∠A又有怎样的大小关系?(4)若点P是∠ABC与∠ACF平分线的交点,∠P与∠A又有怎样的大小关系?【(2)、(3)、(4)小题只需写出结论,不需要证明】7.如图,已知△ABC中,∠B=∠E=40°,∠BAE=60°,且AD平分∠BAE.(1)求证:BD=DE;(2)若AB=CD,求∠ACD的大小.8.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.9.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.10.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.11.如图,△ABC中,AE、BF是角平分线,它们相交于点O.(∠ABC>∠C),(1)试说明∠BOA=90°+∠C;(2)当AD是高,判断∠DAE与∠C、∠ABC的关系,并说明理由.12.已知△ABC中,∠BAC=100°.(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC 的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.答案与评分标准一.解答题(共12小题)1.如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1).若∠C=80°,∠B=50°,求∠DAE的度数.(2).若∠C>∠B,试说明∠DAE=(∠C﹣∠B).(3).如图(2)若将点A在AD 上移动到A´处,A´E⊥BC于点E.此时∠DAE变成∠DA´E,(2)中的结论还正确吗?为什么?考点:三角形的角平分线、中线和高;角平分线的定义;垂线;三角形内角和定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线与三角形内角和地综合应用(每日一题)
1. 如图,在△ ABC 中,D 为BC 边上一点,DF丄AB 于F, ED// AC,/ A=Z B. 求证:/ EDF=/
BDF.
2. 已知:如图,AD丄BC, EF丄BC,/仁/2 .求证:AB/ DG.
r
3. 在厶ABC中,/ ACB=90 , E是BC边上地一点,过C作CF丄AE,垂足为F,过B作
BD丄BC,交CF地延长线于D.若/ EAC=25°,求/ D地度数.
4. 已知:如图,AC EF相交于点O,/ E=/ F,/仁/ 2. 求证:AB // DG.
5. 已知:如图,AD// EF, BF// DG,/ A=Z B=Z G=35° 求/
EFG地度数.
【参考答案】
1•证明:如图,
已知 )
Z FED +Z EDF =Z B+Z BDF=90°( 直角三角形两锐角互余 )
等角地余角相等
•Z ACB=90°
Z D=90°- Z DCB =90 - 25°
等式性质
4.证明:如图,
•Z E=Z F
DE// AC • / A =Z FED • / B =Z FED
已知 ) 两直线平行,同位角相等 ) 已知 ) 等量代换 即:Z CAB=Z DCA 等式性质 ) • AB / DG ( 内错角相等,两直线平行 ) 5.证明:如图,
• Z A=Z B=35° ( 已知 ) •Z ACB=18°0-Z A-Z B
=180°-35 °-
35° =110°
三角形地三个内角地和等于 180°) •Z DCF=Z ACB (
对顶角相等 ) 已知
( •Z 1+Z CAE =Z 2+Z FCA • DF 丄 AB • / EDF=Z BDF 2.证明:如图,
•/ EF ± BC •••/ B+Z 1=90 •/ AD 丄 BC •Z 2+ Z CDG=9°0
已知 ) 直角三角形两
锐角互余
已知 )
垂直地性质
•Z B=Z CDG
• AB / DG
3.解:如图,
•/ CF 丄 AE 已知 ) 等角地余角相等 ( 同位角相等,两直线平行 已知 •Z EAC +Z ACD=9°0
) 直角三角形两锐角互余 即 Z DCB+Z ACD=90
已知 Z DCB=Z EAC
Z EAC=25°
等角地余角相等 已知 Z DCB = 25°
BD 丄 BC
Z D+Z DCB=9°0
) 等量代换 已知 ) 直角三角形两锐角互余 = 65 • AE / FC 内错角相等,两直线平行 •Z CAE =FCA 两直线平行 ,内错角相等
已知
•Z 1=Z 2
/ DCF=11O ( 等量代换)
BF// DG ( 已知)
/ D+Z DCF=180 ( 两直线平行,同旁内角互补 ) / D=70 ( 等式性质)
AD/ EF ( 已知)
Z D=Z FEG ( 两直线平行,同位角相等 )
Z FEG=70°( 等量代换)
Z G=35°( 已知)
Z EFG=180-Z FEG-Z G
=180 -70 °-3°5 °
=75°(三角形地三个内角地和等于180 °)。

相关文档
最新文档